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We define here the category ¢B of quotient Banach spaces and study its linear
properties. This is an exact category whose definition can be motivated by functional
analytic considerations. It is to be expected that gB will be useful where functional
analysis and homological algebra interact. The multilinear propertis of ¢B, and the
J. L. Taylor spectrum of commuting operators in gB will be considered elsewhere.

The category g of quotients of complete bornological spaces can also be useful
when functional analysis and homological algebra interact. It contains ¢B. More
applications can be attained with ¢ than with ¢B. But ¢B is a subcategory of E.V,
(the category of vector spaces), g is not. Its properties can be explained in a much
simpler language than the properties of ¢. It is the simpler language that will be
used here.

I met the quotients of complete bornological spaces for the first time in 1960
[5], without defining their category, without showing that my constructions were
natural in g. I withheld systematic research and publication when 1 realized that
there would be more trivialities than applications in the incipient stages of the theory.

G. Noél gave a definition of ¢, and obtained some results on tensor products
([11, 2], [3], [4D. I do not like much his definition. It is too categorical, and not
functional analytic enough. But it is not worse than the definition I had at the time
and did not publish.

This paper, and the next two will stress the functional analytic aspects of the
category gB. After all, it is the functional analysts who are expected to use this
category. And the fact that gB is (isomorphic with) a subcategory of E.V. may
make the pill easier to swallow for functional analysts who do not have much in-
tuition of what homological algebra is about.

The results contained in this paper and the properties of quotients of complete
bornological spaces have already been announced [6], [7], [8], -[9].

1

Let E be a Banach space. A Banach subspace F of E is a vector subspace on which
a Banach space norm exists which defines on F a stronger topology than the top-
ology induced by E. Applying the closed graph theorem, we observe that two such
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Banach space norms on F are equivalent, i.e. that the Banach space structure of F
is determined by that of E and by the set F.

DEFNITION 1. A Banach quotient E[F is the quotient of Banach space E by
a Banach subspace F. Let E/F and E'/F’ be two Banach quotients. A strict morphism
u: E[F — E’|F'isalinear mappingu: x+F — u; x+ F' whereu,: E — E’isabound-
ed linear mapping such that u, F = F'.

‘We shall not analyse further the Banach quotient “structure” of E/F, but shall
consider that it is given by its realization as the quotient of a Banach space and a Ba-
nach subspace.

If E/F and E’[F’ are two Banach quotients, if #;: E— E’is a bounded linear
mapping such that u; F < F’, we shall say that u, induces u where

u(x+F) = uyx+F'.

Note that u,: F— F'is a continuous linear mapping when we place on each of F
and F' its own Banach space topology. If u = 0, u; E < F' and again u,: E—~ F’
is continuous.

The composition of strict morphisms is obv1ously a strict morphism. The class
of Banach quotients and strict morphisms is a subcategory of E.V., where E.V. is
the category of vector spaces and linear maps.

DerINITION 2. This subcategory will be called gB.

GB is a good category to work with, because it is usually easy to show that
a notion is “natural” in §B. Unfortunately it does not only have good properties.

If E is a Banach space, and. F a closed subspace, E; = E/F is a Banach space.
It would be very nice if the Banach quotient E/F were isomorphic with E, /0. Un-
fortunately, this is not the case in gB unless F is complemented.

2
We are led to enlarging §B.

DerFINITION 3. Let E/F and E'/F’ be two Banach quotients. A pseudo-iso-
morphism s: E[F — E'[F’ is a strict morphism induced by a surjective bounded
linear s,: E — E’ such that s7'F' = F. The category ¢B is the subcategory of E.V.
generated by gB and the inverses of the pseudo-isomorphisms.

gB has as objects the Banach quotients and as morphisms all compositions of
strict morphisms and inverses of pseudo-isomorphisms. This makes sense because
pseudo-isomorphisms are bijective linear maps.

A morphism of Banach quotients will simply be a morphism in the category ¢B.

3

DerINITION 4. A Banach space is free if it is isomorphic to /, (X) for some X.
A Banach quotient E/F is standard if E is free.
PROPOSITION 1. It is possible to ass

iate to every Banach quotient E[F a standard
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quotient E, [F, and a pseudo-isomorphism s: E,|F, — E{fF. In particular, every Banach
quotient is isomorphic to a standard one.

Every Banach space is of course isomorphic (as a Banach space) to the quotient
of a free Banach space by a closed subspace. Let E, be freeand s,: E; — E be a con-
tinuous linear surjection. Let F; = s7'F. Then E, /F, is standard, and s,: E; —» E
induces a pseudo-isomorphism s: E,/F; — EJF.

PROPOSITION 2. Every morphism from a standard Banach quotient is strict.

By induction, it is sufficient to show that s~ o u is strict when u: E,/F; - E/F
is a strict morphism, when E, is free, and when s: E’/F’ - EJF is a psendo-iso-
morphism. Let u;: E; — E induce u and s,: E’ — E induce s and be surjective.

It is known that a bounded linear v,: E; — E’ exists, such that u, = 5; o v,.
Since u, Fy € F, v, F; < s7'F = F', i.e. v, induces a strict morphism v: E,/F; —

— EfF. Clearly soev = u, hence v = s~* o u is strict. [The existence of v, follows
from the fact that E, is free and s, is surjective.]

PrOPOSITION 3. Every morphism u of qB can be expressed u = u, o5~ where
s is a pseudo-isomorphism from a standard quotient and u; is a strict morphism from
the same quotient.

Just combine Propositions 1 and 2.

NoTE. ¢B is “equivalent” to the category of standard quotients and strict
morphisms of such standard quotients. Restriction of ¢B to this subcategory is
inessential. Some mathematicians may consider that this restriction leads to a more
elegant presentation of the theory. But the functional analyst who wants to consider
a specific E/F, e.g. L,(I)/L,(I) may object to replacing it by a pseudo-isomorphic
L/F,.

4

PROPOSITION 4. A functor from the strict category of Banach quotients extends
to the full category when it maps pseudo-isomorphisms on isomorphisms. The extension
is unique.

PROPOSITION 5. Let K be a category, and F, G: qB — K be two functors which
extended to qB. Let F,, G, be their extensions. Let H: F - G be a functor homo-
morphism. Then H is a homomorphism of F, to Gy.

These propositions mean that a construction is natural in ¢B if it behaves as it
should under the action of a strict morphism and if the situation does not change
essentially when we replace a problem by a pseudo-isomorphic one (when we replace
the given Banach quotients by new, pseudo-isomorphic Banach quotients). In
practice, the verification of each condition is within the realm of functional analysis.

The uniqueness of the extension of a functor is immediate. So is Proposition 5.
Remember that each fnorphism u factors u = s~'eu, strict, s being a pseudo-
isomorphism. If F; is an extension of F to ¢B,

Fy(u) = F1(s7%) o Fy(uy) = Fy(s)™* o Fy(u;) = F(s)™* o F(uy).
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Let F, and G, be extensions of Fand G,and H: F - G be a functor homomorphism.
Let u be a morphism U/V — U,/V, and s a pseudo-isomorphism U'/V’ — U/V.
‘We must show that
H(U, [V)F;(u) = G H(U[V)
and assume that
H(U|V)F(s) =

Proposition 5 follows.

We must still prove that the functor F: §B — K has an extension if it maps
a pseudo-isomorphism onto an isomorphism. If it has an extension Fy, if u: U/V —
- Uy/Vy is a general morphism which factors u = s™'ou, we know that F,(u)
= F(s)™* F(uy).

‘We must therefore prove that F(s)™* o F(u,) does not dcpend on the factoriz-
ation u = s~* ou,. This being done, we must show that the mapping

u = F () = F(s)"'F(uy)

GEHU'|V"), H(UL/VIF(w) = Gu)HU'[V").

is a functor.
Lemma 1. Lets': U'JV' - UV and s"': U"[V"" — U[V be pseudo-isomorphisms.
A Banach quotient X|Y and pseudo-isomorphismst': XY — U'[V', "' X|¥Y — U"[V"”
can be found in such a way that s ot’ = 5" o t".
We consider surjective maps s;: U’ — U, s{:
and define

U’ — U which induce s’ and s,

X = {(,x)eU'xU"| s;x'—syx" eV}

with the norm
G xWx = 1% o+ 1% o+ |81 %" =57 %" |-
Then X is a Banach space, Y = V' x V" is a Banach subspace of X.
Letting #;: X —» U’ and #;': X — U” be defined by
8, x") = x"

X|Y - UV, t": XIY - U V"

ti(x', x") = x',
we see that f;, #;" induce psendo-isomorphisms ¢
and §'ot' = 5" ot", Lemma 1 is proved.

We can now show that the relation F;(u) = F(u,)F(s)™* when uy = ues,
defines a mapping. Let s,: U,/V; » U/V and s,: U,/V, — U[V be pseudo-iso-
morphisms, with U,/¥V; and U,/V, standard. Find X/¥ and pscudo-isomorphisms
ty: X|Y = Uy[Vy, t: X]Y — U,[V, such that s, 0, = 5,0t,. We must show
that F(u,) F(s;) ™ = F(u) F(s;)™! if u; = uos;, but

Uyoly =UoS ol =UcS ol =1Uzol,
hence F(u,)F(t;) = F(us) F(t,). Multiply this on the right by the inverse of
F(s,)F(t,) = F(s,)F(t;). We obtain the required equality.
To prove that Fy is a functor, we consider u;: Uj/V; — Upyy/Vigs (i=1,2)
and want to show that Fy(u;) F(u;) = F,(uy o u,). Let U; /V{ be standard Banach
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quotients, and s;: U; [V; — U,/V; be pseudo-isomorphisms. Let #} = u; 05, and
9" = 1, oty o5y. The morphisms #, ¢’ are strict and

Fi(w) = Fup)F(s)™, Fy(ugouy) =
We must show that

F@)F(s;) .

F(v') = F(u3)F(s2)~'F(uy).

This is the case, 53 o uj is strict because Uj/V; is standard. The relation 5, 0 (55 o
o uy) = u; shows that F(s3! o uy) = F(s,)~'F(u}) hence

FpF(s)™F(u}) = F@)F(s3* o up) = F (a5 o (55*
which is the desired relation.

°u})) = F®)

5

PROPOSITION 6. gB is an exact category. A sequence of morphisms of qB is
exact when it is exact in the category E.V. of vector spaces.

An exact category is one in which every mapping has a kernel, a cokernel, and
in which the natural mapping of the cokernel of the kernel mapping in the kernel
of the cokernel mapping is an isomorphism.

DEFINITION 5. Let E/F be a Banach quotient. Let E’ be a Banach subspace
of E which contains F. Then E'[F is a subobject or subquotient of E[F, and E/E’
is a quotient object. The map E'[F — E/F induced by inclusion E’— E is the in-
clusion map, or the canonical injection. The mapping E/F — E/E’ induced by the
identity E — E is the quotient map or the canonical surjection.

It is standard, in a vector category, to say that a morphism { is monic if u = 0
whenever i o u = 0, and that s is epic if v = 0 when © o s = 0, where we assume that
iou and ves exist. Canonical injections are clearly monic, canonical surjections
are epic (they are monic, or epic in E.V.).

LemMMa 2. A bijective morphism of qB is an isomorphism.

Every Banach quotient is isomorphic to a standard one. Every morphism from
a standard quotient is strict. It will be sufficient to show that a strict bijective mor-
phism is an isomorphism. Let u: E/F — E’/F’ be a bijective strict morphism, in-
duced by u;: E— E'.

Bijectivity of u 1mphes that u; E+F = E’ and F = uy'F'. Consider E;
= E®F', F, = F®F'. The linear mapping E,/F, — E’[F' induced by x®y —
— u;x+y is a pseudo-isomorphism. The mapping E/F — E,/F; induced by x —
- x@®0 is an isomorphism of the strict category. Its inverse is induced by the pro-
jection mapping x@®y — x.

u is the composition of the two isomorphisms above, it is an isomorphism.

LEMMA 3. Every monomorphism u: E;|F; — E[F of qB factors in a unique way
u = iou, where u,: E,|F, - E'|F is an isomorphism, where E'[F is a subquotient
of E[F and where i: E'|F — E|F is the inclusion map.
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Replacing E,/F; eventually by an isomorphic standard quotient, we may
assume that u is strict. Assume that u, induces u.

u is monic, Fy = uy'F. Otherwise u7'F/F; would be a non-null subquotient
of E,/F,. The composition of the canonical injection uy'F/F, — E,[F, with u,
would be zero, but the canonical injection would not be zero.

Let next E’ = u E; + F. This is a Banach subspace of E. The mappingu,: E, —
—» E’ induces a bijective morphism ': E,/F; — E'/F. And u is the composition
of the isomorphism u" and the canonical injection E’/F — EJF.

To show that E’ is determined by u, we assume that u = i, o u, where u, is
an isomorphism and i, a canonical injection E,/F — E/F. Then E,/F is the range
of the linear mapping u, and this implies that E, = E’.

Lemma 4. Every epimorphismu: E|F — E, [F, factorsin a unique way u = ' o s
where v’ is an isomorphism E[E’ — E,[F;, where E[E’ is a quotient object of E|F,
and where s: E[F — E[E’ is the canonical surjection.

Assume first that u is strict (this will be the case when E/F is standard). Let
uy: E— E, induce u. We have the equality u, E+F; = E;, otherwise the quotient
map E,/F; — E;/(u; E+ F;) would not be zero, but its composition with u would
be, and # would not be epic.

Let E’ = uy'F,. Then uy: E— E; induces a bijective morphism E/E’ -
— E;[F, and the composition of this bijective morphism and the quotient mapping
E[F - E|[E’' is equal to u.

E’ is determined by . Just as in the proof of Lemma 3, we observe that the
quotient E/E’ is determined by the linear mapping u, and E/E’ determines E.

If the epimorphism « is not strict, we consider a pseudo-isomorphism o: U/V —
— E|F, with U/V standard, then uo ¢ is strict. Let v = 4o 0. We find a quotient
object U/U’, and an isomorphism U/U’ — E, /F, in such a way that v is the composi-
tion of the quotient map and the isomorphism,

The pseudo-isomorphism o is induced by a bounded surjection o,: U — E.
Let E' = o, U, then o, induces a pseudo-isomorphism U/U’ -» E/E’ and u is the
composition of the quotient sutjection E/F ~ E/E', the inverse of the pseudo-
isomorphism U/U’ —+ E/E’, and the isomorphism U/U’ — E, JF,.

LemMA. 5. Every morphism of qB has a kernel and a cokernel. "

A kernel of u: E,|F, — E,[F, is a monomorphism i: U/V — E, /F,, such that
uoi=0, and such that v factors v = fov, if uewv = 0. Applying Lemma 3, we
see that we may take U/V to be a subobject of E, /F,, i.e. U= E,, V= F, with
F; € E; < E, and i to be the canonical injection. It is standard practise to say
that Ej /F is the kernel of u.

If u is strict, induced by u,: E;, — E,, its kernel is E;/F, where E, = u;1F,.
If u is not strict, we find a pseudo-isomorphism ¢: U/V ~ E, /F;, induced by a sur-
jection o,: U~ Ey, in such a way that o ¢ = v is strict. The morphism v has
a kemel U,/V. Letting E, = o, U,, we see that E, /F is a kernel of E/F.

A cokernel of u: E,|F, ~ E,[F, is an epimorphism s: E,/F, —» U/V such that
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sou =0 and such that v factors ¥ = 9, o s when v ou = 0. Applying Lemma 4,
we see that we can take s to be a canonical surjection s: E,/F, — E,/E;. And again,
it is standard practise to say that E,/E, is the cokernel of u.
We may assume that u is strict, replacing eventually E,/F; by a pseudo-iso-
morphic standard object. Let u; induce u. We see that E,/(u, E, + F,) is a cokernel.
The proof of Proposition 6 is now straightforward.

6
The following two definitions are convenient but do not follow from general categori-
cal principles. The category B can be embedded in gB, mapping every Banach space
E onto the quotient E/0. The “exact sequences” of B are the sequences of mappings
of B which are exact in gB. The definitions of exact and right-exact functors from B
are made to order, in order that Proposition 7 hold.

DEFINITION 6. A sequence (u,v), u: E— E’, v: E' -+ E” of morphisms in
the category B of Banach spaces is exact if it is exact in the category E.V. of vector
spaces.

DermNITION 7. A functor @ from B into an exact category K is right-exact if
it maps a short exact sequence 0 — E' - E — E’’ — 0 onto a right-exact sequence
D(E)—> P(E)— P(E') - 0. It is exact if it is right-exact and maps a mono-
morphism on a monomorphism.

PROPOSITION 7. Every right-exact functor @: B — K extends to a right-exact
functor @,: qB — K. Two different extensions of ® are isomorphic. If © and ¥ are
right-exact B — K and if D, ¥, are right-exact extensions of @ and ¥, every functor
homomorphism H: ® - ¥ has a unique extension Hy: @, » ¥,.

The right-exact extension of an exact functor B - K is exact ¢B — K.

The proof is easy diagram chasing. We identify systematically a Banach space
E and the quotient E/0.

E/F is the cokemnel of inclusion i: F— E. We define ®(E/F) = coker ().
If u: E[F - E'[F'is a strict morphism, induced by u,: E— E’, if v;: F— F' is
the restriction of u,, @,(u) will be the morphism @,(E/F)—> @,(E’/F’) making
the following diagram commutative:

o) - 9E) » D(ET) 0
BEF") —» B(E") - DE'|F') » 0

(where @(u,), D(v,) respectively map G(E) - G(E"), D(F) - O(F")). It is straight-
forward that ®,(4) does not depend on the choice of u; inducing u, also that
D, (uov) = O ()P, (). In other words, D, is a functor 4B — K.

To show that @, extends to ¢B, we must prove that it maps a pseudo-isomor-
phism onto an isomorphism. Let s: E/F — E'/F’ be such a pseudo-isomorphism,
let 5, induce s and be surjective, let ¢, be the restriction of 5; to F, considered as
a mapping from F to F’. Then ¢, is surjective, and has the same kernel X as s;.
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We have, in gB, the following commutative diagram with exact rows and columns:

0 0 0

{ i !
0>K- F, - F -0

! 4 |

0>K—- E - E -0
{ { !
0— E/F, > E[F=0
| |

. 0 0
Apply the functor @ to the two upper rows of this diagram, @, to the third

row, map D(E)) — @,(E,/F,), P(E)— ®,(E[F) by the cokernel mappings. We
obtain a commutative diagram in which the two upper rows and the three columns

are right-exact. BK) > BF) - OF) -0
D(K)—» OD(E) - Qi(f) -0
é g djx(Ei/Fﬂ - @,(E/F) >0

1!

0 0 .
It is well known that the exactness of the third row follows, i.e. @, (E;/Fy) — @,(E/F)
is an isomorphism.

The next item on the agenda is a proof that @, is right-exact, and that @, is
exact when @ is exact. Every monomorphism of ¢B is equivalent to canonical in-
jection, every epimorphism is equivalent to a canonical surjection (Lemmas 3 and
4). It will be sufficient to show that @, maps a short exact sequence such as

0— E'[F - E[F > E[E' -0
onto a right-exact sequence, even onto an exact sequence when @ is exact.
We consider the commutative diagram with exact rows and columns in ¢B
0 0

! {
0—» F - F - 0

| 1) i

0—> E' - E - EE'>0
| { !

0— E'|F—E[F > E[E'- 0

| Ll
0 .0 0

and deduce from this a commutative diagram right in K whose upper two rows
and whose three columns are right-exact in K (when @ is right-exact).
OF) - OF) - 0

|
DEY) -» OE) ->DEE)Y-O0
¢1(El'/F') - ¢1(f3/5) - B(E[E) - 0.
0 0 %)
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The mappings of this diagram are, respectively the images by @ or @, of the cor-
responding mappings in B or gB, or are suitable cokernel mappings. The upper
two rows of the diagram, and all three columns are right-exact. The third row is
therefore right-exact.

If the functor @ is exact, the morphisms ®(F) — D(E"), D(F) - P(E), B(E) —
— @(E), and of course @(F) — P(F) are monic. The mapping &, (E’'/F) - &,(E[F)
is then monic, @, is exact.

We must still show that the extension @, is unique modulo isomorphism, and
that every functor homomorphism H: @ — ¥ has a unique extension H;: @; —
— ¥,. It will of course be sufficient to show that every functor homomorphism
has a unique extension. If @, and @ are two extensions of the same functor P,
the identity & — @ will extend to functor homomorphisms @, — &5, ®; —» D,.
The compositions of these homomorphisms are functor homomorphisms @, - @,
&; - Dj extending the identity ¢ — @, these compositions are the identity homo-
morphisms @, and @; are isomorphic functors. )

Let @, and ¥, be right-exact functors gB — K extending @ and ¥, and let
H: @ - ¥ be a functor homomorphism. There cannot be more than one extension
H,: &, - ¥, of H. Consider a ¢gB space E/F. We have the right-exact sequences
@(F) - D(E) — D,(E[F) —~ 0, ¥(F) - Y(E) » ¥,(E[F) = 0; only one mapping
&, (E/F)y— ¥,(E[F) makes the following diagram commutative.

QiiF) = B(E) » D, (E[F)— 0
P(F) - V(E) — ¥ (E[F) - 0.

(The mappings ®(F) - P (F), O(E)— Y(E) in this diagram are H(F) and H(E)
respectively.) This proves that the extension is unique if it exists.

H, (E/F) can be defined in this way. The left-hand square of the above commu-
tative diagram can be constructed when only @ and H are given. Hy(E/F) is the
morphism of the cokernel of ®(F) — $(E) into the cokernel of F(F) — ¥(E) which
makes the diagram commutative.

To prove that H, defined in this way is a functor homomorphism, it is sufficient
(Proposition 5) to prove that it is such a homomorphism over gB, i.e. to prove
that

(W) o H(E[F) = H(E'[F') o ¥1(4)

when u: E/F —» E'[F' is a strict morphism. We assume that u,: E — E’ induces u
and consider the restriction z,: F > F' of #,.
We have the two commutative squares

QS(P - (D(f"’) B(E) - q:'(lm
P(F) > P(F) ¥(E - PE)
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and mappings ®(F) - B(E), OF)— D(E), Y(F)— ¥(E) and ¥(F) -+ ¥(E)
building up this diagram to a commutative cube. The square

O,(E/F) — (E'[F)
Y (E[F) — P, (E'[F")

is the cokernel of this mapping of commutative squares. It is known that this coker-
nel is again a commutative square. Proposition 7 is proved.

Added in proof. Since March 1978, on the same subject, the author completed: Les
espaces de Banach plats sont ultraplats, Bulletin de la Société Mathématique de Belgique; Fonctions
4 valeurs dans les quotients banachiques, Bulletin de I'Académie Belge, Classe des Sciences; Holo-
morphic functional calculus, Studia Math. vol. 75; and Quasi-Banach. algebras, ideals, and holo-
morphic functional calculus, ibid., vol. 75, all four at present in publication,
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The multilinear structure of the category ¢B is defined by putting a gB-structure
on the vector space gB(E/F, E'[F’). Multilinear mappings E,/F; X ... XE/F, —
— E'[F’ are defined by induction.

Strict multilinear mappings are specially interesting. These are induced by bound-
ed multilinear mappings u,: Ey; X ... X E, — E’ such that u(x,,...,x)e F as
soon as one of the x; belongs to the corresponding F;. All gB-multilinear maps
E,[F; x ... XxE./F, — E’[F' are strict if the E;/F; are standard gB-spaces.

The tensor product which can be defined in gB is a right-exact functor as it
should be. It is unfortunately not an extension of the tensor product which is defin-
ed in the category of Banach spaces. If Fis the closure of F, E/F is the “Banachiz-
ation” of E/F. The projective tensor product of two Banach spaces is the Banachiz-
ation of their gB-tensor product.

We are interested in gB-algebras. These are gB-spaces &f with a bilinear multi-
plication belonging to g,(&, o; &). The gB-algebra is strict if its multiplication
is a strict bilinear mapping. It is commutative, or associative if its multiplication is
commutative, or associative. The structure of a gB-subalgebra can be put on the
center of a gB-algebra.

Every gB-algebra is isomorphic with a strict gB-algebra. A strict gB-algebra
is the quotient of a Banach algebra by a two-sided Banach ideal. An associative
gB-algebra is isomorphic with the quotient A/ of an associative Banach algebra
by a Banach ideal. The isomorphic A/e can even be chosen in such a way that
Z(A]a) = (Z(A)+)[o where Z(A]«x) and Z(4) are the centers of Afx and of A.
Every commutative and associative gB-algebra is isomorphic with the quotient of
a commutative and associative Banach algebra by a Banach ideal.

This paper is a sequel of {2].

i

Let E/F and E'[F’ be gB-spaces. Call gB* (E/F, E’/F") the space of bounded linear
mappings E — E' which map Finto F’, and §B°(E/F, E'[F’) the space of bounded
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