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The theory of local moduli of algebraic schemes in the etale topology
seems to be understood only in special cases like the following one: Take
any germ of an algebraic scheme (X,, #,) with an isolated singularity
at o, and identify two such pairs if they coincide in a strict etale neighbour-
hood of the marked points; so, by Elkik [4] there is an algebraic semiuniv-
ersal deformation of the equivalence class of (X0, ).

Here we shall study deformations of objects related to the above-
mentioned ones: Take the desingularization of an isolated singularity
and consider the pair (X,, B,), where B, is the exceptional divisor of the
nonsingular scheme X,. Identify such pairs in the same way as above,
Le. if they coincide in strict etale nbhds of E,. What is the deformation
theory of this functor?

First, one has to remark that the connection with the deformation
functor of the blowing down is not a trivial one ; in general, it is not true
that the fibres of families containing X, are contractible again. We shall
see, for example, that if dimX,>> 3, H, is a normal intersection of non-
singular components and the base field of complex numbers, then the
divisor B, always extends uniquely to a relative divisor of any family
containing X,. We get something like an “exceptional divisor of the
family” (the notation justified later) giving rise to infinitesimal “(v)-
nbhds” (veN) in the family, and the induced map has the special
fibre X = »th infinitesimal nbhd of B, in X,. This map of deformation
functors was first considered by Lieberman and Rossi [9] for analytic
Spaces, allowing a non-singular basis 8. They showed by Grauert’s method
of normal projection that the map of deformation functors is injective
for » » 0, and left as an open question whether it is surjective also. As we
shall see here, the answer is positive in the algebraic case; the key point:
of this will be a more general kind of (»)-equivalence, allowing also singular 8.
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This comes from a classical theorem on the smoothness of the Hilbert
functor of the family which exists actually as an algebraic space by Artin,
and we make essential use of Artin’s theory of contractions and dilatations
[1]. We shall show that : The deformation functor considered admits an
algebraic semiuniversal deformation. One can get it by lifting the semiuni-
versal deformation of the “truncated” deformation functor.

This paper is written in an expository form and tries to give the main
results and the ideas of their proofs. For a more detailed discussion we
refer the reader to [12].

Throughout, we fix an algebraically closed ground field %, a smooth
algebraic k-scheme X, and a proper divisor H, of X, with an ample conormal
bundle Np x = (Jo/J5)" (J, = ideal sheaf of H) such that B, is a re-
duced normal intersection of nonsingular components, dim®,>1 and

Hl(Eor NEO,XO) =0

(by Kodaira’s vanishing theorem the last conditions is automatic for
chark =0 and dim®, > 1 [9]).

1

Let § be a scheme, and X and X' two S-schemes with fixed closed sub-
schemes F, resp. B'. A (»)-equivalence (X, #) ~ (X', B’) is an isomorphism
of the »th infinitesimal nbhds of the subschemes (= closed subschemes,
defined by the #th powers of the ideals J, resp. J* of B, resp. ') over S.
This notion was originally used to study complex-analytic nbhds of exoeep-
tional divisors by their infinitesimal nbhds (compare [y, .

Let 8 €C be the category of spectra of local k-algebras, which are
Henselizations of k-algebras of finite type at a closed point; suppose that
X -8, X’ > § are flat, separated and of finite type, having the special
fibre X, at the closed point of 8.

THEOREM 1.1. The imbedding B, < X, exiends uniquely to a proper
relative divisor E = X of X over §.

This follows from the cohomological condition for the normal bundle
of Hy, proving the smoothness of the algebraic space Hilby,s (which
represents the Hilbert functor of X -» §) at the closed point H,, and is
nothing else than a version of a theorem of Kodaira, Severi, Spencer
(compare [10], Lect. 23).

The main trouble with the notion of (»)-equivalence is the following:
Ii (X, B) and (X', B') are given and X, X’ are nice (for example normal),
each (v)-equivalence induces a compatible system of (u)-equivalences,
1< u<y. But in deformation theory we should allow also 0-divisors
in the basis, and easy examples show that the above agsertion is false
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without restrictions on' the cohomology of Nz, x,- It remaing wvalid in
our case because of

THEOREM 1.2. Let ¥ — 8 be flat, separated and of finite type with
special fibre X)) v > 2. There is @ uniquely determined closed subscheme
B <~ ¥, flat and proper over S and inducing at the closed point 0 € 8 the
imbedding By <~ X,. Moreover, the ideal sheaf of H in ¥ is locally generated
by a single element.

Idea of proof. Restricting ourselves to points of Hilby,y whose ideal
sheaves are locally generated by one element (“quasidivisors”), we get
an open subspace of Hilby,s. We show its smoothness at the closed point
B, in the same way as for the theorem above.

The existence assertion of the theorem we shall use later.

2

Take another algebraic k-scheme X, with a closed immersion E, =~ X,.
The two couples (X,, E,) and (X;, B;) we call “etale equivalent” if they
coincide in strict etale nbhds of B, resp. H;, i.e. if we have a commutative
diagramm

X« X - X,

[

B,« B, —~ B,
with both squares Cartesian, X, - X, and X, - X, etale, B, — B,
and ¥, — B, isomorphisms; in a similar way we define the etale equiv-
alence of (X, B) with a pair (X', B').

Now we define our deformation functors over ¢, resp. 0 (= category

of spectra of complete local rings, formally of finite type over ):

X — 8, which are flat, separated, of
DEo(8) = | finite type together with a fixed etale equiv- | /mod ~
alence of the special fibre with (X,, B,)

(where “~7” denotes etale equivalence in strict etale nbhds of By« X
over §).

(X —>8,B+X), X +8asabove, H<>X
proper relative divisor of X — 8§, to-
Dy, x,(8) = { gether with a fixed etale equivalence of } /mod ~
the induced imbedding of the special
fibre with (X,, B,)

(where “~” denotes etale equivalence in strict etale nbhds of B or, gquiv-
alently, of H,). ‘ R
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Furthermore, of technical interest is the functor

(X+8, B<-X), X a separated

Noetherian formal S-scheme, flat, and

F a defining subscheme, flat and proper | /mod

over 8, together with a fixed isomorp- [/ isomorph.
hism of the special fibre with the comple-

tion Xoﬁo of X, along E,

EEO,XO (8) =

Finally, we consider the usual deformation functors of the proper %-schemes
X{),» € N. From Theorem 1.1, we get

THEOREM 2.1. The functor morphism
“forget B”: Dy x -> D3

s an isomorphism over the category O.
Obviously, we have a commutative diagramm of natural maps

‘DEo‘Xu

RN

DEo:X )

x(

and our original intention to compare the “Correct” deformation functor
of X, in ubhds of H, with that of X{’ reduces by 2.1 to the study of the
properties of y,.

THEOREM 2.2. For
?>9(Xo, i) = minimum {u €N, 5> 2, BBy, 05,8(J,/T)") = 0
for all p' > u}
the map y, is injective over (.

Ldea of proof. First one shows that 8, is injective on ima, using the
local methods of [8], 7.4.3.2, and patching the local solutions (the obstruc-
tion lies in H'Oxy® (J/J*)) = 0). Now one can see (by replacing the
divisor B <= X by a multiple) that B < X is contractible into the base §
(as an algebraic space, compare Artin [1]). By a consequence of Artin’s

approximation theorem the local ring of the contraction in 0ef is
uniquely determined by its completion, whence follows Theorem 2.2.

3

Now we want to study the surjectivity of y,. For this purpose we first
show the surjectivity of B, for artinian § e(C. We start with the local
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solution: Define
vy = v3(Xy, H,) = minimum {», » > 2»,(X,, E,), v power of 2 such
that H(Ox,® (J,/J3)) = 0 for »' > v}.
Choose any (Y — 8) eDXg)(S), ?279,. One shows that the induced
deformation in ng,,g) (8) is locally (!) given by an imbedding in X,z x

X 8 by the (»/2)-th power of a suitable ideal indueing ;. This follows

from a global (!) statement similar to Theorem 1.2, and the obstruction

to lifting the local solution to deformations in DX(,,,), vV =244 (4 =
0

1,2,3,...) vanishes because of H(0x @ (J,/3)) =0. By Grothen-
dieck’s “théoréme de existence” ([6], IIT, 5.4.5) we get
TaroREM 3.1. For se0, v > v(X,, By) the map
B,(8): EED,XO(S) ”*DXSI)(S)
s bijective.
By Schlessinger [13] the functor DXM has a formal semiuniversal
0
deformation; this is effective by Grothendieck’s theorem. If we show
THEOREM 3.2. The map
a(8): -DED,XO(S) '*BEO,XD(S)
s surjective for § e C;
then follows the existence and effectivity of the formal semiuniversal
deformation of Dy, x,, and from the injectivity of y, over ¢ we deduce

COROLLARY 3.3. Dy ,x, has an algebraic semiuniversal deformaion,
w.6. there is o T e 0, (Z > T) € Dy, x,(T) such that for any Se( and
(X - 8) € Dy, x,(8) there is a morphism 8 — T in C, inducing (X — 8)
Jrom (Z — T), which is uniquely determined on the tangent spaces.

COROLLARY 3.4. For v v,(X,, B,) the funcior morphism

% Dgyx, *ngr)
18 an isomorphism over (.

Idea of proof for 3.2. It (X — 8, B) e Dy, x,(8) is any family, § 0,
there is a formal contraction along F over §, finite over some § [[X ]] (X
= (X, ..., X,) indeterminates) and a relative complete intersection
outside V'(X). Approximate the contraction for » > 0 by a theorem of
Elkik ([4], 2, Théordme 4) over the algebraic power series ring S<{X)
over 8. One can see that X is essentially a blowing up of its contraction;
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now blow up the approximated family: it is defined over some etale nbhd
of S[X]and gives rise (for a properly chosen ») to a deformation in DE.,. XO(S)
which is (vp)-equivalent with (X -> §) (generalization of a theorem of
Hironaka and Rossi [7], Theorem 2).
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ON CLASSES OF ALGEBRAIC SYSTEMS CLOSED WITH
RESPECT TO QUOTIENTS*

I SAIN
Institute for Oo-ordination of Compuler Techniques, Budapest, Hungary

Algebraic systems are understood in the sense of Malcev [9], p- 32, Malcev
[8]. (They are called models in Chang—Keisler [7]; cf. also Monk [10],
Def. 11.1.) A quotient of an algebraic system 9 js its quotient %/© taken
by some congruence O of U, cf. Maleev [9], p. 45.

Here we give syntactic characterizations of classes (of systems)
closed w.r.t. quotients, subsystems, and ultraproducts, and of those
closed w.r.t. quotients, subsystems, and products. The latter kind is
called “strong variety”.

By characterizing strong varieties a problem of Malcev is also
answered, cf. Maleev [8], p. 328, Problems 1 and 2.

An algebraic system is a sequence W = (4; R, F,),1;; Where R/'s
are relations on A and {4; F,>,.; is an algebra, cf. Malcev [9], p. 32.
The following definition can be found on p. 45 in the same book.

A relation @ = (A xA) is a congruence of the above system iff @
is a congruence of (4; F>.s. Let @ be a congruence.

The gquotient WO = (A]0; R,|0, F;|0>,1;.; is defined by fixing
that <4/@; F;/@);; is the usual factor algebra (or quotient algebra),
and for any b,, ...,b, € A/® we define ¢b,,...,b,> e B;/® to hold if and
only it (da, €1,) ... (Aa, €b,){ay, -.., a,> € B;.

The quotients of U are also called strong homorphic images of U by
Maleev [9], p. 45, [8], p. 315, 328; Chang—Keisler [7]. (Strong homomorphic
images are the same as regular quotients in terms of category theory.)

A system B = (B; B, FiDsrjer 18 a strong subsystem of the above-
mentioned system iff (B;Fy., is a subalgebra of (A; F>; and R;
is the restriction of the relation R; to B, for every i e I. (I.e. B} = B;n"B
for some natural number #.) Cf. Malcev [9], p. 37.

* The contents of this paper were presented at the Algebra Seminar of Math.
Inst. Hung. Acad. Sei. in 1975 and are based on the thesis of the a.uthor (Sain [13]).
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