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Yy e {@AbY(a,b) and assume that y does not belong to the set X’(a, b).
Then yA® = 4> a, ¥<<®Ab, and hence uAy = 0, which is a contra-
diction. Thus (1) is valid.

By using Lemma 9 and the same methods as in the investigation
concerning the strong projectability (with the distinction that we always
assume card X = 1), we can verify that the following statements are valid:

THEOREM 3. The A 'y-kernels do ewist.
PROPOSITION 2. ¢, 18 & radical class.
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TWO CLOSURE OPERATORS WHICH PRESERVE m-COMPACTICITY*

JANA RYSLINKOVA and TEO STURM

Electrotechnical Faculty of Technical University, Prague, Ozechoslovakia

In this paper we shall investigate some properties of closure operators
studied in [3] and [4]. The investigated problems are exactly formulated
in Section 1.4.

1. Introductory remarks

1.1. Throughout this paper L will denote a given complete lattice
with an ordering denoted by <. Further, m and » will denote infinite
cardinals.

1.2, A subset X of L is called m-directed in L if for every ¥ < X,
1Y| < m, there exists # € X such that for every y e ¥ we have y < #.
(See [4], Definition 5.) A closure operator % (abbreviation: CO) on L is
called m-algebraic (abbreviation : m-ACO) if for every non-empty m-directed
subset ¥ of u(L) there is V,¥ =V, ,,¥. (See [3], Definition 1.3.)
An element ¢ € L is called m-compact in L if for every X < L such that
¢ Vi X, there exists ¥ c X with |¥Y|<m and ¢e< VY. A lattice L
is called m-algebraic if every element x of L can be written as the join
of some set of m-compact elements in L. (See [2], p. 32.) The following
assertion is proved in [3]:

(1) Let m be regular and let u be an m-ACO on L. If ¢ is n-compact
in L for some infinile cardinal m < n, then u(c) is n-compact in u(L). If L
is n-algebraic, then also w(L) is n-algebraic. (See [3], Theorem 2.1. For
irregular cardinals m is the guess of the compacticity of «(¢) more compli-
cated, as shows the same Theorem 2.1 of [3].)

* This paper has originated at the Seminar Algebraic Foundations of Quantum
Theories, directed by Professor Jifi Fabera.
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1.3. In paper [4], the following class of closure operators is defined
(we shall call them m-Tulipani's closure operators, also m-TCO): a CO u
on L is called m-TCO if for every m-compact element ¢ € L and for every
@ € L such that ¢ < u(»), there exists an m-compact element d € L such
that ¢<< u(d) and d<<w. In [4] are proved the following assertions:

(2) Let w be an m-TCO in L and let o be m-compact in L. Then u(c)
s m-compact in u(L). If L is an m-algebraic laitice, then also u(L) is m-al-
gebraic. (See [4], Theorem 1. The author of paper [4] supposes that m is
regular throughout his paper, but the regularity of m does not intervene
in the proof of (2).)

(3) Let L be an m-algebraic lattice for a regular cardinal m and let w
be a 0O on L. Then w is m-TCO iff it is m-ACO. (See [4], Theorem 2.)

1.4. Comparing results (1)-(3), it is natural to formulate the following
problems:

(a) Let m be reqular and let u be an m-TCO on L. If ¢ is an n-compact
elemmt in L for some m < n, does it follows from here the n- oompactzmy
of u(e) in u(L)? (A negative solution of this problem is given in Section 2
of the present paper.)

(b) Characterize those complete lattices L which satisfy one of the fol-
lowing conditions:

(b.1) Let u be a 0O on L. Then u is an m-ACO implies w is an m-TCO;
(b.2) Let u be a CO on L. Then w is an m-ACO on L iff u is an m-TCO;
(b.3) Let u be a CO on L. Then w is m-TCO implies that u is an m-AQO.
‘We succeded to found the characterization of L for regular cardinal m

and for (b.1) (see Section 3) and (b.2) (see Section 4). We did not this

one for (b.3). In Section 5.3 we have formulated some other open problems.
1.5. Obviously, the following lemma, holds (see also [3], Lemma 1.6).
Let u be a closure operator on L. Then for every X < I there is

V¥ (X) = w(V, X).

2. Concerning problem (a)

Let a > 1 be an ordinal number such that N, is regular and let w, denote
the smallest ordinal of the cardinality N,. Let [—2, —1] be the interval
in the set of all real numbers ordered as usually and let ¢ ¢ 0, U[ -2, —1];
we define

I = (08 (((0.—Oh @[ ~2, —1))+ {@}) @ {1},

where @ denotes the ordinal sum and -+ the ecardinal one and where all
singletons are considered as trivially ordered sets; see also Fig. 1.
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Forw e [—2, —1]defineu(s) = —1,forw e L—[ —2, ~L]defineu(s) = .
It is obvious that

L is a complete lattice;

u is a CO on L;

2 € L is Ny-eompact in L iff # € w, and either & = 0 or & covers some
Y €w, (Le. non (e e L)y < 2<< @));

a is Nj-compact in L.

\ i -1}

Fig. 1

From the characterization of Ny-compact elements in I and from
the definition of u it follows that % is ¥,-TCO. There is

= {0} @((w, — {0}) +{a}) @ {—1};

since N, is regular, ¢ = u(a) must be ¥, ,-compact in %(L), but it is not
k-compact for any cardinal k< N,. We have supposed a > 1; hence N,
< N,;1 which gives a negative solution of problem (a).

3. Characterization of the lattices satisfying
condition (b.1)

3.1. Notation. Denote by C the set of all m-compact elements in L.
For w el put

={yel; y<a}, w} and
[2) = {y € I; 2 <y}.
Denote by @ the join of € in L and by 1 the greatest element of L.
3.2. LmvmmA. Let L satisfy (b.1). If V,0(x)<w, then C(z) =0,
a<<, and the lattice (a] is m-algebraic.

Proof. The set A = (V,0(x)]U{l} is an m-algebraic closure system
in I, thus the corresponding 0O w is m-ACO. There is %(2) = 2z for every
z €4 and u(2) =1 for every 2z € L —4. Especially u(x) = 1. Suppose that
there exists ¢ € 0 —C(@). Then ¢ << 1 = u(x). However, for every d € 0 (z),
there is w(d) = d. Hence ¢« d = u(d) for any d e ((x), because ¢ &L

(@l={eLl;y<
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and d< V, C0(x) <o This shows that the assumption C—C(z) %0
implies that  is not m-TCO. But « is m-ACO, i.e., L does not satisfy (b.1),
a contradiction! Hence, by assumptions of the lemma, we have € = C(x).

Take any y € (a). It V 0(y) < ¥, then O(y) = C and thus ¥ ¢ (V.0 (y)]
= (a]. Therefore it must be V, C(y) =y, and every element of O(y)
is m-compact in L (then it is also m-compact in (a], of course).

3.3. Lemma. Let L satisfy (b.1). Then the following condition holds:
(4) There is L = (a]U[a), (a] is an m-algebraic lattice and [a) contains
exactly one m-compact element (which is of course equal to a).

Proof. Take any « € L —(a]. Then by Lemma 3.2 we have ¢ = ((x)
and therefore we have also a = V0 = V,0(2) < ®, i.e, @€ [a). This
implies that I = (a]u[a), where (a] is — by Lemma 3.2 — an m-algebraic
lattice. Since L is of the form L = (a]U[a), the inclusion ¢ < (a] implies
that only a is m-compact in [a).

3.4. Leywa. Let m be regular and let L satisfy condition (4). Then L
satisfies (b.1).

Proof. Suppose that w: L —L is m-ACO. Take any ¢ eC, el
such that ¢<u(2). Then ¢<a = V. 0 (because L = (a]U[a) and [a)
containg only one m-compact element which is a; i.e., 0 < (a]). If a < @,
we can choose d =c¢; then c<<u(d) and d<a<s. If < a, then

= V0 (2). The set 0(w) is m-direct (from the regularity of m and the defi-
nition of m-compact elements it follows that ¢ (z) is even a join m-sub-
semilattice of L, interpreted as a join m-semilattice), % is m-ACO and thus

w(z) = u(VLG(m)) = Vugyu(C(a)) = V(0 (),
where the second equality follows from Section 1.5 and the third one from

the fact that # is m-ACO and that also u(O(X)) is m-directed. We have
obtained that
e < u(@) < Viu(O(@))
and since ¢ is m-compact in I, there exists ¥ < ¢ (2) such that |¥| < m
and ¢< Vyu(X). Thus
e V(YY) < VM(L)u(Y) =u(V, Y).

{The last equality follows from Section 1.5 again.) Moreover, ¥ < C(x)
€0, |¥Y|<m, (0 is a join m-subsemilattice of I (recall m iz regular);
hence d = V,¥ e (. The inclusion ¥ < ¢ () implies that d < V,0(») =&
and, following the preceding, there is ¢ < w(VpY) = u(d). Since d e 0, u
is m-TCO.

3.5. THEOREM. Let m be a regular cardinal. Then I, satisfies condition
(b.1) iff it satisfies condition (4). '

Proof follows immediately from Lemmas 3.3 and 3.4.
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4. Characterization of lattices satisfying condition (b.2)

4.1. Notation. We use the notation of Section 3.1. An element # ¢ I
is called join-m-inaccessible it for every non-empty m-directed set M < I,
the equality # = VM implies that z e M (for m = N, this notion is de-
fined in [1], for example). Suppose that I satisfies condition (4). Then
we consider in the lattice I the following condition (recall that ¢ — V.0):

(8) If a #1, then a is join-m-inaccessible in (al and every element
of [a) different from 1 is join-m-inaccessible.

4.2. LEMMA. Lot u be an m-"TCO on L and let M be a non-emply
m-directed subset in u(L). Then C(V M) = Ou(V M)

Proof. Write s = V.M. Since s<u(s), we have 0(s) < Clu(s)).
Take any ¢ e Cu(s)). Then ¢< u(s); u being by assumption m-TCO,
there exists d e C(s) such that ¢ < u(d). Since d € 0(s) where s = V, U,
there exists X < M such that | X| < m and d< Vi X. Further, since M
is m-directed, there exists ¥ € M such that for every € X we have s < y;
especially d < VX < y. Following this inequality we obtain w(d) < u(y)
=y (vecall that y e M < u(L)); since y < s, there is ¢ <3, i.e., ceC(s)
what we had to prove.

4.3. LEMMA. If a lattice L satisfies (b.2), then it satisfies (4) and (5).

Proof. If L satisties (b.2), then it satisfies also (b.1) and by Lemma 3.3
it satisfies (4). Suppose that ¢ < 1 and that @ is not join m-inaccessible
in (a]. Put 4 = {g e L; o< a}u{1}. This is obviously a closure system
in L. Denote the corresponding closure operator by « and show that
is m-TCO. Take any ¢ € €, # € L such that ¢ < u(z). If @ < x, then u(2) = 1
and we can set d =e¢, because ¢ e C(z), Oz} =C < (e] and ¢ < u(o)
= u(d). Suppose then » < a (by (4), L is of the form I — (a]Ula) and.
thus every element of L is comparable with a). Then » — u(x) and we
can again put d = ¢. This proves that % is m-TCO. Further, we have
supposed that @ is not join-m-inaccessible, i.e., there exists M < (a] such.
that VM = a and a ¢ M. Then M = u(M) and Vil =a<1=V,M,
a contradiction with condition (b.2). Thus, a must be join-m-inaccessible.

Suppose that ze[a), z %1, is not join-m-inaccessible. Then a << 2-
and there exists an m-directed set M < [a) such that # ¢Mand V., M = 2.

Pot A= (J (y]) U{1}. Then 4 is obviously a closure system in L. Denoting
veM

by  the corresponding CO, we shal prove that « is m-TCO. Take any
¢el, weLl with c<u(®). If € 4, we can put d = ¢. I vel—A, then
u(#) =1 and we can put d = ¢ again (because ¢ € 0 < (a], & < 2 and thus,.
by the definition of 4, we have L—4 < [a),i.e., ¢ < ). Henge, % is m-TCO.
On the other hand, since z ¢ M, by the definition of u we have

VoM =2<1 =u(V M)
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and following 1.5, since M < A, we have

w(V M) =V M.
Moreover, M is a non-empty m-directed subset of u(L). This is a con-
tradiction with (b.2) supposed to be true in L.

4.4. LEMwA. Let m be reqular and let L satisfy (4) and (5). Then L
satisfies (b.2).

Proof. L satisfies (b.1) by 3.4. Suppose that « is an m-TCO on L
and let M < w(L) be a non-empty m-directed subset. Put s = V M.
It Mn[a) #@, then it is a non-empty m-directed subset of [a). Hence,
by (b), we have

8 =V, (Mnle) e MU{1} < u(L)
which implies that V M = V,,, M. Suppose then that Mnl[a) =@.
Then M < (a]—{a} and s < a. We shall prove that & < «(s): by Section 4.2
we have C(s) = C(u(s)) and therefore the assumption &< u(s) implies
C(s) = 0. Since s < a, we have s = V0, i.e., s = a. Hence, by (5), a € M:
a contradiction with the assumption Mn[a) =@. We bave proved that
%(s) < a. (By (4), the case u(s)e cannot occur.) Since the lattice (a] is
m-algebraic, we have that by Section 4.2 there is (s) = O{u(s)}; hence

Vil =5 = V0(s) = V0u(s)) = u(s) = u(V M) = Vry M .
This proves that % is m-ACO.

4.5. THEOREM. Let m be regular. Then L satisfies (b.2) if and only
if it satisfies (4) and (5).

Proof follows immediately from Lemmas 4.3 and 4.4.

5. Final remarks

Sections 5.1, 5.2 contain some partial results concerning (b.3). In Section
5.3, we have formulated some open problems concerning the results of
this paper and those of papers [3] and [4] and which we considered as
interesting ones.

5.1. Lemwma. Letw be an m-TCO and let I satisfy the following condition ;

(6) If o mon-empty M < u(L) is m-directed, and if VM ¢ M, then
for every x e L there is

(VoM < ) = C(V, M) Z O0().
Then w is m-ACO on L.

Proof. Let @ # M < u(L) be m-directed. Put d — VoM. If d ¢ M and
d<u(d), then by (6) we have C(d) # O(u(d)), a contradiction with
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Lemma 4.2. Thus, for d ¢ M, we have d = u(d), i.e, VM = u(V, M)
= u(L)M' If de M, then ObViOUSly VLM = Vu(L)M7 because M < M(L),
which completes the proof.

5.2. OOROLLARY. Let L satisfy the following condition:

(7) For every m,y e L such that @ <<y there is 0(w) # O(y) (i.e., ()
= 0®)

Then I satisfies (b.3).
The proof follows immediately from Lemma 5.1.

5.3. Open problems:

(c) Oharacterize those complete lattices which satisfy (b.3).

(d) What modifications of results of Sections 3 amd 4 can arrise for
drregular cardinal m?

(e) m-ACO and m-TOO are two ewamples of CO preserving the m-com-
pacticity. Characterice all CO with this property (Added in proof: This
problem has already been solved, see [5].)
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