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1. Introduction

Let x4, ..., xy be N commuting elements of a complex Banach algebra R with"
unit 1g. Let & be a complex algebra of functions (or of equivalence classes of
functions) on a set G = C¥ endowed with (the algebraic operations induced by)
the pointwise operations of addition, multiplication, and multiplication by scalars.
Suppose that & contains the algebra of all polynomials in ¥ variables. Ap -
Sfunctional calculus ¥ for x = (xy, ..., xx) is then an algebraic homomorphism
¥: o » R with P(lw) = 1g and ¥(Z)) = x; (= 1, ..., N), where Z;: C¥ - C
are the coordinate functions (zy, ..., zx) > z; (=1,..,N).

In the case of noncommuting elements x,, ..., xy € R this definition is of
course no longer possible and we have to modify the concept of functional calculus.
There are two possibilities how to attack this problem:

(A) In order to obtain a homomorphism ¥': & — R one has to consider func-
tions of several “noncommuting” variables. This has been done by N. H. McCoy
[16] (for quasicommuting matrices) and (more general for noncommuting elements
of a Bapach algebra) by R. E. Harte [14], [15] and J. L. Taylor [19]-[21].

(B) If one prefers to work with usual functions in several “commuting” vari-
ables, one has to give up the homomorphism property of ¥: & — R. Then, ¥
can only be a linear mapping, but it may still have some symmetry properties.
Such functional calculi have been first introduced for the (unbounded) coordinate
and momentum operators of quantum mechanics by H. Weyl ([24], Kap. IV, § 14)
and earlier with some other symmetry conditions in the case, where . is the algebra
of polynomials, by M. Born and P. Jordan (in [11], § 4). For self-adjoint operators
on Hilbert and on Banach spaces the Weyl functional calculus has been investigated
by M. E. Taylor [22] and R. F.V. Anderson [5]-[7]. In [8] a more general ap-
proach, using Laplace transform methods, has been given. In the general case of
noncommuting elements of a Banach algebra, E. Nelson [17] has given a new
concept by means of the algebra of operants (see 3.5 for the definition), E. Nelson
showed that in the case of bounded self-adjoint operators this algebra of operants
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10 E. ALBRECHT

is a convenient tool for the description of the Weyl functional calculus. This con-
cept has been further investigated by the author in [1], Kap. III. Especially a non-
commutative version of the Silov idempotent theorem has been obtained in this
framework.

In this note we propose a generalization of the algebra of operants (cf. Def. 3.1)
_and generalize and improve the results of Kap. III in [1]. In the following section
we introduce some algebraic notations and prove two algebraic lemmas which
will be needed for the proof of the noncommutative Silov idempotent theorem. In
Section 3 we introduce the notion of an operating algebra and give some examples.
In the fourth part we prove the noncommutative version of the Silov idempotent
theorem, and in the last section we study spectra, numerical ranges, and non-
analytic functional calculi in operating algebras.

This note is a detailed and complete version of the second part of a series of
lectures held by the author during the “Spectral Theory Semester” at the Stefan
Banach International Mathematical Center. The first part of these lectures was
concerned with the theory of non-analytic functional calculi and joint spectra of
commuting operators on a Banach space. Part of this has been done in joint work
with St. Frunzd. For the details see [4] and [3].

The author wants to express his gratitude to Professor B. Gramsch for sug-
gesting the topic of [1] and for valuable discussions. He also would like to thank
the organizers of the “Spectral Theory Semester”, especially Professor W. Zelazko,
for creating such a stimulating atmosphere. Many thanks also to the participants
of the “Spectral Theory Semester”, especially to the Professors V. Ptik and
L. Waelbroeck for their interest, their suggestions, and discussions concerning
the results presented here.

2. Algebraic preliminaries

If E is a vector space over C, we denote by So(E) the symmetric tensor algebra
over E. Let {e;};c; be 2 Hamel basis for E. It is well known that S,(E) may be
" identified with the polynomial algebra C[X;: feI]. Then, the canonical linear in-
jection *: E — S,(E) is given by

k
X = ZCJX” for
J=1

Let now E be a linear subspace of a complex algebra R with unit 1. There is
a unique linear mapping T,: So(E) - R such that To(1) = 1y and

k
X = Zc_,e,,eE.

J=1

A N 1
To(Xy ... Xp) = T Z Xacty v+ Xmgny

ne@y

for all neN,x,, ..., x,€ E. Here, G, denotes the set of all permutations of
1, ...,n).
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Let now f: Dy — C be an arbitrary function defined on a set Dy = C¥. For
r, s, t€ C we introduce functions I,f and J;f by
TN = frz) for zeC¥ with rze Dy,
and
sz, w) 1= flsz+1tw) for z,we C¥ with sz+iw € D,.
Especially, this defines linear mappings

L: ClZy, ..o, Zal = ClZy, .., Zal]

and
Je it ClZy, ..

where we identify the algebras C[Z,, ..
®C[W,, ..., Wy] in the natural way.

Let now X, ..., xy be N elements of a complex algebra R with unit 1g and
put E := LH{x,, ..., xy} (= linear hull of {x,, ..., xy}). Denote by H: C[Z,, ...
...s Zy] = So(E) the canonical homomorphism given by H(p) := p(%y, ..., i) for
peC[Z,, ..., Zy] and write
2.0) Y= T,0H.

Finally, we define linear mappings 4;: R R - R (j=1,2) by

m m
Ayu = Zakbk and Ayu = Zbka,,
=1 k=1
m

for u= Y, 2, @b, € RR. With these notations we have:
=i

o Zy]l = ClZy, ..., ZN]®CL Wy, ..
o Zn, Wy, o

. WNL

., Wyl and C[Z4, ..., ZN]®

Lemma 2.1. For all s,teC and j = 1,2 the diagram

Pl
CiZ,..., Z] it o C[ 21,y Zw]® C[ Wiy, W)
Lt @ p
ClZ,,...,Z) ROR

R
is commutativé, ie.
(21) i3 olgy = Ajo (W(Z)@YI(W)) oJges
where W@ (resp. YY) means that ¥ has to be applied with respect to Z, ..., Zy
(resp. Wy, ..., W)
Proof. 1t is sufficient to prove that (2.1)-holds on the set of all monomials.
Hence, let p be an arbitrary monomial,

N
p—_-I__[ng with ny, ..., ny € Np.
k=1 .
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Put n:= n;+ ... +ny. If n = 0 then p = 1, and (2.1) applied to p = 1 is trivially

n
. e (=) = n! i .
fulfillod. Hence we may suppose that # 3> 1. Let »: {1, .., n} - {1, ..., N} be is a sum over (r) r!+ (n—r)! = n! summands. From this and (2.3) we conclude

a mapping such that [y~*(k)| = n, for k = 1, ..., N. Then we may write p in the that

form n 5, = Z Fnawy) <+ Xotmnn «
. neSy

22 r=11 2w Thus,

Y k=1 n
In the following, ». means that the sum is over all rtuples 4 = (4, ..., 4,) (41 - (FOQRQW™) 0 J, ) (p) = 2(:) s"t""’—l'- S;
A|=r ' n:

€ N (if r = O then there is only the void tuple) such that 1 < 4; < ... <4 <n r=0

O<r<n IfA=~y,..., &) then A’ = (4], ..., 4,—,) denotes the (n—r)-tuple

given by (A1, v, AJUAL, oy o} = {1, oon} and 1< 2] < oo < oy S 1 —Z( o= Hz,w}

With these notations we obtain by applying J;, to equation (2.2): pe k=1

Jsup = H ($Z,gy+ W ) = Z Z (H sZ,,(w (H than) = (s+8)¥ (ﬁ Zv(k))
=1

Hence, M
(41 - FPR¥™) o J,.)(p) = ?([6+0Zw) = @ L) D).
o k=1
» n—r ‘
= Z P82 (H sZ,,(,h,) Py )(H t W, )) Because of A; 0 (POQF Mo J,, = A, 0 (FPQ¥YP)oJ,, we also obtain
r=0 |A|=r .
(420 (FORQY™) 0], )(p) = (¥ o Ly)(®)
= ZZ T }_Jx,am,,) x,um,,,—(% Z XyWpiss) - X gonce) for all 5, e C and the proof is complete.
T=0 |Al=r oG T For pe C[X;, ..., X;] (ne N) we define the linear mapping
" . M,: ClXy, ..., X1 > CIXy, ..., X
= (r\)srt"—rm“Z Z Xy *+* Xvtomd Xv(Wa) +++ Xulh zonan) by
r=0 il=r 7@ 180 r M,q:=pg for geC[Xy,....X.].
_, With this notation we can prove:
= Z( )srtn Z Z Z Xt g0 xv("A.mv("))’
= {Al=r 7o, reCpe LemMMa 2.2. If s, t € C with s+t # 0 and p € C[Z;, ..., Zy], then
where 5., e‘G,. is 'the permutation given by m4,4,.(k) 1= Ay for k=1,...,r YoM, ol = dyo (PORQF™)o M, oJ,, (=12,
and my, (r+i) i= Ay for i=1,...,n—r. X A= (A, ..., 4) and M = (uy, ... :
s phy)are r-tuples with 1 < Ay <... <A, <nand 1 < gy < ... < g, < n and if where sy € ClZy, ..., Zn, Wy, .y Wl = ClZy, ..., ZNI®CIWy, ..., Wy] is the
permutations ¢, ¢ €S, and v, y e S,_, are given, then obviously polynomial p,.; := J.l. .“(p )-
2.3) Ty = Mg,y HE A=M, 0=g, and v = y. Proof. Indeed, if g€ C[Z,, ..., Zy] We conclude by means of Lemma 2.1:
The number of all r-tuples A = (4, ..., 4) with 1< A <... <A <nis (’:) F oMo L)@ = F o L) ((LyssnP)d)
Thus,

= (4)° FPQF™) o I, . )((Lyys+nP)4)
Xy Ao 0t Xy ) ‘ = (A, ° (yf(z)®g/(w)) o Mv-.. ° m)(q),
i) -

S, 1= '

(] =r ged) 1eBy.r



GUEST


14 E. ALBRECHT

3. Operating algebras

In the following, let R be a complex Banach algebra with unit 1y and let £ be
a linear subspace of R. In order to have the possibility to apply usual commutative
spectral theory we introduce the notion of an operating algebra with respect to E
and R.

DEFINITION 3.1. A commutative complex Banach algebra % with unit 1y is
called an operating algebra with respect to E and R if there exist a linear mapping
~: E— U and a continuous linear mapping T: ¥ — R such that the following
three conditions are satisfied:

(3.1) The subalgebra of U generated by 1y and the range of ~ is dense in 2.
(32) T(y) = 1a.
(3.3) If x4, ..., x4, € E, ne N, then

- - 1
T(%y ... Xp) = —n—!zx,,m o Xy
ne@py

A is called a faithfully operating algebra with respect to E and R if in addition to
(3.1)-(3.3) the following condition (3.4) is fulfilled:
(3.4) If e e U such that T(xf) = 0 for all U then a = 0.

Remarks 3.2. (a) The mapping ~ in Definition 3.1 is injective and we have
To” =idg. .

(b) If ” is continuous with ||”[| < 1 and if ||T]] < 1 then ~ is a linear isometry.

© N := {xeW: T(«f) = 0for all B € A} is a closed ideal in A. U, := A/N,
endowed with the obvious mappings induced by “: E—» W and 72 A > R, is
then a faithfully operating algebra with respect to E and R (notice, that N «
< ker(T)).

(d) If a e E commutes with all x € E, then T(dp) = aT(f) = T(f)a for all
pe¥.

(e) If 1g € E and if W is a faithfully operating algebra with respect to E and
R, then 1y = 1.

Proof. (2)-(¢c) are obvious. (d): By (a) and (3.2) T(Gly) = a = aT(ly)
= T(lx)a. If x,, ..., x, € E, then with x,,, := a we have

Yt 1
T(Xy ... Xa0) = m Z Xa(t) o+ Xn(nt1)

eG4y

1 =
=a sz"(” e Xagy = aT(%y ... %)
e,
and also 7:’(55, v Xpll) = T(%y ... %,)- a. As the set of finite linear combinations of
1y and finite products of elements in' the range of ~ are dense in % we obtain the
statement of (d).

icm
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(¢): By (d) we have T(lu—1x)8) = T(8)— 1= T(B) = O for all # ¢ A. Hence,
Tq = 1y as U is faithfully operating.

Let now S,(E) be the symmetric tensor algebra over E and let U be an operat-
ing algebra with respect to E.and R. By the universal property of the symmetric
tensor algebra there exists a unital algebraic homomorphism Ay: S,(E) — % such
that the diagram

is commutative. By putting pu(«) := |{hu(e)|lx for « e S,(E) we obtain a sub-
multiplicative seminorm on S,(E). px induces an algebra norm on Sy :=
So(E)/pa*(0). Endowed with this norm, Sy is isometrically isomorphic to the
normed subalgebra of U algebraically generated by 1z and the range of ~. Hence,
by (3.1), the completion of Sy is isometrically isomorphic to % and we have
proved the first part of the following proposition. Part (b) is obvious. )

ProrosITION 3.3. (a) Every operating algebra with respect to E and R is iso-
metrically isomorphic to the completion of a quotient algebra Sy of So(E) endowed
with some algebra norm.

(b) Conversely, if p is a submultiplicative seminorm on So(E) such that the
mapping To: So(E) > R is p-continuous, then the completion of So(E)/p~*(0) with
respect to the norm induced by p is in the natural way an operating algebra with
respect to E and R.

EXAMPLE 3.4. The complete symmetric tensor algebra (cf. [17]). We may endow
So(E) with the algebra norm ||- || given by

ol == inf {lal+ 3 1%, alls oo 11}
Jj=1

where the infimum is taken over all representations of « € Sy(E) of the form

n
A A
a=a+ ) Xj1 - Xjmy
F=i

(3.5)

with aeC, n,my,...,m,eN, and x;, € E (j=1,...,n; k=1, ..., m). Denote
by S(E) the completion of So(E) with respect to this norm. Endowed with the
mappings “: E— S(E) and T: S(E) > R induced by ": E— So(E) and" To:
So(E)— R, S(E) is an operating algebra with respect to E and R (notice, that
T, is continuous with ||T,|| = 1). We have ||”|] = 1 = {|T]|. S(E) is not very
useful for obtaining “good™ functional calculi. This may be illustrated by thefollow-
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ing fact which is due to E. Nelson [17]: There is a homeomorphism H from the
space @ of all characters of S(E) onto the unit ball B(E*) of the dual E* of E
(where @ resp. B(E®) is endowed with the topology o(S(E)*, S(E)) resp. o(E*, E))
such- that for all ¢ € @ we have

p(¥) = H(p)(x)

Thus we have for example for the spectrum og(¥) of X, where x is an arbitrary
element of E:

for all xe E.

Ospy(X) = {Z eC: |zl < lellm},

and the joint spectrum of (%, ..., ¥v) in S(E) for arbitrary xy, ..., Xy € E is the
polydisc

{zeC¥: |z] < |Ix|ln for j = 1, ..., N}.

EXAMPLE 3.5. The algebra U(E) of operants of E. Nelson [17]. Instead of
S(E) we may consider the algebra U(E) := S(E)/R(E) where N(E) := {x e S(E):
T(«f) = 0 for all fe S(E)}. By Remark 3.2(c), W(E) is a faithfully operating
algebra with respect to E and R. Notice, that we still have ||”[| < 1 and [|T]] < 1,
so that ~: E — A(E) is a linear isometry (by 3.2(b)). .

This algebra has been introduced and investigated by E. Nelson in [17]. There
it has been shown that in the case where R is the algebra 2(§) of all continuous
linear operators on a Hilbert space § and where E is the linear span of idg and
a finite family A, ..., 4y of self-adjoint operators in 8($), the algebra U(E) of
operants over E is the adequate tool to describe the Weyl functional calculus for
A = (d;, ..., Ay) (see Section 5 for some details). However, there are natural
examples where different constructions are more useful.

EXAMPLE 3.6. Put  := L2([0, 1]) (with the Lebesgue measure) and let E be
the one dimensional subspace of R := £($) spanned by the Volterra integral
operator ¥ given by

14

NW = fds  (fe$).
.0

In this case the representations of elements a € S,(E) in the form (3.5) are uniqué.
Thus,

n

liplt = ;xc,f £ op= ¢ = ¢X ClXl = So(E).

J=0 J=0

Hence, S(E) is isometrically isomorphic to the Banach algebra of all power series

8

W

with  ||F|| 1= Z le)l < oo.

F=) ¢x/
=0 =

|

icm
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The mapping T: S(E) — R is given by T(F) := S eV If T(F) = 0 we have
j=0
T(F)1 =0 in $ and therefore,
(TE () = Zc,},thf =0 (ae).
=0

Since this function is analytic, this is only possible if ¢; = 0 for all j € N, i.e. if
F = 0. Thus T is injective and we obtain in this case A(E) = S(E). Hence (cf. 3.4):

oum(P) = sV = {zeC: [z < 1},
but ox(V) = {0}.

This example shows that in general one has to look either for a more interest-
ing subspace E of R (in the present case this would be for example a commutative
subalgebra of R containing ¥ and idg) or for better operating algebras (in our
example, the closed commutative subalgebra % of R generated by V and idg would
be much better, “: E— W and T: A - R being the canonical inclusion mappings).

ExampLEs 3.7. Let us indicate some good choices for E in the case that we
want to consider N elements X;, ..., Xy of a given unital Banach algebra R.

@ E(() := LH {Ig, %4, .., xx}. ‘
(i) E(()”):= LH({x,, ..., xytu((¥)” A (x)")), where (x)’ and (x)" are the

commutant and bicommutant algebra for x,, ..., Xy.

(iii) E@B) := LH({x;, ..., xy}uB), where B is a commutative subset of (x)’
with 1g € B.

If B is a maximal commutative subalgebra of (x)" we obtain

E((®) <= E((®") = E(DB). '

Therefore,

(3.6) S(E((x))) < S(E(()")) = S(E®B))
and

(X)) m(E((x))) c ?ﬁ(E((x)”)) = N(E(B)),

where the inclusions in (3.7) follow by means of 3.2(d). By (3.6) and (3.7) we have
continuous monomorphisms
%[(E ((x))) - QI(E ((x)”)) - A(E(B)).
Thus, we obtain for the joint spectra of % := (¥4, ..., Xn):
(3-8 ou(eN®) = ouleerN(E) < ouEen(®)-
In the special case that x,, ..., Xy are mutually commuting we have E(B) = B
and E((x)") = (x)". Consequently, %(E(B)) is isometrically isomorphic to B and
QI(E((x ”)) is isometrically isomorphic )o-(:g(’ Moreover, in this case Gu(ey) (¥)

2 Banach Center t. VIII
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contains the joint spectrum of x = (x;, ..., Xy) in the closed commutative sub-
algebra (x) of R generated by lg and xy, ..., xy. Since it is well known that the
inclusions op(X) © oy (X) © 0y(x) may be all proper, we see that the inclusions
in (3.8) may be proper too. Moteover, it follows that in the commutative case
spectral analysis in “good” algebras of operants will be as good as that in com-
mutative closed subalgebras of R containing x, ..., xy.

Let us now construct a very natural operating algebra in the case of Volterra
and multiplication operators. Denote by K* the space of all (equivalence classes
modulo zero functions of) Lebesgue measurable functions k: [0, 1]x[0,1] — C
such that for a.e. s € [0, 1] the function k(s, - ) is in L®[0, 1] and s — [Jk(s, " )i|«
is in L®[0, 1] too. K* is a normed linear space by means of

Me  (keK™).

For k€ K® let V; be the Volterra integral operator on L([0,1]) (1 < p < )
defined by

Hkllle = ess sup [{k(s,
s€[0,1]

V) = Sk(s, nfwyar  (fe Lx(10, 11).
[

For h e L*([0, 1]) we introduce the multiplication operator M, € I!(L"([O, 1)) by
(M) (s) := h(Sf(s) (fe LP([0, 1])). Let now E < ﬁ(L"( [0, 1])) be the linear space

= {My+V;: he L*([0, 1]), k eK™}.

We define a submultiplicative seminorm » on Sy(E) by

mf{lal+Z(HthH )(

where the infimum is over all representations of a'€ Sy(E) in the form

o = a+§:(HMh, ,)(H VkJ )

Jj=1 i=1

»@) 1= [ L, ) (=111,

(3.9

with n, n;, m; € Ny, Iy, € L2([0, 1]), k;,, € K®. For the proof of the p-continuity
of To: So(E) — L(L*([0, 1)) we need two elementary lemmas.

LemMa 3.8. If ky, ..., k, € K® then

. 1; n
W, - Wl < WJI;[HIICJHI@-

Proof. If g€ L*([0, 1]) and 0 < s < 1 then (with Sy4q 1= 8)

80

(n,-.-n,g)(s)—SS Sg(;l)nk(s_m,s,)dsl . dsy_ Sy

icm
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Hence,
AR ATCRS (Jf‘! u|k,mw)§:§ § lg(solds; ... ds,ads,
(Emkﬂnm) 1), liglly
which implies
1%, - Vesllo < Gy 1), (Hmkjmw) gy

J=1
LemMma 3.9. Ifk,, ..., k., e K® by, ...,

the operators Vi, ..., Vi, My, -..
estimate holds:

hn € L2([0, 1]) and if P is a product of
, M, _in an arbitrary order, then the following

e (ﬁ mkmm)(ljl hila)-

Proof. If g e L°([0, 1]) we have a.e.

(3.10) 1Pl <

Vie, 1igD (),

e

1P ()] < (H N1kl leo) (Vi -

where = is a permutation of (1,...,n). The estimate (3.10) mow follows by

Lemma 3.8.
COROLLARY 3.10. The mapping To: So(E) - L(LP([0, 1D) is »-continuous.

Proof. For every aeSo(E) there is a representation of « in the form (3.9)
such that for a given £ > 0

lal+ Y (]‘[ llh,,illw)(—m_—l:i)—, (ﬁ 11Kyl Lo) < () + 6.
=1 i=1 J =1 .

By the preceding lemma

n ny
||Toa||<|a1+l_§;;(gnh,,in) 1),(H||!k,.,m) »a)+e.

As & > 0 was arbitrary, the v-continuity of T, follows.

Thus To induces a continuous linear mapping 7,: S, — (L ([0, 1D) with
IIT,l} < 1, where S, is the completion of S,(E)/ker(y) with respect to the norm
induced by ». Put

= {aeS,: T,(2f) =0 for all f&S,}

A:= S,M

and

9
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endowed with the induced norm. Let T: A — L(L?([0, 1)) and ~: £ - % be the
canonical mappings induced by T, and *. By our construction,  is a faithfully
operating algebra with respect to E and £(L?([0, 1])). Obviously [T/ <1 and
JI7|Ell € 1 where E; := {M,: he L*([0, 1])}. This shows that "|E, is a linear
isometry. For arbitrary k € K® we have by Corollary 3.10:

~ 3 1
VRl <209 < ”lk[”:om

which shows that V. is a quasinilpotent element of U. We have proved:

ProrostTioN 3.11. U is a faithfully operating algebra with respect to E
= {M,+Vy: he L*([0, 1]), k e K*} andB(L”([O, 1)) (1 < p < o) with the proper-
ties: . :

O IT < 1.
@) "1 {M,: ke L™([0, 1)} is a linear isometry.
(iii) For every k e K, V, is quasinilpotent in U

4. The analytic functional calculus

First we have to introduce some notations. For an open set G < CV we denote
by H(G) the algebra of all locally analytic fanctions on G, endowed with the top-
ology. of uniform convergence on all compact subsets of G. For g€ HG) let
M,: H(G) - H(G) be the multiplication operator /- fe. We shall use the fact
that I{(G x G) is topologically isomorphic to the complete projective tensor product
H(G)®H(G) and shall identify these spaces (cf. for example [23], Th. 51.6). If
K < C" js compact we denote by H(K) the algebra of all germs of complex valued
functions, which are analytic in some neighbourhood of K, endowed with the
usual inductive limit topology. If £ is locally analytic in a neighbourhood of K we
write [f]x or simply [f] for the germ of fin H(K). The mapping p — [p] gives us
a canonical monomorphism from the algebra C[Z,, ..., Z,)] into H(K).
Thus we may consider C[Z,, ..., Z,] as a subalgebra of H(K). We shall use the
fact that for polynomial convex compact sets X = CV the algebra C[Zy, ..., Zy]
is dense in H(K) (cf. [12], Chap. 1, §4, n° 5, Prop. 3). If K is compact and X
=K UK, with @ + K; = K; and K;nK, = @, and if S: H(K) » X is a linear
mapping from H(K) to some vector space X, we say that S vanishes on. K, if
S(LfD = 0 for all f which are locally analytic in a neighbourhood of K and vanish
in a neighbourhood of K,. For compact XK < C¥ and open G = CV, r,s,t > 0,

with rG < K and $G+1G < K we may define 1,: H(K) — H(G) and J,,,: HK) ~
- H(GxG) by )

GUD@E) = f02)  and  (,,[f)(z, W) 1= flsz+tw)

icm°®
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for fe[fle H(K) and z,w € G. Obviously these mappings are well defined and
continuous. Their restrictions to C[Z,, ..., Zy] coincide with the corresponding
mappings introduced in Section 2. ‘

- In this section R is a complex unital Banach algebra. The mappings 4;:
ROR - R (j=1,2), introduced in part 2, are continuous with respect to the
projective tensor product topology on R®R and hence have continuous extensions
(again denoted by 4,) 4;: ROR - R to the complete projective tensor product.

. The following theorem is a first version of the noncommutative Silov idém-
potent theorem.

THEOREM 4.1. Let x4, ..., Xy be N elements of R and let K = C¥ be a poly-
nomial convex compact set such that there exists a continuous linear mapping ®:
H(K) -+ R with .
@n ‘ OCIZ,, ..., Zn] = VP,
where ¥: C[Z,, ..., Zy] - S_l!;is the mapping introduced in (2.0). Suppose that K
=K, UK, with 3 #K; =K; (j=1,2) and K;.nK, = @. Let h be a function
such that h = 1 in a neighbourhood of Ky and h = 0 in a neighbourhood of K,. We
put m := D([h]). Then:

(a) m* = m.

(b) 2UAAD = D(Dm = mB(UfD for all [f] € H(K).

Especially (because of (4.1)), )

_ xym'= mx, = S(ZIH) for j=1,..,N.

(©) If D does not vanish on K, then m # 0.

" (d) If D does not vanish on K, then m # lg. _

Proof. Let Uy, U, = CV be open such that K; <« U;(j=1,2) and U;nU,
= . As K has a neighbourhood bage of polynomial convex compact sets (cf. [12],
Chap. I, Appendice, Lemme 2), there are a polynomial convex compact set W < C¥
and an open set ¥V c C¥ with K= Ve V <« W< W < U, uU,. Without loss of
generality we may suppose that 0 €K, . If not, then fix ze K, and consider x;—z;15
instead of,x; (j=1,...,N), K~z instead of K, and @o: H(K—z) - R with
Dy([f]) := @([f(‘ —2)]) for fe[f]e H(K—2z) instead of ®. We put now

 Di=sup(+w) and  d:= —dist(V, C"™\F).
weW 3D

Let now s and ¢ be positive real numbers with s+¢ < d and 7 < (s+£)d. Consider
the bilinear mappings

B,., Cpp: HOW)xHAW)> R
defined by

“42) . Bs, ([2], D) := (P MLy ) (D)
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and
43) Con(lgh, D) 1= (4yo (PPRDY) o My |, 151 °Je,(IfD)

[T e
for g e [g] € H(W) and [f] € H(dW), where &,: H(V)— R is the mapping induced
by ©. By our choice of s and ¢, the mappings B, . and Cy,, are obviously well defined
and continuous. By (4.1) and Lemma 2.2 we obtain B, ([7], [g]) = C;.([p], [4]) for
all polynomials p, g€ C[Z;, ..., Zy). As W and dW are polynomial convex com-
pact sets, the set of germs of polynomials is dense in H(W) and in H(dW). Using
the continuity of B, and C;, we conclude that

4.4 B = "~ on H(W)x H@W)

s,

for all s,¢ > 0. with s+¢< d and ¢ < (s+1#)d. Let now g: U uU, — C be the
function defined by g{U; = 1 and g|U, = 0. Then [g] = [A] in H(K). Notice, that
by our choice of s and #

Sz+tw
s+t

O B0 = g2 < et tv-) = 52

pre b
for all z, we V. Thus,

.5 M;,

i t
[T

e = M’ ®idpg,.
By (4.2)-(4.5) we obtain
46) DyoMgol,, = A;0 (PP QDY) o (MY Qidg(y,) Jo
. for s,t >0, s+t<d, t < (s+1)d.

In our next step we show that this equation holds for all s & (0, d/2] and ¢
€ (0, 8] with & := min {d?, d/2}, so that the choice of ¢ becomes independent of
s. We proceed by induction. Fix s € (0, d/2]. It is sufficient to show that the equa-

tion in (4.6) is true for all n € N and t € (0, nsd]n(0, 8]. For n = 1 this follows -

by (4.6). Suppose now that for some ne N
4.6 DyoMgoly, = 4;° (PPRPY) o (MPRidgyy) oJ
for all t & (0, nsd]n(0, 8].

If (0, 9] = (0, nsd] then (4.6,) implies (4.6,,,). If ¢ & (nsd, (n-+1)sd]n(0, 6] then
t=u+v with u=nsd and v = t—u. As (s+W+v =s5+t< d and v = t—nsd

<sd<g ((s+u)+v)d, we may apply (4.6) and obtain for an arbitrary polynomial
PeC(Z,, ..., Zy]

(QV oMgol,,) [P] = (D, 0 M, °I(.H-u)+v) [P]
= (4;° (PPRD) o (MPRid) 0 J,,,,) [7]
= (d;° (PP o MP < I2IQDY) 0 T, ,) [5]
= (4= (4 @POOP) - (MP@iA) o I ®F) o, )15,

icm
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where the last equality follows by (4.6,). Using the facts that
Aj o (A._,@ldm) = Aj o (ldm@Aj) 91@31@91

on
and that
(Jsu®1d) olJy 2o = (id®Ju,v) ° Js,l

we conclude with (4.1) and Lemma 2.1:
(Dy o Mg s+4) []
= (4,0 (dn®4,) » (25 - MP)R@P @BY) o (d®J.) ° Js.1) [7)
= (45° (PP - MP)Q(PP = IF)) o J..1) [F]
= (4, (PPQDD) o (MPD®idny) ° Js..) [Pl
where we introduced new names for the variables. As the polynomials are dense
in H(dW) we obtain by the continuity of the mappings
DyoMgol, s HAW)—R and Ao (DPRPF) o (MY ®idne) o I,
on H(dW) that these mappings coincide on H(dW). Thus, we proved (4.6,,,) and
we conclude that
(A7) Do Mol = 4;0 (PP o (MP®idpar) ot on  H(dW)
for all s€(0,d/2] and te(0,4d],j=1,2.

on  ClZy, ..., Zy]

Let now p be an arbitrary polynomial in C[Z,, ..., Zy] and fix & (0, d]. Then

Liep| V= LplV in H(V) for s—0

and
T plVx V- 10(IplV) in HVx V)= HV)®H(Y)

Hence, by (4.7),
Dy (g U:p)) = lix{.l(@v o Mg o I,,.) [P]
= lim(4; o (PP @PY) o (M ®id)  J;..) [7]
-0

= (452 (@9 - MP)®P)) (18T pIV))

= 4,(Dy(g- DD, pIV)).
Thus, by the definition of 4, and 4,,

Dy (g (I,)) = Dr(2) D) = Dv(L:D) Dr(2). 4
As L: C[Z,, ..., Zy) = CIZ,, ..., Zy] is an isomorphism for ¢ # 0, we obtain for
every polynomial g € C[Z;, ..., Zy] .
Dy(gq) = Py(g) Dr(q) = Pr(q)Dr(2),

and thus (using [4] = [g] in H(X)),

B([H) [g) = mP(lq)) = P([gDm..

for s = 0.
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The germs of polynomials being dense in H(K) we conclude
4.8) S [f]) = mB(f]) = D([fDm for every [f]e H(K)

and (b) is proved. Taking [f] := [#] and observing [A]?> = [A] we obtain (a).

If @ does not vanish on K; then there is a function f which is locally analytic
in some neighbourhood of K and vanishes in a neighbourhood of X, such that
B([f] # 0. Now [f] = [#][f] in H(K) so that by (4.8)

0 # &(Lf]) = P(AfD) = mP([fD

which implies m # 0 and thus (c).

If @ does not vanish on K, then there is a function f which is locally analytic
in some neighbourhood of K and vanishes in a neighbourhood of K, such that
&([f]) # 0. Thus [A][f] = 0 in H(K) and we obtain from (4.8)

0 # &(UD = H(UD-L(AfD = S(FD (lz—m)

which implies m # 1y and therefore (d).
We are now able to prove

TueEoREM 4.2. Let E be a linear subspace of R and let U be a faithfully operat-
ing algebra with respect to E and R. If there are x,, ..., Xy € E such that ow(%,, ...
.oy %x) is not connected then there exists a nontrivial idempotent element m in R
which commutes with every element of E. :

Proof. We have ou(%y, ..., %) = S;US, with @ #8, =5, (j=1,2) and
S80S, = & Let [hy] be the germ of a function A, with Ao = 1 in a neighbour-
hood of S, and %, = 0 in a neighbourhood of S,. Put m := T(@x(lho])), Where
6;: H(ow(¥)) ~ U is the analytic functional calculus for % := (%, ..., %) in the
commutative Banach algebra % in the sense of Theorem 1 in Chapter I, § 4, n° 1,
of [12]. Let y be an arbitrary element of E and let U; be open neighbourhoods of
S; (j =1, 2) such that U, n U, = @. By the proof of Lemma 10 in [12], Chapter I,
§4, n° 6, and by the fact that the algebra generated by lg and the range of ~ is
dense in ¥, there exist elements y, , ..., ¥, € E such that we have for the polynomial
convex hull X of ou(%y, ..., ¥, 7, F1, oees Fu) (= C¥ x C*HY)

oy(%) « ny(K) « U,uU,,

where 7y C¥ x C*+! — C¥ denotes the canonical projection. Hence, X is not con-
nected, K= K, UK, with K;:=ag'(U)nK #@ and K,nK,=@. Put i
= (&1, «os X, ¥, Y15 ..., §) and let h be a function with 4 = 1 in a neighbour-
hood of K; and % = 0 in a neighbourhood of K,. Then we obtain by Theorem 1
(if) in [12], Chapter I, §4, n° I,

@) m = T(Ox([ho))) = T(Ox([h)).

We define &: H(K)» R by S([f]) := T(OX([fD) for [f]e H(K), where O%:
H(K)—~ U is the continuous homomorphism induced by @: H(ow(®@)— U. By

1 ©
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the properties of T and @; we see that (4.1) in Theorem 4.1 is fulfilled. Hence, we
obtain by Theorem 4.1 and (4.9)

m*=m, mx;=xm(j=1,..,N),
and
@10) T(0z (()5) = my = ym.

Now, y was an arbitrary element of E, so that (4.10) is valid for all y € E. There-
fore, one concludes easily that

@.11) T(O; ([h) ) = mT(&) = T()m;

for all « in the algebra U, generated by 1y and the range of ~. As U, is dense in
A, (4.11) holds for all e .

Assume now that m = 0. Then, by (4.11) T(@z ([A) «) = 0 for all x e U. As
A is a faithfully operating algebra, we must have @; ([4]) = 0 in contradiction to
the fact that ou (07 ([])) = {0, 1} by the spectral mapping theorem. Hence, m # 0.

In the same way we show that m # lg: If m = 1g then we would have (by
(4.1)) T((Oz ([")— 1u)e) = 0 for all a e, thus O ([A]) = ly, in contradiction to
ou(@z (D) = {0,1}.

COROLLARY 4.3. Let E be a linear subspace of R and let W be a faithfully
operating algebra with respect to E and R. If the maximal ideal space M) of A
is not connected, then there exists a nontrivial idempotent element m in R which
commutes with all elements of E.

Proof. As the algebra generated by ly and the range of ~ is dense in U, (W)
is homeomorphic tO‘dgx((&)aEE) (= C® (cf. [12], Chap. L, § 3, n° 5, Prop. 9). Then
there exist Xy, ..., xv€ E such that ou(%;, ..., %) = my(ou((@,e)) is not con-
nected in C¥, where my: CE - C¥ is the canonical projection. Hence, we may
apply Theorem 4.2 and the proof is complete.

In the converse direction we have:

PROPOSITION 4.4. Let Xy, ..., Xy be N elements.of R. If there exists a nontrivial
idempotent element m in R which commutes with x4, ..., Xx, then the maximal ideal
space M(A(E)) of the Nelson algebra of operants over E := LH{xy, ..., Xy, 1z, m}
is not connected. .

Proof. Obviously, we have 7#? =7 in (E) and 0 # /a # lu (as m is non-
trivial in R). Hence, ox(#) = {0, 1} which implies that D(W(E))is not connected.

5. Spectra, numerical ranges, and nonanalytic functional calculi in operating algebras

In the sequel let E be a linear subspace of a Banach algebra R with unit 1y and
let % be an operating algebra with respect to E and R. In general, it is difficult
to compute ow(%;, ..., Xy) for given elements Xy, ..., xy € E. However, we shall
obtain some estimates by means of numerical range techniques.
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If x = (xy, ..., Xy) € EY, we shall write (x) (resp. (%)) for the closed sub-
algebra of R (resp. A) generated by 1w, Xy, ..., Xy (resp. lu, X1, ..., En). If the
elements x,, ..., Xy are mutually commuting, then T(%): (%) - (x) is obviously an
algebraic homomorphism. Thus, we have

Lemma 5.1. If x—-(xl,.
< O'(x)(x)

COROLLARY 5.2. If x € E, then 0')(X) < 03(%).

., xy) €EN is a commuting N-tuple, then oyy(x)

Recall that the joint (algebra) numerical range V(R, x) of x = (xy, ..., xy)
e RY may be defined as
V(m’ x) = {(f(xl)’ "‘sf(xN)): feD(‘.R, 1)}!
where .
: DR, 1) := {feR*: f(lx) = 1 = ]I}
For the theory of numerical ranges we refer to [9] and [10].

LemmA 5.3. Let D be a Banach algebré with unit 1, X = (X4, ..., Xy) € R¥
and let ¢: Ey := LH{lg, X1, ..., xy} = D be a linear mapping with |||l = 1 and
(1) = 1. Then we have (with @(x) := (p(x1), ..., p(xx))):

.1) V(®, p(®) = VR, x).
Moreover, if @ is an isometry then
(5.2 7(®, o)) = V(R, x).
Proof. If fe D(D, 1) then fo ¢ € Ef with
(fep)(w) =1=[[fopll.
By the Hahn-Banach theorem there exists g € D(R, 1) such that g|E, = fo ¢.

This implies (5.1).
As an immediate consequence we obtam the well known

CorOLLARY 5.4. Let D be a subalgebra of R endowed with the norm of R and
containing 1y, Xy, ons XN Then
V(b’ (xh ooy xN)) = V(ml (xls reey xN))-
This allows us to vyrite V(x) instead of (R, x) for x = (x;,...,xx) € RY

COROLLARY 5.5. Suppose that R is a unital C*~algebra and let x = (xy, ..., Xx)
be a N-tuple of iy ¢ ting normal el 18 Xy, ..., Xy R, Let D be a
unital Banach algebra and let ¢: Ey := LH {lg, %y, ..., Xy} - D be a linear map-
ping with ¢(1w) = 1 and ||p|| = 1. Then

c0o(p(x)) = V(p(x)) < V(x) = coog(x) = coa(x),

where o(p(x)) (resp. o(x)) denotes the intersection of the left and the right spectrum

of o(x} 1= (p(x,), ..., p(xn)) (resp. x) in D (resp. R) and B is.any commutative
C*-subalgebra of R containing x,, ... 3 XNy 1g.
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Proof. The first inclusion follows by the convexity of ¥(p(x)) and Theorem 12
in [9], p. 24. The second inclusion is a consequence of Lemma 5.3 and oy(x)
= ¢(x) by Theorem 6 in [4]. Moreover, V(x) = V(B, x) by Corollary 5.4. By the
fact that the norm || - || of B coincides with the spectral radius and is thus minimal
in the set of all algebra norms p on B which are equivalent to [|- || and satisfy
p(ls) =1, we conclude V(x) = cooy(x) by means of Theorem 13 in [9], p. 24.

As a first application we obtain a multi-variable variant of a result of Brown
and Halmos (cf. [13], p. 182) for Toeplitz operators.

COROLLARY 5.6. Let @y, ..., py be in L=(II) and let T,,,
sponding Toeplitz operators. Then

-, Ty, be the corre-

c0a(Ty,, -, T,) < cOOLogny(P1s - > Pa)-

THEOREM 5.7. Let E be a linear subspace of R with 1 € E, let W be an operat-
ing algebra with respect to E and R. )

@) If x = (%, .., xy) € EV, Ey := LH{lg, x,, ..

cooy(X) = V(X) < V(x).

Moreover, if "|E, is an isometry then V(%) = V(x).

(b) If R is a C*-algebra and if xy, ..., xy € R are mutually commuting and
normal then

Xy}, and 1|7 |Eol| = 1

. 00y (%) = V(%) = V(x) = coo(x) = coog(x),
where B is an arbitrary commutative C*-subalgebra of R containing 1x, X1, ..., Xy-

Proof. (a) follows by Lemma 5.3, the convexity of V(X), and Theorem 12 in
9], p. 24.

As V(%) = V((%), %) (cf. Corollary 5.4) we obtain also cooz(X) = ¥(X).
Hence, by Lemma 5.1 and Corollary 5.5,

00 (%) © Co05(%) & V(F) = W(X) = coo(x) = coop(x) = €00 (X)
which proves (b).

Recall that x € R is called hermitean if V(x) = R or equivalently if {lexp(itx)||
=1 for all ¢ € R. The following has been proved by E. Nelson in [17] for algebras
of operants.

COROLLARY 5.8. Let E be a linear subspace of a unital Banach algebra R with
1€ E. Let % be an operating algebra with respect to E and R. If x € E is hermitean
and||”[LH {1, x}|| = 1 then % is hermitean in A

Let us now return to the example discussed at the end of Section 3.

PROPOSITION 5.9. Let U be the faithfully operating algebra with respect to

= {M,+Vi: he L*([0, 1)), k e K*} and B(Lz([(), 11)) of Proposition 3.11.
@) If he L=([0, 1]) and k € K® then ou(M,+V;) = ou(M,) is connected and

(5.3) co au(ﬁh-i- 17,‘) = CO O'u(M;.) = coR.(h),
where R,(h) denotes the essential range of h.
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() If he L*([0,1]) is real valued, then AZ,, is hermitean in W and
’ ou(My+ V) = ou(M,) = [essinfh, esssuph]
Jfor every ke K™,

Proof. By Proposition 3.11, ¥, is a quasi-nilpotent element of the commutative
Banach algebra U so that ow(M,) = o(M,+ Vi), As coor,y (M) = coou(M,) and
o(My) = R,(h) in 8(L*([0, 1])) we obtain (5.3) by Theorem 5.7(b). Assume that
og(M,) is not connected for some ke L*([0, 1]). Then, by Theorem 4.2, there
exists a nontrivial idempotent P € £(L*([0, 1])) commuting with all S € E, Hence,
P($) and (idg—P)($) are nontrivial closed invariant subspaces for ¥, (where
$ = L*([0, 1])) and we obtain

P(H) = {feH: f=0ae. on [0,q}

(idg—~P)(H) = {feH: f=0 ae. on [0, 4]}
for some 0 < , f <1 (cf. Th. 4.14 in [18]) which is a contradiction. Thus, (a)
is proved. :
(b) is an immediate consequence of (a).
We prove now a support theorem for nonanalytic functional calculi which can
be factorized over a faithfully operating algebra. For the theory of nonanalytic
functional calculi for commuting N-tuples in Banach algebras see 21, .

TreoreM 5.10. Let E be a linear subspace of R of the type E = LH({ln, x,, ...
<y Xy }UB) where B is a commutative subset of R commuting with x,, ..., xy. Let
W be a faithfully operating algebra with respect to E and R. If % := (%, ..., %) is
an sf~scalar N-tuple (in the sense of [4]) in W and if A: o — N is an o -functional
calculus for %, then ’

and

supp(Te A) = supp(4) = ou(%).

Proof. By Theorem 6 in [4] we have supp(4) = oy(%). Obviously, To A van-
ishes on CV\ supp(4). Letnow fe & be a function with. supp(f) = G, where G
is an arbit;a.ry open subset of C¥ such that T'o/ vanishes on G. If P is any poly-
nomial in N variables then

T(p(R)A(S) = T(A(pf)) = 0.
For y e B we have by 3.2 (d),
T("A(f)) = yT(A(f)) = 0.
Hence, if py, ...,y e B and if p is any polynomial in N+k variables, then
TPy ey S, 1o oons FOA(S) = 0.
As the subalgebra of U generated by Iy and the range of ” is dense in U we obtain

T (A(f)ﬂ) =0 for every fe U and therefore, A(f) = 0. Thus, 4 vanishes on G
too and we obtain supp(T'sd) = supp(A).

As an application we obtain a result which is essentially due to [5] and [17].
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Tueorem 5.11. Let x,, ..., xy be N hermitean elements of a unital Banach
algebra R. Put E :=LH{lg, x,, ..., Xy} and denote by A(E) the Nelson algebra
of operants over E. Then z - exp(iz, %) (where 2, %) 1= 2, %+ ... +zy%)
is the Fourier-Laplace transform of a R-valued distribution of order k < (N+2)/2
with compact support. .

(5.4 ¢ = Ay(@) 1= @) § exp(ict, 2))p(r)dt

RN

defines a C*(R™)-functional calculus Jor x = (xq, ..., xy). Moreover,

5.9 (Te Ay () = (@m)" | exp(ics, ) (s
and -
(5.6) supp(To Ay) = supp(Ay) = owesy(F).
Proof. By Corollary 5.8, %,, ..., ¥y are hermitean in A(E). Therefore,
(5.7) llexp(i<t, )| = 1 = |lexp(i ¢z, x))|| forall te RN

(as {t, %) and (¢, x) are again hermitean in A(E) resp. in R). By [5] (cf. also 2],
Satz 3.3) £ is a C*(R")-scalar N-tuple for some k < (n+2)/2 and the C*(RY)-func-
tional calculus for X is given by (5.4). (5.5) follows by (5.7) and the continuity
of T, and (5.6) is now a consequence of Theorem 5.10.

Remark 5.12. T's A,y is the so-called Weyl functional calculus. In [6], R.F. V.
Anderson showed: If supp(T-Ay) is not connected then there exists a nontrivial
idempotent element in R which commutes with Xy, ..., Xy. This is now a conse-
quence of Theorem 4.2 and (5.6).
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The aim of this paper is to present a summary of the eight lectures I gave at the
Banach Center in Warsaw on this subject. I shall speak only about applications
in the theory of Banach algebras and in the theory of polynomial approximation
in several complex variables. All the details and other results will be found in my
book Propriétés Spectrales des algébres de Banach.

For the definition and the main properties of subharmonic functions see [5],
(10, 111}, [18], [22].

1. Banach algebras theory

In the following pages Spx denotes the spectrum of x, o(x) denotes the full spectrum,
i.e. the union of Spx with its holes, o(x), 8(x), c(x) denote respectively the radius,
the diameter and the capacity of the spectrum of x. Rad 4 is the Jacobson radical
of the algebra A.

The fundamental starting point is

TueoreM 1 (Vesentini). Let A — f(4) be an analytic function from a domain
D in C into a complex Banach algebra A, then A — o(f(4)) and 4 ~ logo(f(2)) are
subharmonic.

For the proof, see [19], [20]. A more elementary proof not using Radé’s the-
orem is given in [S5]. With that result the well-known theorem of Kleinecke and
Shirokov and related results are coming more naturally.

CoroLLARY 1 (Kleinecke-Shirokov). Let 4 be a Banach algebra and a, b
elements of A verifying a(ab—ba) = (ab—ba)a, then ab—ba is quasi-nilpotent.

COROLLARY 2. Let a, b be elements of A verifying a(ab—ba) = 0 or (ab—ba)a
= 0 and suppose that 0 is on the exterior boundary of the spectrum of a (}'.e. the
boundary of the full spectrum), then ab~—ba is quasi-nilpotent.

COROLLARY 3. (Principle of maximum for full spectrum) (Vesentini). Let
A = f(2) be an analytic function from a domain D in C into a complex Banach algebra
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