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PROJECTABLE KERNEL OF A LATTICE ORDERED GROUP

JAN JAKUBIK

Mathematical Institute of Technical Universily, Kodice, Ozechoslovakia

Let 4 and ¢ be non-empty classes of lattice ordered groups. Consider
the following condition for £ and %:

(a) For each G € ¢ there exists a convex I-subgroup H of & such t]%ah
(i) H belongs to o, and (ii) whenever H, is a convex I-subgroup of & with
H, eA, then H, c H.

If (a) is valid, then we express this fact by saying that (A7, g)-ke'me?s-
do exist. Under the denotations as in (a), the lattice ordered group H is
said to be the (A", ¥)-kernel of G. Let %, be the class of all lattice ordered
groups; the (47, %,)-kernels will be denoted as A -kernels.

The existence of (", %)-kernels were investigated by several authors
(cf. Byrd and Lloyd [3], Cernak [4], Conrad [5], Gavaleovs [6], HQHa,nd {71
Jakubik [8], [10], [11], [12], Kenny [14], Martinez [15], Redfield [16]).
Let us mention the following typical results:

(i) Let o be a variety of lattice ordered groups. Then o -kernels
do exigt. (Cf. Holland [7].)

(ii) Let o', be the class of all archimedean lattice ordered groups.
Then 2;-kernels do exist. (Cf. Redfield [16].)

(iif) Let o, be the class of all complete lattice ordered groups. Then
A y-kernels do exist. (Of. Jakubik [8].)

The following negative result is easy to verify (cf. Example 2 below):

(iv) Let o', be the class of orthogonally complete lattice ordered
groups. Then 4 -kernels do not exist.

In this paper the following result will be established: '

(v) Let A5 and o, be the class of all strongly projectable or project-
able lattice ordered groups, respectively. Then X y-kernels and 2;-kernels
do exist. ]

Let us remark that neither of the classes o, (¢ = 1,2, 3, 4) is & var-
iety.
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Projectable and strongly projectable lattice ordered groups and
vector lattices have been dealt with in several papers (cf., e.g. Anderson,
COonrad and Kenny [1], Bernau [2], Veksler [18], Jakubik [13]).

Let G be a lattice ordered group, X < @. The seb
X' ={ye6: lylalo] =0 for each v X}

is said to be a polar of G (cf. 8ik [17]). If X is a one-element set, then X
is called a principal polar. Bach polar of G is a closed convex I-subgroup of G-
The sets X° and X* are said to be complementary polars of G.

Let a,be@ a<<b, X=[a,b], ¥o={gecG: g=a}, y= ¥,. Put

X'a,b) = {y e[a, b]: yArz = a for each we X},
X%(a,b) = Z(a, b) Z = X’(a,b),
Y’(a) = {teG: tAy = a for each y & Y},
Y%(a) = Z°(a) Z = Y(a).

The sets ¥°(a) and X°(a, b) will be called relative polars and relative bounded
polars, respectively. The sets X°(a, b) and X*(a, b) are said to be comp-
lementary relative polars in the interval [a, b]. If card X =1, then X% (a, b)
is called a principal relative polar.

The lattice ordered group @ is said to be strongly projestable (projectable)
if each polar (each principal polar) of @ is a direct factor of @. It is well
known that a polar P of & is a direct factor of @ if and only if the following
condition is fulfilled:

(*) For each 0 < ge@, the set PN[0, g] has the grestest element.
Moreover, if a polar P is a direct factor of &, then P’ is also a direct factor.

It will be shown that the strong projectability of G can be expressed

by properties of bounded polars of . Namely, the following result will
be proved:

where

where

TeEOREM 1. The following conditions for a lattice ordered group G
are equivalent:

(i) G is strongly projectable;

. @) If a,be@,a<b, X c[a,b], vc[a,b], then there are elements
yeX(a,b), 26 X%(a,b) such that & =y v e.

We need some lemmas.
LemMvA 1. Let a,be@, a<b, X < [a,b]. Then
X’(a,b) = a+((—a+X)(0, —a+b). ‘
This follows immediately from the fact that the mapping ¢(t) = —a -+

+1t (te[a, b]) is an isomorphism of the lattice [a,b] onto the. lattice
[0, —a+b].
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From Lemma 1 we obtain:

LeMMA 2. The condition (ii) of Theorem 1 is equivalent to the following
condition:

(iii) If ce@, ¢> 0, X < [0, cl, then there are elements y € X°(0, o),
2 € X%(0,¢) such that ¢ = yv 2.

LeMMA 3. Let 0 cel, X < [0,¢]. Then

X%(0,¢) = X°n[0,¢], X¥(0,0) =X*n[0,c].

Proof. The first relation follows immediately from the defintion of
X%(0,¢). Write X°(0,¢) = ¥,. From ¥, = X° we obtain X522 X%,
and thus

Y0, ¢) = Y2n[0, ¢] =2 X* N[0, c].
Let y € Y3 [0, ¢] and suppose that y does not belong to the set X*n
N[0, ¢]. Then y does not belong to X*. Hence there is 0< 2 e X’ with
yAz> 0. Moreover, yaze Y, and yA (yArz) =yAaz> 0, thus y does not
belong to Y’, which is a contradietion. Hence X¥(0,c) = ¥;(0,0)
= X"n[0, ¢

LEMMA 4. Tet 0<c¢e@, X =G Put ¥ =XPn[0,¢], Z =X°n
N[0, c]. Then Y*(0,¢) = ¥ and Z*(0, ¢y = Z. Moreover, we have

Z°(0,0) =¥, T(0,¢)=2.

Proof. Since ¥ < [0, ¢], according to Lemma 3 we have
Y%(0,¢) = ¥Y*nI0, ¢].
Since ¥ = X%, we infer that
Yﬂd c (X’M)dd — de,

and hence

¥%(0,¢) = X¥N[0,¢] =Y.
From the definition of ¥*(0, ¢) it follows immediately that ¥ < ¥*(0, o).
Thus ¥ = ¥*(0,¢). The relation Z = Z*(0,¢) can be verified anal-
ogously. ‘

Let ¢ [0, ¢], 1Az = 0 for each 2 & Z. Suppose that ¢ does not belo.ng
to the set Y. Hence ¢ cannot belong to X*. Thus there is % € X° with
t, =tAu>0. We have t,Az = 0 for each zeZ. On the other hand,
t,€[0,¢]nX° =2Z, and hence t,At, =0, a contradiction. Therefore,
Z°(0,¢) < Y. Obviously, ¥ < Z°(0, ¢) and so Z°(0, ¢) = Y. Analogously
we can prove the relation ¥°(0, c) = Z. .

Proof of Theorem 1. According to Lemma 2 it suffices to szriiy that
the conditions (i) and (iii) are equivalent. Assume that (i) is valid and let
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0<0eG, X < [0, c]. According to (i), X° and X* are direct factors of G
since X’nX? = {0}, we have

G =X"x X%,
(the symbol X denotes the operation of the direct product). Let ¢, = ¢(X°)
and ¢, = ¢(X*)be the corresponding components of the element ¢. We have
€ =0+¢C, 6,0, 6,20, ¢;Ac, =0, thus ¢ = ¢, v ¢,. Hence, in view
of Lemma 3, (iil) holds.

Conversely, suppose that (iii) is valid. Let X, = ¢. We have to show
that X is a direct factor of @. Let 0 < ¢ce@. Write X = X2n[0, c].
From Lemma 4 it follows

X%(0,¢) = X.
According to (iii) there are elements y € X°(0,¢), 2€Z with ¢ = yv 2.
Let 2, € XIN[0, ¢]. Clearly, z;Ay = 0. Then
By =2AC = A(YVE) = (21AY) V(1A R) = Z1A 2.
Hence 2 is the greatest element of X3 [0, ¢]. In view of (), X° is a direct:
factor of G.
Let a,b €@, a<b. Consider the following condition for [a, b]:

(¢) For each X < [a,b] there are elements y € X°(a, b) and z
€ X*(a, b) such that b = yve.

Lemma 8. Lot ae@, X <@, v>a for each 2 X, 9,20, a+ty,
eX’(a) (¢ =1,2). Then a-+y,+v, € X(a).

Proof. We have
—a+X%(a) = (—a+X)*(0).
Since each polar of & is an I-subgroup of @, the set ( —a+X)*(0) (being

the positive cone of (—a+X)’) is a subsemigroup of @. Since ¥y, ¥a

€(—a+X)’(0), we have y,+¥,€(—a+X)’(0) and thus a-+y,+9,
e X’ (a).

Levma 6. Let a,b,ce@, a<b<o Assume that both [a,b] and
[b, ¢] fulfil condition (). Then [a, ¢] also fulfils condition (a).
Proof. Let X < [a, c]. Put
Y =Xa,¢), Z =2X%a,c),
Y, = Xn[a,b], Z,=2Zn[a,b].

By using the translation ¢(g) =g-+a (g€@) it follows from Lemma 4
that

Y?"(a, b) = Yly
Yi(a,b) = 27,

ZP(a,b) = Z,,
Z%(a,b) = Y,.
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Since [a, b] fulfils («), there are elements b, € ¥,, b, €Z; with
= by Vv b,.
Clearly, b;A by = a.
Write
Y =b—a+Y, Z =b—atZ.
Then ¥’ and Z' are complementary relative polars in the interval [b, b —
—a+c] 2 [b, ¢]. Put
Y, =Y'nlb,el, Z,=Z'n[b,c].
Again, by translation and Lemma 4, we get
Y7 (b,0) =X, 230, 0) =2y,
Yg(bac) :Zi7 Zg(bic) = :Y:z'
Because [b, ¢] fulfils («) there are elements ¢, € ¥,, ¢, € Z, with
¢ =0V ey
Moreover, ¢;Ac, = b.
Pub by = —@+byy by = —a+by, 6 = —b+0,
From the definition of the sets X’ and Z’ we obtain

atene¥,

Cpp = —b+0,.

a+cpp€Z.
"Thus, in view of Lemma 5,

@+boy+ 0oy € Xo(a), a+bot0ps € XP(a).
Hence
(@4boy+001) A (@ boy+Co2) = 4,
(box+o1) A (boa+ €p3) = 0,
(Bor+G01) ¥ (BoaF6g2) = (Box+Co1) + (oz +Coa) -
Moreover, ¢y A by, = 0, from which we infer

Go1+bos = Dozt Cor-
Therefore

(@ boy+€o1) V (@ +bog -+ Cpa) = “‘{‘((boi‘l'aol) v (boz+coa))
=& +((bo1+ Co1) + (boz +coz))
= &+ (boy -+ boa) + (Cor + Go2)
@+ (boy V Boz) + (Gor V €o2)
[(@+bey) v (@ +boa) T+ (Cor V Coa)
= [By Vbl (Co1V Coa) = b+ (CorV Coa)
= (b4 0g1) V (b +Cpp) = €1V &, = C.

I

If
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Thus both the elements a-bg+ oy, @+ Do+ e belong to the interval
[a, c]. From Lemma 3 we obtain (by using a translation)

Z =X%(a,c) = X*(a)n[a, c],
and obviously
Y = X’(a,¢) = X’(a)N[a, ¢].

Hence y = a+by+¢y e ¥, 2 =a+by+cpeZ and yvz = ¢. Therefore
the interval [a, ¢] fulfils condition («).

LeMMA 7. Let 0< ¢, €6G, 0
10, 6.1 and [0, g,] fulfil («

Proof. The interval [gy, g,+¢,] being isomorphic with [0, g,], the
asertion follows from Lemma 6.

< ¢, € G and suppose that both the intervals
). Then [0, g1+ g,] also fulfils (w).

LavmA 8. Let ¢y, ¢ € G, 0 < ¢; < 6. Suppose that [0, ¢] fulfils condition
(«). Then the interval [0, ¢,] also fulfils condition ().

Proof. Let X < [0, ¢;]. Since [0, ¢] fulfils («), there are elements
yeX°(0,¢), 2eX”(0,¢) with c =yve Write y; =ynAcy, 2 =2A0,.
Then ¢, =y, v# and from Lemma 2 we easily obtain ¥, € X%(0, ¢y),
2, € X*(0, ¢;). Henece [0, ¢,] fulfils ().

Let H, be the set of all elements @ €@, ¢ > 0 such that [0, a] ful-
fils («). Clearly, 0 € H;. According to Lemma 7, H, is a subsemigroup
of the semigroup @*. Moreover, by Lemma 8, H, is a convex subset of G+ .
Hence H, is a sublattice of G*. From this it follows that the set H = H, —H,
is a convex I-subgroup of G.

THEOREM 2. H is the strongly projeciable kernel (i.e., the A y-kernel)
of G. .

Proof . From the definition of H and from the fact that each interval
of H iy isomorphic with some interval of the form [0, ¢] with 0 <o e H,
it follows that each interval of H fulfils condition («). Hence, by Theorem 1,
H i3 strongly projectable. Let 4 be a convex I-subgroup of @ and suppose
that 4 is strongly projectable. Let 0 < @ € A. Then, in view of Theorem 1,
the interval [0, a] fulfils («). Thus we have a e H. Therefore A* =@
and from this it follows 4 < @, completing the proof.

Remark 1. If o is a class of lattice ordered groups, and it H is a -
kernel of a lattice ordered group @, then H is an l-ideal of ¢ In fact, for
each ge@, —g-+H-g is a convex Il-subgroup of G isomorphic with . ,
whence —g-+H-+g < H.

Remark 2. For each lattice ordered group @, the archimedean kernel
and the complete kernel (i.e., the o#';-kernel and the #",-kernel) of G is
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a closed l-ideal of &. (Cf. [8] and [10].) The following example shows that

-the strongly projectable kernel of G need not be closed.

ExamprE 1. Let F be the set of all real functions defined on the set R

of all reals. The group and lattice operations in F are defined component-

wise. Let 4 De the set of all constant functions of F and let B be the set of
all functions of # having a one-elements support. Further, let ¢ and H
be the subgroup of the group F generated by the set A UB or B, respect-
ively. Then G and H are l-subgroups of ¥, and H is the #'y-kernel of G.
The lattice ordered group H fails to be closed in @ (in fact, @ is the smalest
closed l-subgroup of @ containing H as a subset, and G % H).

The following example shows that orthogomnally complete kernels
(i.e., A 'g-kernels, cf. the Introduction) need not exist.

Exavpre 2. Let G, H and B be as in Example 1. For each b B
let @, be the convex Il-subgroup of G generated by the element b. Then
each @, is linearly ordered and hence it is orthogonally complete. Clearly,

V Gb =H,

beB
and if H, is a convex I-subgroup of ¢ with H < H,, then H, fails to be
orthogonally complete.

ExaMpLE 3. Let F be as in Example 1 and F, be the set of all fe F
that are continuous. Then F, is an I-subgroup of F, Fis strongly project-
able and T, fails to be projectable. Hence neither o nor &, is a variety.

A class " = @ of lattice ordered groups is said to be a radical class [9]
if it fulfils the following conditions:

(a) o is closed with respect to isomorphisms.

(b) Whenever & e A" and G, is a convex I-subgroup of @, then ¢, & .

(e) Tf G is a lattice ordered group and if {G;} is a system of convex
I-subgroups of G such that each @; belongs to ", then \/ G belongs to A
as well.

PROPOSITION 1. X3 i8 . radical class.
Proof. Obviously, o5 fulfils (a). From Theorem 2 it follows that A5

" satisfies (e). By using Lemma 8 we obtain that condition (b) holds for 7.

Until now we have been dealing with strong projectability and hence
the power of the set X in the lemmas above might be arbitrary.

T we consider the projectability, then we have to investigate the
cagse where X ig a one-element set. We need the following lemma.

Levwma 9. Let a,b,0e@, a<b, a <z, X = {z}. Then

1) X(a,b) = {wab)(a, b).
Proof. ¥ yeX’(a,b), then ye[a,b] and yAx =0; hence
0 =(@yArb)az =yA(baw) and thus ye {@wAb) (a,b). Conversely, let
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Yy e {@AbY(a,b) and assume that y does not belong to the set X’(a, b).
Then yA® = 4> a, ¥<<®Ab, and hence uAy = 0, which is a contra-
diction. Thus (1) is valid.

By using Lemma 9 and the same methods as in the investigation
concerning the strong projectability (with the distinction that we always
assume card X = 1), we can verify that the following statements are valid:

THEOREM 3. The A 'y-kernels do ewist.
PROPOSITION 2. ¢, 18 & radical class.
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TWO CLOSURE OPERATORS WHICH PRESERVE m-COMPACTICITY*

JANA RYSLINKOVA and TEO STURM

Electrotechnical Faculty of Technical University, Prague, Ozechoslovakia

In this paper we shall investigate some properties of closure operators
studied in [3] and [4]. The investigated problems are exactly formulated
in Section 1.4.

1. Introductory remarks

1.1. Throughout this paper L will denote a given complete lattice
with an ordering denoted by <. Further, m and » will denote infinite
cardinals.

1.2, A subset X of L is called m-directed in L if for every ¥ < X,
1Y| < m, there exists # € X such that for every y e ¥ we have y < #.
(See [4], Definition 5.) A closure operator % (abbreviation: CO) on L is
called m-algebraic (abbreviation : m-ACO) if for every non-empty m-directed
subset ¥ of u(L) there is V,¥ =V, ,,¥. (See [3], Definition 1.3.)
An element ¢ € L is called m-compact in L if for every X < L such that
¢ Vi X, there exists ¥ c X with |¥Y|<m and ¢e< VY. A lattice L
is called m-algebraic if every element x of L can be written as the join
of some set of m-compact elements in L. (See [2], p. 32.) The following
assertion is proved in [3]:

(1) Let m be regular and let u be an m-ACO on L. If ¢ is n-compact
in L for some infinile cardinal m < n, then u(c) is n-compact in u(L). If L
is n-algebraic, then also w(L) is n-algebraic. (See [3], Theorem 2.1. For
irregular cardinals m is the guess of the compacticity of «(¢) more compli-
cated, as shows the same Theorem 2.1 of [3].)

* This paper has originated at the Seminar Algebraic Foundations of Quantum
Theories, directed by Professor Jifi Fabera.
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