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are equivalent. But for v = gu, u € AP.*(R"), we have
(A~ Dol = [lo(A—Dull  and  [jv]] = Jleull.
1

Hence the equivalence of the inequalities is a simple consequence of (6).

Let us now introduce a function ¢r e C3(|x] < T) such that 0 < ¢y < 1,
@r(x) =1 for |x| < T—1 and for u e AP.2(R") the following equalities take
place:

o1 .1
]2 = tim = llrtdizes  (Weurtt #) = lim — (Aei(@ri), @rue)s,
T T 1 To0 T
T |
Wyl = Tim [ Acoi(@ri)llZa.
1 T
Hence and from the inequality
(A= Dollz2 = cllollz, veCHR), ¢ = const,

it follows that
II(?]Icm—?-)ull = cllull, ueAPZR".

This gives the last inclusion of (9) and ends the proof of the cutting theorem. For
more information on spectral analysis in nonseparable spaces see [3}-[6], [8]-[11].
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DILATIONS TO SYSTEMS OF MATRIX UNITS
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0. The context

The dilation theorem of M. A. Naimark ([9], Thm. 1.8.2) concerns dilations to
a spectral measure. The object dilated has some but not all of the defining proper-
ties of a spectral measure. The dilation theorem of W.F. Stinespring ([8], [2]),
and that of the present paper, are of analogous nature. To show what we are about,
we begin by restating Nafmark’s theorem in the case which gives a spectral measure
of finite support.

TreoreM 0.1 (Natmark). Assume the operators A; (j running over a finite index
set) satisfy 0 < A; € B(H), Z A; = 1. Then there exists an isometric injection ¢ of
7

S into alarger Hilbert space X", and there exist commuting orthoprojectors E; € B(HA')
with > Ej = 1, such that 4; = *Eju.
7

The last equation holding for all j is what is meant by saying the E; are a simul-
taneous dilation of the 4;; so the theorem may be phrased briefly thus: a finite
family of positive operators adding to the identity have a simultaneous dilation
to complementary orthoprojectors.

One way of proving Naimark’s theorem [6] begins with a simple explicit con-
struction for the case where there are only two 4;, and handles more numerous
families by iterating this construction in nested fashion. Infinite families can be
handled in the same way and the full force of Naimark’s theorem recovered.

Stinespring’s theorem concerns linear mappings on a C*-algebra. into B(3¢).
We will restate it in the special case where the given algebra is that of all n xn com-
plex matrices. This algebra is the linear span of the ey (this denotes the matrix
having entry 1 in the j, k-place and all other entries zero), so any linear mapping of itis
determined by the images 4, of the ej;. It is known ([4], Remark 1.8, or [5], Lemma
2.1) that the mapping is completely positive if and only if the Ay form a positive
operator-matrix; and that the mapping is a *-homomorphism if and only if, in
addition, 4;; Ay = 8j 4, The following is therefore a variant of this case of Sti-
nespring’s theorem (cf. [3], Lemma 3.2):

[63]
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TeEOREM 0.2. Assume the operators Ay e BOE) (j, k running over a finite
index set) form a positive operator-matrix with ZAjj = 1. Then there exists an

J
isometric injection v of # into a larger Hilbert space 2, and there exist Ey, e B(A)
forming a positive operator-matrix with z Ey =1, EyEg = 0 Ey, such that
Ajp = FEpt. !

That is, a finite normalized positive operator-matrix has a dilation to a system
of matrix units, in the terminology of the present paper.

Now the 4;; in the hypothesis of Theorem 0.2 obey the conditions imposed
on the 4, in Theorem 0.1, and the E; found there go part way toward the conclu-
sions of Theorem 0.2, Can the construction of the E; be enriched to yield the whole
matrix of the Ej, then, providing an explicit proof of Theorem 0.2? Can the induc-
tion on the size of the index set be continued countably, and what then results?

We will carry out this program in Sections 1 and 2 of the paper. The resulting
theorems, finite and countable, fail to encompass the full variety of cases. In Sec-
tion 3 we give a continuous analogue. Section 4 is a discussion of the relationship
between our results and Stinespring’s theorem.

1. Finite operator-matrices

The main theorems deal with matrices whose entries 4, are elements of %(#)
for a Hilbert space 5. The dilations Ej, are in (") for a different Hilbert space
o but are indexed the same. The index set is finite in this section, countably infinite
in the following one. Let us adopt the following notation for indices, which will
permit us to state hypotheses, conclusions, and constructions in a consistent way.

Notations. Symbols u, v, ... take the values 0, 1. Indices j, &, ... will be strings
pv ... The length of a string j, denoted |j|, may have any value O, 1, ... In case
|/1 = 0, the string is empty: j = @.

DeriNtrioN 1.1. Let an operator Ay € #(#°) be given for every j, k with
|7l = |k| = m. The indexed collection will be called a normalized positive oper-
ator-matrix provided

(i) the operator-matrix (4, is > 0;

®;%=.

In this case we define A, for strings A, i with |A] = |i| < m by applying (iter-
atively) the rule

(i) Api = Apoio+ Apsiz-

) One verifies that the matrix of lesser size produced by rule (iii) is again normal-
fzed positive. Note that automatically 4gg = 1. Note also that, given any normal-
ized positive 2™ x2™ operator-matrix, there are various easy ways to produce
a 2" x 2™+ pormalized positive operator-matrix which is related to it by, (iil);
for one, say A o = A and otherwise 4y, 4, = 0.
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The restriction to 2™ x2™ matrices which is apparently imposed by the no-
tation, is inessential. Given an nxn operator-matrix satisfying (i) and (ii), with »
not a power of 2, one could always border it with zeros and treat the resulting
matrix, discarding zero rows and columns at the end. We will say no more about
this point. _

DEFINITION 1.2. A normalized positive operator-matrix (4;) will be said
to comprise a system of matrix units if it satisfies

(lV) A‘IA” = 6];‘.4,1.

One computes in one line that in this case, the operator-matrices obtained from
it by applying (iii) will themselves satisfy (iv).

An alternative characterization will come in handy for our proofs:

PROPOSITION 1.1. An nxn normalized positive operator-matrix (A;);: is a
system of matrix units iff

™) %(Aﬂ()j‘k is an orthoprojector.

Proof. The implication in the forward direction being immediate, we assume
(@), (i), (v), and seek to prove (iv). Because 4;; = A4}, the hypothesis

n
> Audy = ndy
=
can be rewritten, in terms of the temporary definition
1

Vn

... .1
as B;Bf = %A, ;- In particular, B;B* is the positive contractlon—;l—Aﬁ, Hence BfB;

B, = (4 Az .. Ap)s

= %(AﬁAi,,)j'_,, is also a positive contraction. On the other hand, the average of

these n operators is
%Z BB, = _:;(ij)j.k,
i
which by assumption (v) is an orthoprojector. Any orthoprojector is extreme in
the convex set of positive contractions, consequently each of the operators being
averaged must equal %(Aj,)_,,k. This is the desired conclusion

(1.1) Apdy = Ajk' oo

To complete the proof of (iv), it remains only to prove 4;; Ay Zerofor j# k. By ap-

plication of (1.1), it is enough to prove 4;; 4, zero for j # k. But by ¢1.1), (i), (i),

the 4;; are orthoprojectors whose sum is 1, hence they are mutually orthogonal; m
The main result of this section is ‘ :

5 Banach Center t. VIII
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*

THEOREM 1.1. Assume the operators A;, € B(F) (j| = k| = m) form a nor-
malized positive operator-matrix. Then there exists an isometric injection « of #
into a Hilbert space ", and there exist Ep € (X°) comprising a system of matrix
units, such that Ay, = *Ept.

Proof. In the case m = 0 we take X" = #, Epg = 1, and ¢ = 1. By virtue
of (iii) and the remarks above, we can proceed by induction on m.

Let us not start the induction at m = 0, but rather display the case m = 1.
The general inductive step will thereby be better motivated.

Let m = 1 for now, so we are treating (4,)%,y=o. Define F, = (4,,)!/%; these
are commuting positive operators with FZ+F}? = 1. The construction combines
two devices, one confined to the diagonal and one to take care of the off-diagonal
entries. ’

Lemma 1.1 (E. A. Michael [7]). Every positive contractzon e B(#) has a di-
lation to S#° @ which is an orthoprojector.

In the notation of our problem, the given contraction might be F3. Michael’s
construction gives as its dilation

Fi  FoFy\ (Fo
(FIFO 2 )‘(Fl)(F" Fo),

which is easily seen to be an orthoprojector. Along with this we would want to dilate
1—F3 = F? to the complementary orthoprojector, namely

F}  —FoF, Fy
R R I e )

This is enough to handle the diagonal of our matrix, and it can be repeated to
handle the diagonal of a 2™ x2™ matrix for any m, i.e., to prove Theorem 0.1. Such
is the method of [6).

For off-diagonal entries we need the following result, a varlant of one by
Ju. L. Smul’jan. It appears as Theorem L1 of [1].

LEmMMA. 1.2. Assume the operator-matrix

(Aoo AOI)
AIO All
is self-adjoint, and that the A4,, are positive, say F, = AL?. In order that the operator-
matrix be positive, it is necessary and sufficient that Ay, = FoTF, for some contrac-
tion T. This T is uniquely determined if one insists that T* A (F,) = TN (F)) = {0}.
We omit the brief proof.
We will use this notation for A4,,. We will further set Q = (1—T*T)!/? and
Q, = (1-TT*'2 1t is well known that then TQ = Q,T.
Our dilations E,, = t*4,,¢ necessarily admit an analogous expression

a2 ’ (E Em) (FzF”o Fz‘ﬁz)
Eio Ey]  \FtT*F, FYF,
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with ||T]] < 1. A reformulation of the hoped-for properties of the E,, will now
be made (it shows already why we prefer not to require the I':,‘ to be self-adjoint):

LemMa: 1.3. In order er the operator-matrix (1.2) to be 2 times an orthopro-
Jector, it is sufficient that T be unitary and that

FoF¥ = FF*=1.
Indeed, if one squares (1.2) and applies these conditions, the result reduces

at once to twice matrix (1.2).

Remember that, by Proposition 1.1, this is just what we will need to know
of our E,, to reach the conclusion of Theorem 1.1 for m = 1.
We use one more well known fact [7}:

LeMMA 14. If T is a contraction then

(T Q*)
Q -T*
is unitary.

Now the construction can be written down. We prescribe & as the space of
4-component column-vectors whose entries are in #, and ¢ as the mapping taking
x

any x € ¢ to (g . We specify the E,,, in the notation (1.2), by
\g,

- {Fo F; 0 0 . F, —F, 0 0 , (T Q.
Fy = . F = , T= .

(0 0 F, FI) (0 0 F, —Fo) o - T*)
From the lemmas, it is easy to see that we get a system of matrix units; also ¢*E,,¢
= A,, by definitions. This proves Theorem 1.1 in the case m = 1.

The inductive step applies all the same ideas. Assume given normalized posi-
tive Ay, x, Where |j| = |k| = m, and define Ay therefrom by (iii). The inductive
hypothesis is that there is an injection «™™ into some X¥"™ and a system of matrix
units (Efp”) such that 4, = «™*E{{?“, We can condense all this by introducing
some more notation. Let B =2""(Ay);x and B, = 2"™(4;, 1) oOperators

(1.3)

on #2", Then we know that
Byo B
1.4 (B:’: B:) >0, B=Boo+By,.

Further let D = 2~™(E{f); «. By Proposition 1.1, the inductive hypothesis says

D is an orthoprojector. Our method will be, using this and (1.4), to put B,, in the

role A, played for m = 1. We will dilate B,, simultaneously to D, on some X" 2"

such that
Doo D

( 1 5) ( o0 o1

is twice an orthoprojector
D1 Dn) prel

5
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and then define the Ej, 4, on this X by setting
(E}#.kv)j,k = Z_MDM-

Now we have an injection ™ (the diagonal sum of 2" copies of ) such that
B = #mDtm1 In generalization of Lemma 1.2, we write )

Boo Boi\  (4™*D 0 . >F§ F,TF, (wa 0
(Bw Bu)=(0 dm1*D/\F, T*F, F} ),0 D)

where the F, are commuting positive operators such that F3+F% is the orthopro-
jector onto range (Di™), and where T is a contraction. Let us say instead that
F%4F} = D, by giving the F, arbltrary acceptable definitions on the complem\,n-
tary subspace. Then if we define F,‘, T by the same formulas (1.3), we see that T
is unitary and FOF* F, F¥ = D. Defining the D,, by formula (1.2) used before
for the E,,, one computes as in that case that the resulting matrix is twice an ortho-
projector, i.e., (1.5). (The space ", it has turned out, is the direct sum of 4
copies of 2°™.) One also computes

.6) Doo+Dyy = FiFo+F1F; =

DOOO
0 DO0O
00 DOJ
000D
The Ej, 4 have been defined so as to make up a plainly positive operator-
matrix. That Z Ej.ju is the identity on 5 follows directly from (1.6) together with

the fact that }_‘Ej ; is the identity on 2™, Thus Proposition 1.1 applies; to show

the Ej, zy comprlse a system of matrix units, we need only prove 2“""1(E,,,,,‘,)1 P
idempotent. But
2_2"'(; Eju,thie.kv)J.k = 2\ DyyDyy = 2Dy = 27" Epy )i
1, e N

by definitions and (1.5).
Finally, it is clear how B,, is obtained as a compression of D,,, and hence
Aj, i a8 a compression of Ej, ;,. The proof is complete.

'

2. Infinite operator-matrices

The definitions of the previous section extend at once.

; DEElmIQN 2.1, Let an operator 4, € #() be given for every pair of strings
J, k of whatever (equal) finite length. The indexed collection will be called normal-
ized positive provided

(i) for each m, the 4, with |j| = [k|
(i) 1; Ay =1;
Jl=m
(iii) Ay = Ayo.io+Apr.i1-

= m form an operator-matrix (4;);x = 0
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DeFNITION 2.2. A normalized positive collection will be said to comprise
a system of matrix units if it satisfies

@v) AjjAy = 3jkAit,
i.e., if its elements for indices of each fixed length comprise a finite system of matrix
units.

It is also easy to see what the dilation result ought to be

THEOREM 2.1. Assume the operators Ay € B(3) (|j| = |kl = 0,1,2,...) form
a normalized positive collection. Then there exists an isometric injection ¢ of H# into
a Hilbert space X", and there exist Ey, € B(A), comprising a system of matrix units,
such that Ay = *Ep..

The induction in the last section, in this situation, provides a sequence of even
larger dilation spaces. One may reasonably be discontented with this as an answer,
and ask for a fairly explicit injection of o into a single space #". We now give
this.

The following conventions extend those of Section 1 in two directions.

Notations. Symbols &, ... take the values 0, 1, 2, 3. Indices f, g, ... will be strings
of such digits. The length of a string f; denoted }f], may have any value 0, 1, ...
In case |f| = 0, the string is empty: f = &.

The name of a string preceded by a -point, as .g, denotes the corresponding
quaternary (terminating) rational. In particular, .& = .0, and this rational will
also be denoted by 0. .

With these understandings, we describe our dilation space A as the direct
sum of countably many copies of 3, indexed by all the distinct quaternary ratio-
nals in [0, 1]: A" = ea:t” ¢ We take ¢ to be the natural mapping of # onto #’.

In describing thc dilations Ej, on this fixed 2", we will be doing hardly more
than labelling constructions indicated above matricially. We want to follow the
previous course of dilating for strings j, k of progressively greater lengths. We will
always be bound by the

Rule: If |j| = lk| = m, then Ej is determined by its action on the subspace

#™ = @ o ;. Specifically, Ej leaves invariant (for each .g) the subspace
|fl=m

HP ~—-V® S s, and its action there is got from its action on H = HPO via
f=m

the natural isomorphism of each o ; to 3 p;. :

‘We will use the same symbol Ej, for the operator on all of ¥" or for its restnc-
tion to one of these natural invariant subspaces.

Thus to begin the procedure, we give the E,, by the same expressions (1.2),
(1.3) as above; acting on the space of 4-vectors from H#’—but now we specify that
these 4 components are regarded as belonging to 3., #.(, #z, #.3 respecti-
vely. By the Rule, E,, then must have (for each .g) the same* matrix actmg on the
space of columns whose components belong respectively to o4 1 *'9!" 32,
# ... This defines the EJ,, with the needed properties, on ‘all of .-
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Now for the passage from length m to length m+1. We are able, because of
the Rule, to confine attention to s+, We choose to regard it as the space of
columns of 4 components, each from ™. That is, we choose to decompose

@D HMD = AP R A D D DA,

The induction hypothesis gives all the Ejp for | jl

HDP of #™; we are to prescribe the Ej, 4, .
This is all consistent with Section 1. The only respect in which we have less

freedom now is that we are committed, by the Rule, to choosing the E;,,, so that

|k} = m on each of these copies

E,0 0 0

0 E; 0 O

Ejo kot Ejipn = 0 OjL Ey 0
0 0 0 E,

(the 4 x4 matrix on the right has entries operators on £, the operator on the
left acts on #°™*+Y), and these spaces are related according to (2.1)). But our con-
struction led to (1.6); since, by definitions, D = (E);,, and Doo+D;; = (Ejoxo+
+Ej; 11);.x, this gives the relation we now require. This concludes the construc-
tion,

3. A continuous-parameter analogue

To pass from the finite version of Naimark’s dilation theorem (Theorem 0.1) to
the usual version, one replaces the finite collection of positive operators 4 , adding
to 1 by an increasing operator-valued function 4(-) on [0, 1] such that 4(0) =
A(1) = 1. It is not necessary to require any kind of continuity of the function
(though one may prefer, at a value ¢ where it has a jump, to attribute significance
only to A(r—) and A(t+)); consequently the. finite version is retained within the
continuous-parameter version, as the special case where the function is constant
except for finitely many jumps.

We have been dilating two-parameter families (4;) with >4 ;; =.1. Analogy
: 7

prompts the introduction of operator-valued functions on {0, 1] x [0, 1], increasing
on the diagonal; one expects differences A(s+r, t+r)—~A(s, t) to correspond
to the 4. In this section we prove a dilation theorem of this sort. Away from the
diagonal, discontinuities become intractable because we are deprived of any hy-
pothesis of monotonicity; thus it is not surprising that Theorem 3.1 deals only with
the continuous case and hence fails to include the case of Theorem 1.1. Indeed,
we wonder whether a good common generalization of the two would use our pre—
sent definition at all, or would need a differently described system of operators.
(But see the Remark at the end of the section.)

The section is organized as follows. First we make the new definitions, of
“normalized increasing systems” and “standard systems”; we prove simple proper-
ties, and we show how, in the case of binary rational parameters, normalized
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increasing systems correspond to the infinite normalized positive systems of Section
2 and standard systems to infinite systems of matrix units. Then we impose the
hypothesis of continuity, and prove the dilation theorem for systems with real
parameters.

DERINITION 3.1. A normalized increasing system is a function A( , ') on
[0,11x[0,1] to #(s#) such that 4(0,0) =0, 4(1,1) =1, and for r >0 and
any n-tuple of reals s, we have

(3.1) (A(S,‘, S;)—A(S,,—r, sl——r))’"‘-l-:l > 0.

(By convention, A(s,t) = 0 if either s <0 or t < 0.) A rational normalized in-
creasing system is a function satisfying the same condition but defined only for
terminating binary arguments.

Our notation for rationals will be like that used for quaternary rationals in
the last section: if jis a bmary string (always of finite length | ]D then .j denotes
the rational 2V, ’ ’

DEFINITION 3.2. A standard system is a function E(-, -) on [0,1}x[0,1]
to #(A) such that E(0,0) =0, E(1,1) =1, E(s,t) = E(t,s)*, and for any
t>0 .

E(s, DE(t,u) = E(s,u)—E(s—t,u—t).
(By convention, E(s, t) = 0 if either 5 <0 or ¢ < 0.) A rational standard system
is a function satisfying the same conditions but defined only for terminating binary
arguments.

We remark that the condition E(0,0) = 0, and indeed E(s, 0) = EQ, t) =
follow from the other conditions, because E(s, 0)E(s, 0)* = E(s, 0)EQ, s)
= E(s,s)—E(s,5) = 0.

PROPOSITION 3.1. Every [rational] standard system is a [rational] normalized
increasing system.

Proof. Given r >0 and sy, ..., S,, we set for the moment B = (E(r, 51) .-
. E(r, s»)). Then

(E(sm s/\) E(S,,——T 12— r))u 2= (E(sx: T)E(}‘ sl))“»l =B*B>0.m

PROPOSITION 3.2. In any standard system the E(s,s) are an increasing famtly
of orthoprojectors.
Proof. Tt follows at once from the definition that the E(s,s) are self- a.djomt
and idempotent. But also by (3.2)
E(s, s)—E(s—t,s—1f) = E(s, t)E(t,5) > 0
ift>0. =

PROPOSITION 3.3. In any standard system, for r >0,
E(s, ) E(t+r, v) = E(s, t)E(t, v-7).
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Proof. Setting X = E(z,t)E(t+r, r), we have
XX* = E(t,t)E(t+r,r)E(r, t-+r)E(t, 1)
= E(t, 1) (E(t+r, t+r)~E(t, N)E(t, ) = 0
by Proposition 3.2. Hence X = 0, and
0 = E(s, t)XE(r,v) = E(s, ) E(t, t)E(t+r, 1) E(r, v)
= E(s, ) (E(t+r, v)—E(t, v—"))
by (3.2). This is the desired equality.

This result allows us to replace (3.2) by a more general identity, using the
popular notation r, = max(0, r) for reals r: if £ > 0, u = 0 then

(3.3) E(s, )E(u, v) = E(s—(t—u),,v—u—1),)—E(s—t,0—u).

This means in particular that the linear span of the E(s, r) is closed under multi-
plication (as well as under taking adjoints).

PROPOSITION 3.4. Normalized positive collections {Ay};x of Definition 2.1
correspond one-one to rational normalized increasing systems A(-, +) under the fol-
lowing correspondence. For binary rationals .j, .k (without loss of generality |j|
= |k| = m), let A(i, k) be the sum of all Ay with |j'| = |k'| = m, j—f = k—k
> 0. This correspondence takes systems of matrix units to standard systems.

The proof consists of verifications which need not all be written out. We call
attention to a few points. The reason one is free to suppose |j| = |k| is the fact that
.jO = .j so strings of unequal length can be replaced by strings of equal length by
adjoining zeros. But this brings one more thing to verify, namely independence of
adjunction of superfluous zeros — which follows by using (iii) of Definition 2.1.
This feature is also needed in checking (3.1): it follows neatly from (i) of Defi-
nition 2.1 once we have provided that  and the s, are all represented by binary
strings of the same length.

Let us note also the inverse correspondence:

Ap = A(G+1D), .(k+1D)—A(j, k)
if it is agreed that adding 1 to a string j means adding it in the last (|j|-th) place.
Because of this proposition, there is a dilation theorem for rational normal-

ized increasing systems; namely, Theorem 2.1 says they can be dilated to rational
standard systems. This is related to the new dilation result which follows.

THEOREM 3.1. Assume A(- , -) is a weakly continuous normalized increasing
system of operators of B(aF). Then.there exists an isometric. injection ¢ of ¥ into
a Hilbert space X', and there exists a weakly continuous standard system E(-,-) of
operators of #(X'), such that A(s,t) = *E(s, !)t.

One reason for assuming continuity is this. We will naturally get our dilation
by first restricting the arguments of A(-, -) to be binary rationals, and dilating
the rational system to a rational standard system by the theorem already known.
The resulting operators E(.j, .k) do not necessarily tell us all we want to know.
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ExampLE 3.1. The space 5 will be L?(0, 1). On this space we will use the
notation ¢(r, s) for the operator of multiplication by the characteristic function
of [r, s[; the notation 7(r) will denote the partial isometry of translation, i..,

fi+r) @<1-n),
OO = {0 (otherwise).

Thus for example 7(r)z(r)* = @(0,r). Now define A(#, t) to be ¢(0,?), while
A(s, 1) = 0 for all s < ¢ except for

A5+ = 9(0,5)72) = TR, s+3) for O'<s< 1
(and for s > t, A(s, 1) = A(z, 5)*).

It is easy to verify that this A(-, -) is a normalized increasing system, even a stan-
dard system. On the diagonal, restricting to binary rational arguments would leave
adequate information available. By contrast, for s # ¢ if we looked only at pairs
(s, t) made of binary rationals we would lose sight of all the non-zero operators,
for no such pair has ¢ = s+2.

The hypothesis of continuity, as already pointed out, is very restrictive. We ac-
cordingly include an example to show it is satisfied by some reasonable systems.

ExaMpLE 3.2. With the notations ¢ and © as before, define A(s,t) =
@0, 5) t(t—3) = 1(t—s)@(t, s+1) for all s < ¢ (and for s > 1, A(s, 1) = Az, 5)*).
It is easy to verify that this is a standard system, and that the dependence of A(s, t)
on (s, ¢) is strongly continuous.

Proof of Theorem 3.1. We are given the A(s, ) € (o). By Proposition 3.4
and Theorem 2.1, we have :: o# — A and operators E(.j, k) e #(X) giving
a rational standard system dilating the A(.j, .k). It remains to define the E(s,?)
for other real values and to prove the asserted properties. Because the linear span
of the E(J,.k)ux is closed under operation by the other E(.j, k) (Proposition
3.3), we may assume without loss of generality that it is dense in 2£"; and we will not
need to go to a new dilation space. That is, we will simply provide a workable defi-
nition of y**E(i,.f)E(s, t)E(k, D)ex for arbitrary x,y e and arbitrary
values of the parameters.

" LemMa 3.1. E(.i, DECE, jYE(Kk,.I) is a weakly continuous function of
its arguments.

This is clear from (3.3).

It has the conmsequence that y*i*E(.i, .j)E(s, £)E(.k, .I)ix can be defined
as the limit of approximating expressions with s, replaced by binary rational
approximants. Furthermore, the properties in Definition 3.2 then carry over by
continuity. And it is immediate that the resulting E(-, -) dilates A(y 0D

To prove weak continuity of E(s, t) it is enough to confine attention to the
dense subset of X" afforded by linear spans of the E(.j, .k)«x. But this reduces
to proving y**E(.i, .j)E(s,t)E(.k, .J)ix continuous in s, #-— which follows
from the lemma. Theorem 3.1 is proved. et
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Remark. Here is one way of including the finite dilation result in the continu-
ous one. Given 2™ x2™ normalized positive (4;,) and its dilating system of matrix
units (Ej;), there exist a weakly continuous normalized increasing A4(-, +) and
a weakly continuous standard E(-, ‘) dilating it, such that A(.j, .k) is obtained
from the A as in Proposition 3.4, and so is E(.J, .k) from the Ej. Indeed, we
just use the idea of Example 3.2 to produce E(-, ), and then obtain A(-, -) by
compression.

4. Several kinds of dilation

Let us give more particulars of the relationship between our theorems and those
of Naimark and Stinespring.

First and simplest—Naimark’s theorem treats the diagonal of our matrices,
but more fully. Far from having to make separate, analogous statements about
discrete and continuous spectral measures, it treats general ones. Values of the
argument where the given generalized spectral measure is absolutely continuous
are values where the dilation is also absolutely continuous; by contrast, our proof
of continuity of E(s, t) at a point involves, via (3.3), the hypothesis of continuity
at distant parameter values.

We have already stated the basis for the partial equivalence between Stine-
spring’s dilation and ours: the fact that a linear map on a full matrix algebra is
completely positive if and only if the images A4, of the natural matrix units form
a positive operator-matrix. This makes Theorem 1.1, the result of our construction
in its finite version, the same as Theorem 0.2, a version of a special case of Stine-
spring’s theorem.

This interpretation can be extended to our Theorem 2.1. Let & be a UHF
algebra, so that there is an increasing sequence of subalgebras isomorphic to full
matrix algebras, whose union is dense in &. For convenience, suppose that these
matrix algebras are 2™ x2™, the modifications involved in the general case being
minor. The co-ordinates can be chosen so that the natural matrix units ey, follow
the notational conventions of Section 1.2, and so that ejo kot €j1,k1 = €j. NOW
given any linear map on & to %(s), it is clear that it will be completely positive
if and only if the same is true of its restrictions to all the matrix algebras. The test
to be applied to the images Ay of the ¢y is just the property of our definition of
countable normalized positive system. That is, our Theorem 2.1 is also an explicit
proof for a case of Stinespring’s dilation.

In the commutative case this can be pushed farther. If the algebra is ¢, the
continuous functions on the Cantor set, then positivity of a map into #(#) is
just positivity of the images of the characteristic functions of a sufficient family of
closed open sets. By the sort of explicit construction under discussion (essentially,
by Section 2 of [6]) we can dilate a positive unital map to one in which these
characteristic functions go to orthoprojectors. But this takes care of an arbitrary
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separable commutative C*-algebra o ; for it can be imbedded as an expectation
image in %, and then we can deduce the Stinespring conclusion by completing this
diagram.

G e e »B(%)

|
1
/ | compression
]
¥
& =

A ()

The reason the interpretation falls short of covering the non-commutative case
is that a non-commutative C*-algebra may well fail to have any generating set,
with the sort of binary structure required, which can play the role of the matrix
units in UHF algebras or the characteristic functions in %. For more general C*-
algebras — say, for () — we do not know any criterion for complete positivity
which would fit the Stinespring dilation into the pattern. In particular, we do not
see that the theory of Section 3 admits such an interpretation.
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