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We define the J. L. Taylor spectrum of commuting endomorphisms of a quotient
Banach space. We prove that this is compact, not empty, and that it has the projec-
tion property.

Our proofs are often very similar to J. L. Taylor’s. The proof that the spectrum
is compact is slightly more complicated than Taylor’s, it relies on a perturbation
argument in the category of quotient Banach spaces. We must complete a perturba-
tion theorem proved by Taylor in the category of Banach spaces.

The proof that the spectrum is not empty and that it has the projection property
is easier than Taylor’s. Taylor sketches the proof that we give ([2], p. 186) but he
cannot use it because he does not know that the spaces he considers are quotient
Banach spaces, and that the spectrum of an operator on a quotient Banach space
is not empty.

The reader will find a definition of the category ¢B of quotient Banach spaces
in [3].

1

Let E/F be a quotient Banach space, and a,, ..., @, be commuting endomorphisms
of E[F. Let A, be the exterior algebra in n indeterminates e, , ..., e,. Let /A% be the
homogeneous elements of degree n in -4,. We define and identify

AE[F) = A,BE[F = (4,8E)/(4,®F),
A3(EIF) = AQEJF = (419B)/(A10F)

and put on these spaces the obvious gB-structure. An element of A2(E/F) can be
written

w = Z whm,‘eh/\ s Ny,
iy<...<ig

. e
where the w,,. ;, belong to E/F. If b is an endomorphism of E/F, we let bw be the
element

bw = wah___(leh/\ e Al

[573]
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We can associate to the indeterminate e, the mapping AJ(E/F) — A3-Y(E[F)

defined by .
eV th_.,iq e A . Ay = Zw‘,,,i, (aVie, A ... Aey)),
where
gV (e A ... Ae) =0 if  k#i, ...,
Ve A . Ae) = (=1V"Ye A ... Ae_ Aey A Ay, BT k=0

Then 82: AYE/F) - A%-1(E/F) is defined by

e = Za,(e,vw) = 261/\(01 ‘).

The commutativity of the system (a;, ...
8210 62 = 0 for all q.
We also define 8,: A,(E/F)— A,(E[F) by

8.(0o® ... Bw,) = 6,0, ... ®,0,H0.
DEFINITION 1. The commuting system (g, ..

(0) a:’ 5:_1!

, @4y) is equivalent with the relation

., @) 1s regular if
- 8,0

is an exact sequence of morphisms. The spectrum of (ay, ...
., 8y) € C" such that (a,—s, 7,

, a,) is the set of (s, ...
a,—S,1I) is not regular (is singular).

2

Let now A,_, be the exterior algebra in (ey, ..., €,.;). Then 4,_, is a subalgebra
of A,. Besides, the mapping &: @ — e,V is a linear surjective mapping A, - A,_;
having A,_, as kernel. We tensor by E/F and obtain the exact sequence of quotient
Banach spaces

0o A (BIF) S A,EF) S A, ((EIF) -0,
i is the inclusion map, ¢ the map w — e, V.

Let @’ = (ay, ..., Gy—;) and define 6,.: A,_,(E/F)— A,.- 1(E/F) in a manner

similar to d,: 4,(E/F) - A,(E/F). 1t is clear that
P08, =20z01, Opoe=¢g0d,

the above short exact sequence is an exact sequence of complexes. It induces an
exact triangle of homology in the category ¢B:
H(A,- 1(E/F) 8ar) > H(A,,(E/F), 0a)
, “H( s EIF), 8),
where H(I", §) represents the homology of the complex (I, §) when I'is a quotient

Banach space, and 8: I'— I" an endomorphism such that % = 0, i.e. H(I', ) is
the cokernel of the obvious mapping Imé — Ker 6.
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Taylor remarks that the degrees of the mappings in the above triangle are
somewhat unexpected, because the short exact sequences introduced in nursery
books on homological algebra are associated to mappings of degree zero. Here,
in our original short exact sequence, 7 has degree zero, ¢ has degree—1, the asso.
ciated mapping H(4,_,) — H(4,) will have degree zero as usual, however the
mapping H(A,) ~ H(A,_1) will have degree —1 and the connecting homomorphism
H(A,) = H(4,_,) will have degree zero. When we unwind our triangle to a long
exact sequence, we have a sequence

S H(Ays) = HYA,) > B4, q) > H7H (A4, ) - ...

Taylor’s computation of the connecting homomorphism goes through without
any essential change here. It is the endomorphism of H(A,-,(E/F), &,) induced
by the operation of a, on A4,_,(E/F). Note that a, does induce an endomorphism
of H(A,_.(E[F, 6,,.) because a, commutes with (a,,...,a,.,) and therefore
with 6, .

PROPOSITION 1. The commuting system (ay, ..., a,) is regular if and only if the
operator a, induces an invertible transformation on H(A,—,(E[F), 6,,,). -

A quick look at the exact triangle of homology will convince the reader that
the vanishing of H(A4,(E/F), é,) is equivalent with the bijectivity of the connecting
homomorphism.

3

The next step will be the proof that the spectrum of a single operator is not empty.
This result is interesting in its own right. It has two proofs. One gives more informa-
tion when we wish to construct an operational calculus. We shall give the shorter
proof here.

LeMMA 1. The spectrum of a single endomorphism of a non-zero quotient Banach
space is not empty.

Let a be an operator on a quotient Banach space E/F. We may assume without
loss of generality that E/F is standard, i.e. that E = [;(X) for some X. All endo-
morphisms of E/F are then strict. The algebra of endomorphisms of E/F will then

‘be the quotient A4/« where A is the algebra of bounded linear transformations of

E which leave Finvariant and o is the two-sided ideal of linear mappings of E into F.
A is a Banach algebra with the norm

sup {Jlusxll, lusylle| |xlls < 1, lIylle < 1},

a is a true ideal of A (if F # E) and is therefore not dense. 4, will be the quotient
Afa. Then A, is a quotient of A/a«.

Let a, € A, be the quotient image of @ € A/a. Tt is trivial that spa; < spq,
easy to see but we shall not need the result that spa, = spa. Since spa, # @, it
follows that spa # @.

lluylla =
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4
PROPOSITION 2. The mapping (Sy, ..., Sa) = (S1, s Samy) maps sp(ay, ..., a,)
onto sp(ay, ..., @p-y).
Consider first (s, ..., Sy—y) € 5p(@¢, ..., @y—y) and s, € C. We want to show
that (sy, ..., S) € Sp(@y, ..., @), i.e. that a—sI is regular. Proposition 1 shows that

this is the case if a,—s,I induces an invertible transformation on H(A,._ (EIF),
8w—sr). But we assume that a’— 57 is regular, that H(A,_ (E/F), 8a_yr) = 0 and
all transformations of the null space are invertible.

Assume next that (sq, ..., s,.,) is not in the projection of sp(ay, ..., a,), i.e.
that (@, —sy1, ..., @y 1—Ss—1 I, a,—tI) is regular for all choices of t. Proposition
1 again shows that @,— I induces an invertible transformation of H(dA,-,(E/F),
8a_s1), this for all choices of ¢. The operator induced by a, on this quotient Banach
space has an empty spectrum. Lemma 1 shows that this is not possible unless the
space H(Au_1(E/F), 8,yr) is null, unless a’~s'I is regular.

COROLLARY. The spectrum of (ay, ..., a,) is not empty.
Methodologically, Lemma 1 is more important than this corollary. But it is
a special case, and may not be called a proposition.

5

We must still prove that the spectrum is compact.
n

,a) < [{spa;. Lt is
1

therefore sufficient to show that spa is bounded when a is an operator on a Banach
quotient. We may assume that E/F is standard. All endomorphisms of E/F are
then strict. Assume that # induces a, let

It is easy to show that it is bounded. After all sp(a,, ...

Hlull = sup {Iluxlle, luylle| Ixlls < 1, [I¥lle < 1}

Then uy —sI is invertible in the Banach algebra of linear transformations of E which
leave F invariant, when |s| > ||u||. 4 fortiori, a—sI is invertible in gB(E/F, E[F).
The proof of the fact that sp(ay, ..., a,) is closed uses the following result.

PROPOSITION 3. Let E, F, G be Banach spaces. Let f: E—~ F and g: F— G
be bounded linear mappings such that (f, g) is exact, and g has closed range. Assume
that £ > 0 is small, that ||f-f'|| < e, that ||g—g'|| < & Then (f’, g') is exact.

J. L. Taylor ([2], Lemma 2.1) proves this result, and uses it to prove that his
spectrum is closed when a,, ... a, are operators on a Banach space. B. E. Johnson
[1] proves this result also (Lemma 6.1), -proves furthermore that g has closed range,
and applies this to show that a “perturbed algebra” has properties similar to those
of the given algebra.

To apply this result to Banach quotients, we need a result which expresses the

exactness of mappings of quotients in terms of properties of the mappings inducing
these mappings.
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Let Ej/F; (i=1,2,3,4) be quotient vector spaces (or abelian groups), let
fi: Ei/F; = Ej1/Fyyy be linear mappings, induced by u;: E; — E;,, (this for
i=1,2,3). Call v;: F; —» F;,, the restriction of u; to F;, and t;: F; - E; the
inclusion mapping. Assume that f;,; o f; = 0 when i = 1, 2. This means that ;. , o
o u;(E;) < Fiyz, that wi: E; — F;, exists such that u;; ot; = ;.5 o w;. We have
thus the commutative diagram

F] /FV/T/ E

Ey Ey Ey E,
We now define ¢;: E;@F;; — Ei 1 ®F;, by

@@ fi41) = (Wer—1t141 fii)®(Wiei—y4 1 frin)-
We also define yp: E;@®F, — E; by
w(es®fy) = uzes—ta fs.
The result that we shall need is
PROPOSITION 4. (@1, @2, ) is exact if (f1, f2, f5) is exact. Also (f1,f2) is exact

if (g1, @2, Y) is exact.
The proof will be left to the reader.

PROPOSITION 5. Let EifF; (i=1,...,4) be Banach quotients and f;: Ei|F; —
— Ejy1/Fipy be strict morphisms such that (fy,f2,fs) is exact. Define u;,v; (i
= 1,2, 3) and w,, w, as above. Let now fi: E;/F; — E;.,[F;. be new strict mor-
phisms such that fi, o fi = 0. Define u;, v, and w; in a similar way to u;,v;, w;.
Assume that the choice can be made in such a way that

i —ulleE, e < & |li—vlleErn < & |IWi—willegruy < &

with & small enough. Then (f1, f) is exact.

Just apply Propositions 3 and 4.

PROPOSITION 6. The J. L. Taylor spectrum of commuting endomorphisms of
E|F is compact.

We have already observed that it is bounded. We must show that it is closed.
Assume that s = (sy, ..., 5,) is in the resolvent set of (ay, ..., @,). Let 5" be near to .
We assume that

0,8 002, ..., 6,0
is exact. The sequence

0,8, 8073, ..., 04,0
is such that 8i-L o di_,, = 0, is also induced by u}, v;, w; which are norm-wise
near to the u;, v;, w; defining the sequence 8%_,. Proposition 5 shows that the new
sequence is exact.
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By the way, the same argument also shows that the spectrum is bounded. The
complex (A.(E/F), 8,-) is exact if and only if (A4,(E/F), 8y)) is exact where
a—s
(1+|s|2)1/2 :
When s is large, a(s) is a perturbation in the sense of Proposition 5 of s, = s5/|s|,
and d,, is a perturbation of &y We know that s/}s| is a non-zero system of scalars,
is therefore regular. The complex (4,(E/F), 8,_,) is therefore exact.

o(s) =

PROPOSITION 7. Assume that (ay, ..., @,) is a regular system of strict commuting
endomorphisms of EJF, a; induced by a}: E — E. Let by, ..., by be new commuting
endomorphisms of E[F, induced by b}, E — E. Assume that
lai—bHlzwe < & llat—bHlewn < & llaia} —a}al+bibi —bibjllewn < e,
with ¢ small. Then (by, ..., by) is regular.

For the proof to go through, at least, we must assume not only that (b,, ..., b,)
is near to (@i, ..., d,) in the Banach algebra of linear transformations of E which

leave F invariant. We must also assume that the commutation [a;, a;] are near to
[B:, b;] in the two-sided ideal of linear mappings of E into F.
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Introduction

In this article we treat a number of topics, as indicated in the table of contents,
on the interrelation between the algebraic properties of the spectral radius and
those of the algebra. Originally these investigations were motivated by the well-
known contrast between commutative and non-commutative Banach algebras. For
example, spectra of elements behave much better in commutative algebras than
in non-commutative algebras. Therefore we tried to explain to what extent spectral
properties (nice in some reasonable sense) of elements in the algebra can effect
commutativity, the essence of the Gelfand theory. It emerged that the key to this
mystery is contained just in the notion of the spectral radius. It is indeed interesting
to find if the properties of the spectral radius can give information about the prop-
erties of the whole spectrum and, moreover, about the structure of the whole
algebra. Of course, we obtained these results first for Banach algebras over the
complex field because some of the crucial steps were based on complex analytic
tools like the Cauchy integral formula and the Beurling-Gelfand formula for the
spectral radius. The work culminated in the dissertation [25].

Here we provide another approach, also simple, which is more algebraic and
avoids the preceding analytic techniques. It consists in a more ingenious applica~

* Mailing address: ul. Nerudova 14/1280, 274-01 Slany, Czechoslovakia.
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