cm[©]

References

- D. Dorninger, Über die Anzahl von Polynomen und Polynomfunktionen auf endlichen Verbänden, J. Reine Angew. Math. 273 (1975), 199-205.
- [2] -, Local polynomial functions on distributive lattices, An. Acad. brasil. Ciênc., 50 (4) (1978), 433-437.
- [3] D. Dorninger and W. Nöbauer, Local polynomial functions on lattices and universal algebras, Colloq. Math. 42 (1980), 83-93.
- [4] G. Grätzer, Boolean functions on distributive lattices, Acta Math. Acad. Sci. Hung. 15 (1964), 195-201.
- [5] -, Lattice theory, Freeman and Company, San Francisco 1971.
- [6] H. Lausch and W. Nöbauer, Algebra of polynomials, North-Holland, Amsterdam-London 1973.
- [7] -, -, Funktionen auf endlichen Gruppen, Publ. Math. Debrecen 23 (1973), 53-61.
- [8] W. Nöbauer, Über die affin vollständigen, endlich erzeugbaren Moduln, Monatsh. Math. 82 (1976), 187-198.
- [9] D. Schweigert, Über endliche, ordnungspolynomvollständige Verbände, Monatsh. Math. 78 (1974), 68-76.
- [10] H. Werner, Produkte von Kongruenzklassengeometrien universeller Algebren, Math. Z. 121 (1971), 111-140.
- [11] R. Wille, Eine Charakterisierung endlicher, ordnungspolynomvollständiger Verbände, Arch. Math. 28 (1977), 557-560.
- [12] -, Über endliche, ordnungsaffinvollständige Verbände, Math. Z. 155 (1977), 103-107.

Presented to the Semester Universal Algebra and Applications (February 15 – June 9, 1978) UNIVERSAL ALGEBRA AND APPLICATIONS BANACH CENTER PUBLICATIONS, VOLUME 9 PWN-POLISH SCIENTIFIC PUBLISHERS WARSAW 1982

PROJECTABLE KERNEL OF A LATTICE ORDERED GROUP

JÁN JAKUBÍK

Mathematical Institute of Technical University, Košice, Czechoslovakia

Let $\mathscr K$ and $\mathscr G$ be non-empty classes of lattice ordered groups. Consider the following condition for $\mathscr K$ and $\mathscr G$:

- (a) For each $G \in \mathcal{G}$ there exists a convex l-subgroup H of G such that (i) H belongs to \mathcal{K} , and (ii) whenever H_1 is a convex l-subgroup of G with $H_1 \in \mathcal{K}$, then $H_1 \subseteq H$.
- If (a) is valid, then we express this fact by saying that $(\mathscr{K}, \mathscr{G})$ -kernels do exist. Under the denotations as in (a), the lattice ordered group H is said to be the $(\mathscr{K}, \mathscr{G})$ -kernel of G. Let \mathscr{G}_1 be the class of all lattice ordered groups; the $(\mathscr{K}, \mathscr{G}_1)$ -kernels will be denoted as \mathscr{K} -kernels.

The existence of (%, %)-kernels were investigated by several authors (cf. Byrd and Lloyd [3], Černák [4], Conrad [5], Gavalcová [6], Holland [7], Jakubík [8], [10], [11], [12], Kenny [14], Martinez [15], Redfield [16]). Let us mention the following typical results:

- (i) Let $\mathscr X$ be a variety of lattice ordered groups. Then $\mathscr X$ -kernels do exist. (Cf. Holland [7].)
- (ii) Let \mathcal{X}_1 be the class of all archimedean lattice ordered groups. Then \mathcal{X}_1 -kernels do exist. (Cf. Redfield [16].)
- (iii) Let \mathcal{X}_2 be the class of all complete lattice ordered groups. Then \mathcal{X}_2 -kernels do exist. (Cf. Jakubík [8].)

The following negative result is easy to verify (cf. Example 2 below):

(iv) Let \mathcal{K}_0 be the class of orthogonally complete lattice ordered groups. Then \mathcal{K}_0 -kernels do not exist.

In this paper the following result will be established:

(v) Let \mathcal{K}_3 and \mathcal{K}_4 be the class of all strongly projectable or projectable lattice ordered groups, respectively. Then \mathcal{K}_3 -kernels and \mathcal{K}_4 -kernels do exist.

Let us remark that neither of the classes \mathscr{K}_i (i=1,2,3,4) is a variety.

Projectable and strongly projectable lattice ordered groups and vector lattices have been dealt with in several papers (cf., e.g. Anderson, Conrad and Kenny [1], Bernau [2], Veksler [18], Jakubík [13]).

Let G be a lattice ordered group, $X \subseteq G$. The set

$$X^{\delta} = \{ y \in G \colon |y| \land |x| = 0 \text{ for each } x \in X \}$$

is said to be a polar of G (cf. Šik [17]). If X is a one-element set, then X is called a principal polar. Each polar of G is a closed convex l-subgroup of G. The sets X^{δ} and $X^{\delta\delta}$ are said to be complementary polars of G.

Let $a, b \in G$, $a \le b$, $X \subseteq [a, b]$, $Y_0 = \{g \in G : g \geqslant a\}$, $y \subseteq Y_0$. Put

$$X^{\delta}(a,b) = \{y \in [a,b] \colon y \wedge x = a \text{ for each } x \in X\},$$
 $X^{\delta\delta}(a,b) = Z^{\delta}(a,b) \quad \text{where} \quad Z = X^{\delta}(a,b),$
 $Y^{\delta}(a) = \{t \in G \colon t \wedge y = a \text{ for each } y \in Y\},$
 $Y^{\delta\delta}(a) = Z^{\delta}(a) \quad \text{where} \quad Z = Y^{\delta}(a).$

The sets $Y^{\delta}(a)$ and $X^{\delta}(a, b)$ will be called relative polars and relative bounded polars, respectively. The sets $X^{\delta}(a, b)$ and $X^{\delta\delta}(a, b)$ are said to be complementary relative polars in the interval [a, b]. If $\operatorname{card} X = 1$, then $X^{\delta\delta}(a, b)$ is called a principal relative polar.

The lattice ordered group G is said to be strongly projectable (projectable) if each polar (each principal polar) of G is a direct factor of G. It is well known that a polar P of G is a direct factor of G if and only if the following condition is fulfilled:

(*) For each $0 \le g \in G$, the set $P \cap [0, g]$ has the greatest element. Moreover, if a polar P is a direct factor of G, then P^{δ} is also a direct factor.

It will be shown that the strong projectability of G can be expressed by properties of bounded polars of G. Namely, the following result will be proved:

THEOREM 1. The following conditions for a lattice ordered group G are equivalent:

- (i) G is strongly projectable;
- (ii) If $a, b \in G$, $a \le b$, $X \subseteq [a, b]$, $x \in [a, b]$, then there are elements $y \in X^{\delta}(a, b)$, $z \in X^{\delta\delta}(a, b)$ such that $x = y \vee z$.

We need some lemmas.

LEMMA 1. Let
$$a, b \in G$$
, $a \le b$, $X \subseteq [a, b]$. Then
$$X^{\delta}(a, b) = a + ((-a + X)^{\delta}(0, -a + b)).$$

This follows immediately from the fact that the mapping $\varphi(t) = -a + +t$ $(t \in [a, b])$ is an isomorphism of the lattice [a, b] onto the lattice [0, -a+b].

From Lemma 1 we obtain:

LEMMA 2. The condition (ii) of Theorem 1 is equivalent to the following condition:

(iii) If $c \in G$, c > 0, $X \subseteq [0, c]$, then there are elements $y \in X^{\delta}(0, c)$, $z \in X^{\delta\delta}(0, c)$ such that $c = y \vee z$.

LEMMA 3. Let $0 \le c \in G$, $X \subseteq [0, c]$. Then

$$X^{\delta}(0,c) = X^{\delta} \cap [0,c], \quad X^{\delta\delta}(0,c) = X^{\delta\delta} \cap [0,c].$$

Proof. The first relation follows immediately from the defintion of $X^{\delta}(0,c)$. Write $X^{\delta}(0,c)=Y_{0}$. From $Y_{0}\subseteq X^{\delta}$ we obtain $Y_{0}^{\delta}\supseteq X^{\delta\delta}$, and thus

$$Y_0^\delta(0,c) = Y_0^\delta \cap [0,c] \supseteq X^{\delta\delta} \cap [0,c].$$

Let $y \in Y_0^s \cap [0, e]$ and suppose that y does not belong to the set $X^{s\delta} \cap [0, e]$. Then y does not belong to $X^{s\delta}$. Hence there is $0 < z \in X^s$ with $y \wedge z > 0$. Moreover, $y \wedge z \in Y_0$ and $y \wedge (y \wedge z) = y \wedge z > 0$, thus y does not belong to Y^s , which is a contradiction. Hence $X^{s\delta}(0, e) = Y_0^s(0, e) = X^{s\delta} \cap [0, e]$.

LEMMA 4. Let $0 < c \in G$, $X \subseteq G$. Put $Y = X^{\delta\delta} \cap [0, c]$, $Z = X^{\delta} \cap [0, c]$. Then $Y^{\delta\delta}(0, c) = Y$ and $Z^{\delta\delta}(0, c) = Z$. Moreover, we have

$$Z^{\delta}(0,c)=Y, \quad Y^{\delta}(0,c)=Z.$$

Proof. Since $Y \subseteq [0, c]$, according to Lemma 3 we have

$$Y^{\delta\delta}(0,c) = Y^{\delta\delta} \cap [0,c].$$

Since $Y \subseteq X^{\delta\delta}$, we infer that

$$Y^{\delta\delta}\subseteq (X^{\delta\delta})^{\delta\delta}=X^{\delta\delta},$$

and hence

$$Y^{\delta\delta}(0,c)\subseteq X^{\delta\delta}\cap[0,c]=Y.$$

From the definition of $Y^{\delta\delta}(0, c)$ it follows immediately that $Y \subseteq Y^{\delta\delta}(0, c)$. Thus $Y = Y^{\delta\delta}(0, c)$. The relation $Z = Z^{\delta\delta}(0, c)$ can be verified analogously.

Let $t \in [0, c]$, $t \wedge z = 0$ for each $z \in Z$. Suppose that t does not belong to the set Y. Hence t cannot belong to $X^{\delta\delta}$. Thus there is $u \in X^{\delta}$ with $t_1 = t \wedge u > 0$. We have $t_1 \wedge z = 0$ for each $z \in Z$. On the other hand, $t_1 \in [0, c] \cap X^{\delta} = Z$, and hence $t_1 \wedge t_1 = 0$, a contradiction. Therefore, $Z^{\delta}(0, c) \subseteq Y$. Obviously, $Y \subseteq Z^{\delta}(0, c)$ and so $Z^{\delta}(0, c) = Y$. Analogously we can prove the relation $Y^{\delta}(0, c) = Z$.

Proof of Theorem 1. According to Lemma 2 it suffices to verify that the conditions (i) and (iii) are equivalent. Assume that (i) is valid and let

 $0 \le c \in G$, $X \subseteq [0, c]$. According to (i), X^{δ} and $X^{\delta\delta}$ are direct factors of G; since $X^{\delta} \cap X^{\delta\delta} = \{0\}$, we have

$$G = X^{\delta} \times X^{\delta \delta}$$

(the symbol \times denotes the operation of the direct product). Let $c_1=c(X^\delta)$ and $c_2=c(X^{\delta\delta})$ be the corresponding components of the element c. We have $c=c_1+c_2,\ c_1\geqslant 0,\ c_2\geqslant 0,\ c_1\wedge c_2=0,\$ thus $c=c_1\vee c_2.$ Hence, in view of Lemma 3, (iii) holds.

Conversely, suppose that (iii) is valid. Let $X_1 \subseteq G$. We have to show that X_1^{δ} is a direct factor of G. Let $0 \le c \in G$. Write $X = X_1^{\delta} \cap [0, c]$. From Lemma 4 it follows

$$X^{\delta\delta}(0,c)=X.$$

According to (iii) there are elements $y \in X^{\delta}(0, c)$, $z \in Z$ with $c = y \lor z$. Let $z_1 \in X_1^{\delta} \cap [0, c]$. Clearly, $z_1 \land y = 0$. Then

$$z_1 = z_1 \wedge c = z_1 \wedge (y \vee z) = (z_1 \wedge y) \vee (z_1 \wedge z) = z_1 \wedge z$$
.

Hence z is the greatest element of $X_1^{\delta} \cap [0, c]$. In view of (*), X_1^{δ} is a direct factor of G.

Let $a, b \in G$, $a \le b$. Consider the following condition for [a, b]:

(a) For each $X\subseteq [a,b]$ there are elements $y\in X^\delta(a,b)$ and $z\in X^{\delta\delta}(a,b)$ such that $b=y\vee z$.

LEMMA 5. Let $a \in G$, $X \subseteq G$, $x \geqslant a$ for each $x \in X$, $y_i \geqslant 0$, $a + y_i \in X^{\delta}(a)$ (i = 1, 2). Then $a + y_1 + y_2 \in X^{\delta}(a)$.

Proof. We have

$$-a + X^{\delta}(a) = (-a + X)^{\delta}(0)$$
.

Since each polar of G is an l-subgroup of G, the set $(-a+X)^{\delta}(0)$ (being the positive cone of $(-a+X)^{\delta}$) is a subsemigroup of G. Since $y_1, y_2 \in (-a+X)^{\delta}(0)$, we have $y_1+y_2 \in (-a+X)^{\delta}(0)$ and thus $a+y_1+y_2 \in X^{\delta}(a)$.

LEMMA 6. Let $a, b, c \in G$, $a \le b \le c$. Assume that both [a, b] and [b, c] fulfil condition (α) . Then [a, c] also fulfils condition (α) .

Proof. Let $X \subseteq [a, c]$. Put

$$Y = X^{\delta}(a, c), \quad Z = X^{\delta\delta}(a, c),$$

 $Y_1 = Y \cap [a, b], \quad Z_2 = Z \cap [a, b].$

By using the translation $\varphi(g)=g+a$ $(g\in G)$ it follows from Lemma 4 that

$$Y_1^{\delta\delta}(a,b) = Y_1, \quad Z_1^{\delta\delta}(a,b) = Z_1, \ Y_1^{\delta}(a,b) = Z_1, \quad Z_1^{\delta}(a,b) = Y_1.$$

Since [a, b] fulfils (α) , there are elements $b_1 \in Y_1, b_2 \in Z_1$ with

$$b = b_1 \vee b_2$$
.

Clearly, $b_1 \wedge b_2 = a$.

Write

$$Y'=b-a+Y$$
, $Z'=b-a+Z$.

Then Y' and Z' are complementary relative polars in the interval $[b, b-a+c] \supseteq [b, c]$. Put

$$Y_2 = Y' \cap [b, c], \quad Z_2 = Z' \cap [b, c].$$

Again, by translation and Lemma 4, we get

$$Y_2^{\delta\delta}(b,c)=Y_2, \quad Z_2^{\delta\delta}(b,c)=Z_2,$$

$$Y_2^{\delta}(b,c) = Z_2, \qquad Z_2^{\delta}(b,c) = Y_2.$$

Because [b, c] fulfils (a) there are elements $c_1 \in Y_2, c_2 \in Z_2$ with

$$c = c_1 \vee c_2$$
.

Moreover, $c_1 \wedge c_2 = b$.

Put $b_{01}=-a+b_1$, $b_{02}=-a+b_2$, $c_{01}=-b+c_1$, $c_{02}=-b+c_2$. From the definition of the sets Y' and Z' we obtain

$$a + c_{01} \in Y$$
, $a + c_{02} \in Z$.

Thus, in view of Lemma 5,

$$a+b_{01}+c_{01}\in X^{\delta}(a), \quad a+b_{02}+c_{02}\in X^{\delta\delta}(a).$$

Hence

$$(a+b_{01}+c_{01}) \wedge (a+b_{01}+c_{02}) = a,$$

 $(b_{01}+c_{01}) \wedge (b_{02}+c_{02}) = 0,$
 $(b_{01}+c_{01}) \vee (b_{02}+c_{02}) = (b_{01}+c_{01}) + (b_{02}+c_{02}).$

Moreover, $c_{01} \wedge b_{02} = 0$, from which we infer

$$c_{01} + b_{02} = b_{02} + c_{01}$$

Therefore

$$(a+b_{01}+c_{01}) \vee (a+b_{02}+c_{02}) = a + ((b_{01}+c_{01}) \vee (b_{02}+c_{02}))$$

$$= a + ((b_{01}+c_{01}) + (b_{02}+c_{02}))$$

$$= a + (b_{01}+b_{02}) + (c_{01}+c_{02})$$

$$= a + (b_{01} \vee b_{02}) + (c_{01} \vee c_{02})$$

$$= [(a+b_{01}) \vee (a+b_{02})] + (c_{01} \vee c_{02})$$

$$= [b_{1} \vee b_{2}] + (c_{01} \vee c_{02}) = b + (c_{01} \vee c_{02})$$

$$= (b+c_{01}) \vee (b+c_{02}) = c_{1} \vee c_{2} = c.$$

111

n[©]

Thus both the elements $a + b_{01} + c_{01}$, $a + b_{02} + c_{02}$ belong to the interval [a, c]. From Lemma 3 we obtain (by using a translation)

$$Z = X^{\delta\delta}(a,c) = X^{\delta\delta}(a) \cap [a,c],$$

and obviously

$$Y = X^{\delta}(a, c) = X^{\delta}(a) \cap [a, c].$$

Hence $y = a + b_{01} + c_{01} \in Y$, $z = a + b_{02} + c_{02} \in Z$ and $y \vee z = c$. Therefore the interval [a, c] fulfils condition (α) .

LEMMA 7. Let $0 \le g_1 \in G$, $0 \le g_2 \in G$ and suppose that both the intervals $[0, g_1]$ and $[0, g_2]$ fulfil (α) . Then $[0, g_1 + g_2]$ also fulfils (α) .

Proof. The interval $[g_1, g_1 + g_2]$ being isomorphic with $[0, g_2]$, the asertion follows from Lemma 6.

LEMMA 8. Let $c_1, c \in G$, $0 \le c_1 \le c$. Suppose that [0, c] fulfils condition (a). Then the interval $[0, c_1]$ also fulfils condition (a).

Proof. Let $X \subseteq [0, c_1]$. Since [0, c] fulfils (α) , there are elements $y \in X^{\delta}(0, c)$, $z \in X^{\delta\delta}(0, c)$ with $c = y \vee z$. Write $y_1 = y \wedge c_1$, $z_1 = z \wedge c_1$. Then $c_1 = y_1 \vee z_1$ and from Lemma 2 we easily obtain $y_1 \in X^{\delta}(0, c_1)$, $z_1 \in X^{\delta\delta}(0, c_1)$. Hence $[0, c_1]$ fulfils (α) .

Let H_1 be the set of all elements $a \in G$, $a \geqslant 0$ such that [0, a] fulfils (α) . Clearly, $0 \in H_1$. According to Lemma 7, H_1 is a subsemigroup of the semigroup G^+ . Moreover, by Lemma 8, H_1 is a convex subset of G^+ . Hence H_1 is a sublattice of G^+ . From this it follows that the set $H = H_1 - H_1$ is a convex l-subgroup of G.

Theorem 2. H is the strongly projectable kernel (i.e., the \mathcal{K}_3 -kernel) of G.

Proof. From the definition of H and from the fact that each interval of H is isomorphic with some interval of the form [0,c] with $0 \le c \in H_1$ it follows that each interval of H fulfils condition (a). Hence, by Theorem 1, H is strongly projectable. Let A be a convex l-subgroup of G and suppose that A is strongly projectable. Let $0 \le a \in A$. Then, in view of Theorem 1, the interval [0,a] fulfils (a). Thus we have $a \in H$. Therefore $A^+ \subseteq G$ and from this it follows $A \subseteq G$, completing the proof.

Remark 1. If $\mathcal K$ is a class of lattice ordered groups, and if H is a $\mathcal K$ -kernel of a lattice ordered group G, then H is an l-ideal of G. In fact, for each $g \in G$, -g+H+g is a convex l-subgroup of G isomorphic with H, whence $-g+H+g \subseteq H$.

Remark 2. For each lattice ordered group G, the archimedean kernel and the complete kernel (i.e., the \mathcal{K}_1 -kernel and the \mathcal{K}_2 -kernel) of G is

a closed l-ideal of G. (Cf. [8] and [10].) The following example shows that the strongly projectable kernel of G need not be closed.

EXAMPLE 1. Let F be the set of all real functions defined on the set R of all reals. The group and lattice operations in F are defined componentwise. Let A be the set of all constant functions of F and let B be the set of all functions of F having a one-elements support. Further, let G and G be the subgroup of the group G generated by the set G or G or G or G. Then G and G are G are G are G and G are G is the smalest closed G-subgroup of G containing G as a subset, and G is the smalest closed G-subgroup of G containing G as a subset, and G is the smalest closed G-subgroup of G containing G as a subset, and G is the smalest closed G-subgroup of G containing G as a subset, and G is the smalest closed G-subgroup of G containing G as a subset, and G is the smalest closed G-subgroup of G containing G as a subset, and G is the smalest closed G-subgroup of G containing G-subgroup of G-

The following example shows that orthogonally complete kernels (i.e., \mathscr{K}_{σ} -kernels, cf. the Introduction) need not exist.

EXAMPLE 2. Let G, H and B be as in Example 1. For each $b \in B$ let G_b be the convex l-subgroup of G generated by the element b. Then each G_b is linearly ordered and hence it is orthogonally complete. Clearly,

$$\bigvee_{b\in\mathcal{B}}G_b=H,$$

and if H_1 is a convex *l*-subgroup of G with $H \subseteq H_1$, then H_1 fails to be orthogonally complete.

EXAMPLE 3. Let F be as in Example 1 and F_c be the set of all $f \in F$ that are continuous. Then F_c is an l-subgroup of F, F is strongly projectable and F_c fails to be projectable. Hence neither \mathcal{X}_3 nor \mathcal{X}_4 is a variety.

A class $\mathscr{K} \neq \emptyset$ of lattice ordered groups is said to be a radical class [9] if it fulfils the following conditions:

- (a) \mathcal{K} is closed with respect to isomorphisms.
- (b) Whenever $G \in \mathcal{K}$ and G_1 is a convex *l*-subgroup of G, then $G_1 \in \mathcal{K}$.
- (c) If G is a lattice ordered group and if $\{G_i\}$ is a system of convex l-subgroups of G such that each G_i belongs to $\mathscr K$, then $\bigvee G_i$ belongs to $\mathscr K$ as well

Proposition 1. \mathcal{K}_3 is a radical class.

Proof. Obviously, \mathcal{K}_3 fulfils (a). From Theorem 2 it follows that \mathcal{K}_3 satisfies (c). By using Lemma 8 we obtain that condition (b) holds for \mathcal{K}_3 .

Until now we have been dealing with strong projectability and hence the power of the set X in the lemmas above might be arbitrary.

If we consider the projectability, then we have to investigate the case where X is a one-element set. We need the following lemma.

LEMMA 9. Let $a, b, x \in G$, $a \leq b$, $a \leq x$, $X = \{x\}$. Then

$$(1) X^{\delta}(a,b) = \{x \wedge b\}^{\delta}(a,b).$$

Proof. If $y \in X^{\delta}(a, b)$, then $y \in [a, b]$ and $y \wedge x = 0$; hence $0 = (y \wedge b) \wedge x = y \wedge (b \wedge x)$ and thus $y \in \{x \wedge b\}^{\delta}(a, b)$. Conversely, let

 $y \in \{x \land b\}^{\delta}(a, b)$ and assume that y does not belong to the set $X^{\delta}(a, b)$. Then $y \land x = u > a$, $u \le x \land b$, and hence $u \land y = 0$, which is a contradiction. Thus (1) is valid.

By using Lemma 9 and the same methods as in the investigation concerning the strong projectability (with the distinction that we always assume $\operatorname{card} X = 1$), we can verify that the following statements are valid:

THEOREM 3. The \mathcal{K}_{\bullet} -kernels do exist.

Proposition 2. \mathcal{K}_4 is a radical class.

References

- M. Anderson, P. Conrad, O. Kenny, Splitting properties in archimedean l-groups, J. Austral. Math. Soc. 23 (1977), 247-256.
- [2] S. Bernau, Orthocompletion of lattice groups, Proc. London Math. Soc. 16 (1966), 107-130.
- [3] R. D. Byrd, J. T. Lloyd, Kernels in lattice-ordered groups, Proc. Amer. Math. Soc. 57 (1976), 16-18.
- [4] Š. Černák, On some types of maximal l-subgroups of a lattice ordered group, Math. Slovaca (to appear).
- [5] P. Conrad, Epi-archimedean lattice ordered groups, Czech. Math. J. 24 (1974), 192-218.
- [6] T. Gavalcová, a-kompaktnosť v l-gruppach, Matem. časopis 24 (1974), 21-30.
- [7] W. Ch. Holland, Varieties of l-groups are torsion classes, to appear.
- [8] J. Jakubík, Conditionally a-complete sublattices of a distributive lattice, Algebra Univ. 2 (1972), 255-261.
- [9] -, Radical classes and radical mappings of lattice ordered groups, Symposia Math. 31 (1977), 1-27.
- [10] -, Archimedean kernel of a lattice ordered group, Czech. Math. J. 28 (1978), 140-154.
- [11] -, Generalized Dedekind completion of a lattice ordered group, Czech. Math. J. (to appear).
- [12] -, Maximal Dedekind completion of a lattice ordered group, ibid., to appear.
- [13] -, Orthogonal hull of a strongly projectable lattice ordered group, ibid., to appear.
- [14] G. O. Kenny, Archimedean kernel of a representable l-group, Notices Amer. Math. Soc. 21 (1974), A 590-591.
- [15] J. Martinez, Archimedean-like classes of lattice ordered groups, Trans. Amer. Math. Soc. 186 (1973), 33-49.
- [16] R. Redfield, Archimedean and basic elements in completely distributive lattice ordered groups, Pacific. J. Math. 63 (1976), 247-254.
- [17] F. Šik, K teorii strukturno uporjadočennych grupp, Czech. Math. J. 6 (1965), 1-25.
- [18] A. I. Veksler, Projekcionnye svojstva vektornych rešetok i teorema Frejdental'a, Math. Nachr. 74 (1976), 7-25.

Presented to the Semester Universal Algebra and Applications (February 15 – June 9, 1978)

UNIVERSAL ALGEBRA AND APPLICATIONS BANAOH CENTER PUBLICATIONS, VOLUME 9 PWN-POLISH SCIENTIFIC PUBLISHERS WARSAW 1982

TWO CLOSURE OPERATORS WHICH PRESERVE m-COMPACTICITY*

JANA RYŠLINKOVÁ and TEO STURM

Electrotechnical Faculty of Technical University, Prague, Czechoslovakia

In this paper we shall investigate some properties of closure operators studied in [3] and [4]. The investigated problems are exactly formulated in Section 1.4.

1. Introductory remarks

- 1.1. Throughout this paper L will denote a given complete lattice with an ordering denoted by \leq . Further, m and n will denote infinite cardinals.
- 1.2. A subset X of L is called m-directed in L if for every $Y\subseteq X$, |Y|< m, there exists $x\in X$ such that for every $y\in Y$ we have $y\leqslant x$. (See [4], Definition 5.) A closure operator u (abbreviation: CO) on L is called m-algebraic (abbreviation: m-ACO) if for every non-empty m-directed subset Y of u(L) there is $V_LY=V_{u(L)}Y$. (See [3], Definition 1.3.) An element $c\in L$ is called m-compact in L if for every $X\subseteq L$ such that $c\leqslant V_LX$, there exists $Y\subseteq X$ with |Y|< m and $c\leqslant V_LY$. A lattice L is called m-algebraic if every element x of L can be written as the join of some set of m-compact elements in L. (See [2], p. 32.) The following assertion is proved in [3]:
- (1) Let m be regular and let u be an m-ACO on L. If c is n-compact in L for some infinite cardinal $m \le n$, then u(c) is n-compact in u(L). If L is n-algebraic, then also u(L) is n-algebraic. (See [3], Theorem 2.1. For irregular cardinals m is the guess of the compacticity of u(c) more complicated, as shows the same Theorem 2.1 of [3].)

[113]

, Indid:

^{*} This paper has originated at the Seminar Algebraic Foundations of Quantum Theories, directed by Professor Jiří Fábera.

^{8 -} Banach Center Publ. t. 9