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In model theory the notions of reduced products, limit powers, limit
reduced powers, Boolean powers, and bounded Boolean powers have
been widely accepted and appreciated. These notions can be put under
a common roof by the notion of the structure of all sections of a Hausdorff-
sheaf over a Boolean space. This notion is very cumbersome and for
the uninitiated very hard to understand. Several attempts have been made
to get an easier definition of these objects, which then may pupularize
the use of sheaf-representations. In the more general setting of sheaves
over arbitrary spaces such attempts have been made by V. Weisspfenning
and D. Clark & P. Krauss. The applications in universal algebra and
model theory have proved to require the special case of sheaves over
a Boolean space and there exist basically two easy definitions. One of
them is the notion of a Boolean valued structure, which was investigated
in this connection by H. Volger. Another is the notion of a Boolean product,
which we shall adopt here. We define the Boolean products as a straight-
forward generalization of bounded Boolean powers.

All the above notions turn out to be special subdirect products with
certain additional properties. Likewise our definition of a Boolean product
will be one of a special subdirect product whose subdirect factors we shall
refer to as stalks, having in mind the sheaf-representation of these strue-
tures. In our approach there will be hardly any need to talk about topology
at all, which will make it easy for the algebraist to follows our reasoning.

So far we have only dwelled on the fact that Boolean products
provide a common generalization for the notions above. The second aspect
is the fact that for Boolean produets there holds a Feferman-Vaught-type
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theorem which has enormous consequences for decidability and N,-categ-
oricity-problems. The third aspect of Boolean products is based on the
fact that for many classes of structures the algebraically closed members
can be described in terms of Boolean products. This again gives rise to
several results about model companions. The last aspect we investigate
here is the special réle played by injectivity and its generalizations in
a class of Boolean products. In this framework we are able to describe
atomie compact (= pure injective) structures, absolute subretracts, and
(weak) injectives in many classes of structures.

Most of the results presented here stem from the joint work of the
present author and 8. Burris and B. Davey. Here we give a unified approach
to all those different aspects of Boolean products. Several of the results
are presented in a new form, more general than in the original papers.

For these lecture notes the reader is assumed to be familiar with
ordinary first-order languages. A structure for a language I is a set A
together with an n-ary function f* for each n-ary fundamental function-
symbol fin I and an m-ary relation R4 for each m-ary fundamental
relation symbol R in L. Constants are considered to be 0-ary functions
or l-ary relations whichever is more appropriate. We do not distinguish
notationally between a structure and its carrier-set, and if there is no
danger of confusion we also omit the superseripts 4 above f and E. A mor-
phism between two structures A and B is a map g: 4 - B which preserves
each m-ary fundamental operation f and strictly preserves ocach m-ary
fundamental relation R, i.e.

1) Gyy ooy @, €4 :g(f“(al, "'7a’n)) =fB(g“11 coey G0y),
2) Qyy ooy Uy €A &0y, ..., 0,) € R4 = (gay, ..., ga,,) € R5,
() @y ...,0,cA & (gay,...,ga,) cRE =
J6;... 30, (0, ...y 0,) € R & go; = ga,.

If g only satisties (1) and (2), we speak about a weak morphism.
A substructure B of A is a subset B of A which is closed under the oper-
ations on A (i.e. B is a subalgebra) and the relations on B are just the restric-
tions of the corresponding relations on A (i.e. the inclusion B »» A4 is
a morphism).

A one-to-one morphism is denoted by 4 > B and is referred to ag an
embedding whereas an onto morphism is called a quotient map and denoted
by 4 —» B. A congruence on a structure A is an equivalence relation 6 on
Asmmﬂmmmhbﬂem.nw%,%)eo»uﬂmn.u,%%wa““wa)eo
for each fundamental operation f. Clearly, for each morphism f: 4 — B
its kernel Kerf = {(a, b)| fo = fb} is a congruence on 4. For each congru-

ence 6 on A we have the quotient structure A [, together with the quotient
map pg: A —-»Af;. :
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We say that a morphism f: 4 — B preserves a formula ¢(2y, ..., 4,)
if for each ay, ..., a, € A we have 4 = ¢(ay, ..., a,) provided Bko(fa,, ...
<.y fa,). An embedding clearly preserves each universal formula. f: A
> B is called pure if it preserves each positive existential formula; existen-
tial if it preserves each existential formula; elementary if it preserves each
formula; in this case 4 is called a pure (existential, elementary) substruc-
ture of B.

A formula (%, ..., 2,) is said to be primitive if it is an existential
conjunct of atomic and negatomic formulas. Clearly, for an embedding
f+ A~ B to be pure (existential) it suffices that it should preserve all
positive-primitive (primitive) formulas, as disjunctions commute with the
existential quantifier.

Chapter 1
BOOLEAN PRODUCTS

We are going to define Boolean products as generalization of bounded
Boolean powers, and so we start with the definition and investigation
of bounded Boolean powers.

1.1. Bounded Boolean powers

Let A be a structure and B a Boolean algebra, B* denotes the Boolean
space of all ultrafilbers on B with the sets S,:= {u € B*| b cu} as clopen
subsets. The structure A[B]* of all continuous maps from B* into the
discrete space 4 under the pointwise definition of operations and relations
is called a bounded Boolean power of A or the Boolean extension of A by B.

As B* is a compact space, a continuous map f: B* - 4 can only
take finitely many values in 4, and so the set {f'a| @ € A} is a finite
partition of B* into clopen sets which in turn corresponds to a decomposition
of 1 in B (byy...;0,€B, 1 =0v ... vbn,.&_ b;Ab; = 0). Using this

i<j
observation, one can easily see the equivalence of our definition with
Foster’s original one as stated in Grétzer’s book.
Tt is clear that all the constant maps belong to A[B]", and hence
we have a subdirect representation A[B]* — A%,
For any two elements f, g € A[B]* the equalizer B(f,g):= {x e BY
fr = gz} equals | flang™'a. By what we have just said it is a finite
acd

union and hence all equalizers are clopen subsets of B. »
Tf S is a clopen subset of B* and f, g € A [BY", then, clearly, the map
h = flgUglgss 18 continuous and thus belongs to A[BT* and satisfies

8 < B(f,h) &B*~8 < Eg, h).
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Just as for the equalizers, we can see that for any formula ¢(zy, ..., @,)
and fi, ..., f, e A[B]* the set {# € B*| Akgp(f, ..., #)} is clopen in B
because this set is

_ -1
fflan . nfay,
Akglag,.... ap)

which is in fact a finite union.

1.2. Solution sets

We want to define Boolean products by the properties we have just men-

tioned for the bounded Boolean powers. In order to do that we need

& general notion for equalizers and their generalizations. Let f: 4 > [T 4,
tel

be a subdirect representation of 4, i.e. let A be a substructure of I] 4,
iel

such that the projections restricted to A are still quotient maps. For

o formula ¢(sy,...,%,) and @y, ...,a, € 4 we define the solution-set

[p(a, ..., @)= {'l el| -Ag"=¢(f(a’1)i7 "'7f(“n>i)} .
It there is no danger of confusion, we omit the subseript f.
We first note some easy facts about solution sets:
W) [e=b]=[0b=al&[a =b]n[b =¢] < [a = ¢].
(2) For each fundamental operation f:
[al = bl]n wee n[a‘n = bn] = [f(ali tery an) =.f(b17 vy bn)]
(3) [@a =b] =1 < Ara = b.
(4) For each fundamental relation R:
[a'l = bl]n n[a’m = bm]n[R(ala LERP) am)] = [R(blﬂ RRR}) bm)]?
[R(ay, ..., a,)] =I < AFR(a,, ..., [
[B(ay, - an)]= U {[a = 11N ... 0[a, =b,]l (by, ..., b,) € B4}
6) Ml =1 ~Igl, [oayl = [pIn[v], [pvy] = [PIUly].
6) 32 o(@)] = U {lp(a)]| ae4}.
We define a field of subsets B, of I by

B, := {[p]| » open sentence in the language of A without relations},

which by condition (5) is clearly a Boolean subalgebra of the power set
of I.

1.3. Boolean product

A structure 4 is called a Boolean product of the structures A; iel) if
there is a field B of subsets of I such that:

(1) 4 has a subdirect representation f: 4 »» I14;;
il
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(2) for a,b e A the solution set [a = b] belongs to B;

(3) for SeB, a,becd ex. ccA such that § c[a = c]&I ~8
< [b =¢].

The structures A4; (¢ e I) are called the factors or stalks of the Boolean
product and the set I together with the topology defined by B is called
the base-space of the Boolean product. Clearly, the base-space is 0-dimen-
sional (i.e. it has a basis of clopen sets), but in general it is neither Hausdortf
nor compact. We call the Boolean produect full if the base-space is Boolean
(i-e. & O-dimensional compact Hausdorf space).

Sometimes we are interested in more special Boolean products,
which also satisfy the following condition:

(4) For each sentence ¢ over A the solution seb [¢] belongs to B.

For full Boolean products this condition is very restrictive and turns
out to be equivalent to the following mazimum property.

(MP) For each formula ¢(z) over A the set {{p(a)]]a € A} has a maximum.

By an induction over the complexity of ¢ we shall see that (MP)
implies (4), and for the converse we need the compactness of the base-
space.

1.4. Patchwork property

In our definition of Boolean products the crucial condition is condition (3),
whose consequences we are now going to investigate. Clearly, condition (2)
just states that B, < B, and so we have in particular (3) for B, instead
of B. An even weaker form of (3) is the patchwork property:

(PP) a,b,c,decd >decdla=b]c[c=¢l&[a #b] < [d=¢].

An important consequence of (PP) is
(1) B consists of the sets [a = b] and [a 5 b] for a,be 4 only.
To see this we first fix ¢ and show for b, ¢ € A the existence of some
d e A such that

() [a =b]n[a =¢] = [a = d],
(if) [a =bJUl[a =¢c] = [a = d],
(iil) [a =d]U[a #¢] = [a = d],
(iv) [b = ¢] = [a = d], respectively.

)
)
)
)
(i) pick d € A such that [a =b] = [¢c =d]&][a #£b] < [b =d],
)
)
)

—

(ii) pick d € A such that [a =b] < [a = d] & [a #b] < [¢ = d],
(iii) pick d € A such that [b =¢]l s [a =d]&[b #c] S [b =d],
(iv) first pick ¢ € 4 as d in (i) and then pick d € A such that

[b=clcla=d]&[bs#c] =[¢e=d].

e
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‘We have even proved more. If we fix any a €4, we get
B, ={[a=>0b]1beA}ufa #b] bed}.

Clearly, by induction the patchwork property (or condition (3) for that
matter) implies the following stronger version:
(2) 81...y8, By, 4y, ..., 0a, A%,

&8;n8 o, =] >3b e 4*& S, = [a; = b].

i<y <n
Ag the last consequence we wish to show that (MP) = (4) in 1.3 and that
the converse holds for a compact base-space.

Let us assume (MP). First, we have to show [B(ay, ..., a,)] € B,.
COonsider the formula ¢(#) =& = ay - RB(ay, ..., a,). If bed is such
that [ (b)] is the maximum of {[p(a)]] & € A}, then clearly it is the great-
est element of B below [R(ay, ..., a,)l, but by 1.2 (4) [R(a,, ceey @y)]
is a union of members of B, and hence it belongs to B, itself. Now by
1.2 (5) and (6) an easy induction on the complexity of ¢ shows that [p]l e B,
for each sentence ¢ over A.

To see the converse we need the following easy consequence of 1.3

(3):

(3) It [Fop(x)] is compact and all [p(a)](a e A) are open, then there
exists @ € A such that [Azg(z)] = [p(a)].

By 1.3 (3) the sets [p(a)] form a directed set whose union by 1.2 (6)
is [3zp(2)], whose compactness now yields (3).

Now, clearly, if the base-space is compact, each clopen set is compact
too, and thus by (3), clearly, 1.3 (4) implies (MP). Shortly we shall see
an example of a Boolean product over a non-compact space which does
satisfy 1.3 (4) but does not have the maximum property.

Finally, observe that the patchwork property is a special case of the
maximum property, because the maximum of

{a=bsc=a)A(a#£b>d=2) 2 e A}
shows the patchwork property.

1.5. Reductions

For some of the applications it is important that we have a full Boolean
product rather than an arbitrary one. We therefore wish to construct
a full Boolean product representation for each Boolean product, This
will be achieved in three steps. In the first step we “standardize” the top-
ology of the base-space by taking the coarsets topology possible, and we
observe that this topology (defined by B,) is defined in purely algebraic

SHEAF CONSTRUCTIONS IN UNIVERSAL ALGEBRA 139

terms. In the second step we make the base-space Hausdorff, which is
done by just omitting “redundancies” in the subdirect representation.
The main step then is the compactification of the base-space, and in that
construction we have to put new points into the base-space and therefore
have to add new stalks to the old ones. After these three steps we end up
with a full Boolean product representation of the structure we started
with.

Sometimes we want to do just the opposite, namely to get rid of
superfluous stalks in a Boolean product. We give a procedure for that
in step four.

Siep 1. Replace B by B,. As we have seen in 1.4, also B, is a field
of subsets of I and still the properties (1)~(3) of 1.3 hold for B,. Clearly,
the maximum property remaing valid, since it does not refer to B at all.

Step 2. In general, the base-space is not Hausdorff and we define
1 ~jiff,foralla, b e 4,iea =b] - je[a = b] and welet X be a system
of representatives of I/~. We consider the canonical morphism

fr 4[] 4,
X
Clearly, this morphism f still satisties 1.3 (2) and (3) and also (MP)
provided the original Boolean product 4 — [] A, satistied (MP). We only
iel

have to show that f is a subdirect representation of 4, i.e. that the projec-
tions p, (¢ €I) still separate A. For i,j e I we have

i~j<VaVb icla =b] <jela=0>b] < VaVb pa =ppb
< p;a = p;b
<« kerp; = kerp;;

hence

N kerp; = (N ker p; = 4.
&eX iel

Step 3. We now start with a Boolean product representation 4 »> [ |4,
with a O-dimensional Hausdorff base-space with B, as basis. Su}gpose
that X is the Stone~Cech compactification of X, i.e. the points of X are
the ultrafilters of B, and the clopen subsets of X are those of the form
8 ={u eX| b eu}, and for each u eX we let A, be the image of 4
under the morphism 4 > [T A4; - [T 4,/,.

Now we consider the resulting subdirect representation g: 4 —> ]1 Ay
ueX

By construction the base-space is Boolean and we have to show 1.3 (2)
and (3). For a,be A we have [a =b], = {ul ¢ =bmodu} = S[#b]f.


GUEST


140 . WERNER

This shows both (2) and (3) and moreover that the topology on X also is
defined by B,. We postpone a closer investigation of the new stalks and
maximum property to a later moment.

Step 4. Let f: 4 — ” A; be a Boolean product representation and
XecI.g:A][A i & Boolesm product representation iff, for a, b e 4,

X
X = [a¢ = b] implies a = b.
To see this observe ga =gb < VieX pa =pb <X < [a =b].
Clearly, conditions 1.3 (2), (3) and (MP) hold for the field {SnX| § e B}

of subsets of X provided they hold for the field B of subsets of I.

1.6. The new stalks

In the third reduction step of 1.5 we had to create new stalks in order to

turn a Boolean product A ~>J] A, into a full one 4 >+ [] 4,, and we
X ueX

do not have much information about the new stalks except that they are

quotient structures of A. We firgt investigate what else can be said about

the new stalks 4, and about the solution sets with respect to g.

]7 A;/y is a reduced product, and an atomic formula o over 4 holds
€X @
in this 1edueed product iff [a] contains some member of u. Particularly,

this means that for ay, ..., a, € 4 we have

[[4i1FR ay, ..., a)

X

iff for some (by, ..., b,) e R4

[e; =bn ... n[a, =b,]eu.

Thus we know that 4, is a substructure of the reduced product ” Al

Reduced products in general are not very easy to deal Wlth, but alnce i
is an ultrafilter on B,, this particular reduced product is not very far
from being an uitraproduct. If we pick an ultrafilter b on X which extends u,
then, by Fo§’s theorem, for each sentence ¢ over 4 we have H A, ke

< [p] en, and if [p] belongs to By, this in turn is equivalent to [plen.
For a,b €A we have in particular H Ay =aly =bly <« [a=>0b]leu

< A,ka =D, and hence there is a Wea.k embedding 4 > 4,.

In general this is not an embedding, but it [R (B1y «oey an)} is always
in B, we infer by the same reasoning that it is an embedding. Thus we
see that the new stalks are (weak) substructures of ultraproducts of the
old stalks.

If a given ultraproduct satisfies (MP) then, by induction on the com-
plexity of ¢: we can show 4, kp < [¢] eu, which proves that 4, is even
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an elementary substructure of the ultraproduct [] A;/;. For atomic

ieX
formulas we have done that above, and for A, v,™1 the induction steps
are easy. Assume ¢ =Jxyp(z). By (MP) we find @ € A such that [¢]
= [y(a)] and by the induction hypothesis 4, = y(b) <« [¢(b)] eu. Thus
Ayke < Ayky(a) < [y(a)] =[glen.

This proot also tells us that the new Boolean product representation g
also satisfies (MP) provided f did.

1.7. Reduced Boolean products
Assume that f: A »>[] 4; is a Boolean product and D is a filter on B,.
iel

Defining ¢ =b (mod D) <« [a =b]eD, we get a congruence on A by
1.2(1)~(8). The structure A/D is called a reduced Boolean product, and we
shall prove that it has itself a Boolean product representation. Let g: 4
— H A, be the corresponding full Boolean product and D= (D. As

zeX
[a == b] is compact in X we have D < [¢ =], = [a = b], €D, and so

we have an embedding 4/D > [] A,, which is clearly a full Boolean
aeD
product representation. Moreover, A/D has (MP) provided A does.

1.8. The Boolean product operators

For a class 9 of structures and a theory 7' of Boolean algebras we denote
by 'z the class of all Boolean products with stalks in 9 and Bk T':

Ya, [B(ay, ..., a,)] € B, for each atomic E},

Te% = {4 e I'y¥| Va, ...

T390 = {4 e T,| Ak (MP)}.

It T is the theory of all Boolean algebras, we omit the subscript . The
Boolean products in ™ and Y are called atomic and elementary respect-
ively because the solution sets of all atomic (elementary) sentences are

clopen.

1.9. The ternary discriminator

On a structure A the ternary diseriminator ¢ is defined by

x T
i(0,9,2) 1= {z; o’y
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and A*? denotes the structure 4 augmented by # as a new ternary operation.

TrEOREM. A subdirect representaiion A — [] A; is a Boolean product
iff A is a substructure of [] Al. el
iel
Proof. We have to show that 4 has (PP) iff it is closed under the
pointwise discriminator. Let a, b, ¢, d € A and define

e =1(t(a, b, ), t(a, b, d), d);

then clearly [a =b] < [¢ =¢]ast(c,d,d) =cand [a #b] = [a = d] as
t(a,a,d) =d.

If a,b,ccd, then t(a,b,c) is the ded with [¢ =b] = [a = d)
and [a %= b] = [¢c =d].

A diseriminator variety is a variety of algebras with a ternary term ¢
such that the subdirectly irreducibles are characterized by ¢ being the
diseriminator on them. Examples are: Boolean algebras, monadic algebras,
cylindric algebras, relation algebras, Baer *-rings, and (4" = @)-rings.

COROLLARY. In each discriminator variety each subdirect representation
by subdirectly irreducibles is a Boolean product representation.

1.10. Comer’s theorem

A subdirect representation of an algebra is given by a set of congruences
separating the algebra. For the case of Boolean products S. Comer has
given a characterization by such sets of congruences. This characteriz-
ation has been generalized to a wider class of sheaves by A. Wolf, and we
shall give here a refinement of his method, which is even better, in so
far as the stalks are smaller and can be visualized much more easily.

THEOREM 1. Let A be an algebra and £ a set of congruences on A
such that £ is an arithmetical (= permutable & distributive) sublattice of
Con(4) containing 4 = {(,x)| © € A}. For each prime-ideal i define A,
= A [y Then the canonical embedding A > [] A, satisfies 1.4(2). Moreover,

i

if & is relatively complemented and, for every a, b € A, there is the smallest
@ in & containing (@, d), then this representation is a Boolean product.

Proof. The complement of each prime ideal ¢ iy a prime-filter, and
hence we can pick the space £* of all prime-filters on % with the basic
open sets Sy = {u €. L*| 0 ¢u} as the base space. Clearly, Ak a=b iff
a certain @ €# with (a, b) € @ belongs to ¢ iff #\ie (J 8,5, and thus

. s (a,b)e0
[a=b]= |J 8 is an open set. It is immediately cle;r that S;N 8,
(a.b)eP A
= Spys'Ss S [6 =0] il (a,d) e ® because for (a,b) ¢ D there exists
a prime-filber not containing @ but extending the filter {6 .| (a, b) € 6}.

©

icm
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Now condition 1.4(2) translates into &,,...,9,€%,4ay,...,0,€A4,
.&. (a5, @) € ;v @;=>3be A & (a;, b) € B, which is the Chinese remainder
1’51’<301-em, which in turn is eiggivalent to the arithmeticity of &. If % is
relatively complemented, then .#* is Boolean, and if {® %] (a, b) € B}
has a minimum @, then [a = b] = 8, is clopen.

In order to gemeralize this theorem to arbitrary structures we have
to investigate which sets of congruence define subdirect representations.

¥f: A H_]_[ 4; is an embedding such that the projections are onto
and @; € Con(A‘E)Iare the kernels of the projections (i € I), then f is a sub-
direct product provided for each fundamental relation R we have aeR
+Viel RN[(2)]D; #0@.

If we are now in the situation of Theorem 1, this condition reads as
follows: & € R iff for each prime-ideal 7 there exists an 6 €4 such that
RN[a]0 #0. In other words: @ e R < [aR]:= {0 ¢ &| Rn[a]P + O}
is not contained in any prime-filter of & . Clearly, if [@R] is always afilter,
then [ER] is contained in a prime-filter unless [ER] =% and bence RN
N[@]4 # @, which implies ¢ e R.

The condition of [¢R], always being a filter, is:

T;,E’ER and @, 6 € Con(4) such that 7;95-03; then

d e Rb ®d o,
which implies that the congruences on A also permute on R < A* and

moreover the join on R is the same as the join on A4 for all congruences
on A. We can now reformulate Theorem 1 in the extended form.

THEOREM 2. Let A be a structure and & <= Con(A) such that

(1) & is a distributive sublatice of Con(4) containing A4;

(2)6,Pe? = oD ec¥;

(3) For each n-ary fundamental relation B on A and 0, e, 60 Pp
= (00 @)y, where B5 denotes the congruence on K induced by 0;

(4) &L is relatively complemented ;

(8) {® €% (a,b)cD} has a minimum for all a,beA.

For each prime ideal i define A, = A [ ;; then the canowical morphism
A — [T A, is a Boolean product, which is atomic iff (3) is replaced by the
stmn_t;z' condition

(3%) {®#e&| Rn [a]19 + B} has a minimum for all n-ary fundamental

rélations R ond @ c A™

The above theorem does not give very much information aboub
the stalks 4,. We just know that all stalks are quotients of 4 but we shall
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see that they have a special property with respect to the lattice % in
question. As & is a relatively complemented distributive lattice, all
prime ideals are maximal ideals and hence the congruences @ .2 induce
either 4 or IV on 4, depending on whether @ ¢ or not. Observe that
{(@/uis 81031 (6, b) € B} is always a congruence on A/, since the congru-
ences in % permute with each other. So if we regard 4 as a Boolean prod-
uct, each member of & is a congruence of the form {(a, b)| ¥ < [a = b1}
where I is the clopen set {{| @ ei}. Observe that for each Boolean product
and each basis B of the topology of this base-space the set & = {{(a, b)|
N = [a =b]}| N B} satisfies the assumptions of Theorem 2, so that in
this sense Theorem 2 characterizes Boolean products.
We formulate the results in the following theorems:

TerorEM 3. Let A be structure and lot & < Con(A) satisfy the assump-

tions (1)-(5) of Theorem 2. Let A > [[ A, be the Boolean product given by
Theorem 2. 4

(a) For each D €% the set {(pa, p;b)| (a,b) e D}, where p;: A — A,
1s the projection, is one of the trivial congruences A or V on A; depending
on whether Dei or ¢4,

(b) For each @ eZ there is a clopen set N such that (a,b) e D <
N cla =b]

TeroREM 4. Let A — [ A; be a Boolean product and B a basis of

el

the topology on I closed wnder finite intersections and wnions and relative
complements. Then & = {Oy| N e B}, where Py = {(@,b)] N = [a =0]}
satisfies the asswmptions (1)~(5) of Theorem 2. If the Boolean product is
alomic, then & satisfies assumption (3%) as well.

Before we go on with the theory of Boolean products, we wish to
give some examples of Boolean products.

1.11. Direct products
Let 4 = HI 4;. Clearly, 4 is a Boolean product w.r. to 27 satisfying (MP).
1E.

The new stalks, after reduction 3, are precisely the ultraproducts [T 4,/,
for non-trivial ultrafilters u on I.

1.12. Reduced products
Let D be a filter on I. Then q A4;/5 has a Boolean product representation
with ultraproducts [;] 4;ly (D =) as stalks. By 1.10 and 1.11 also this
7€

Boolean product representation has the maximum property.
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1.13. Direct sums

Assume [] A, has a singleton retract {a}. The structure 4 = {b e [] 4,]
iel el
[a 5 b] << No} is called a direct sum of the A;s. Obviously the embedding
A [ 4; is an atomic Boolean product with respect to the Boolean
iel

algebra B of all finite and cofinite subsets of I. B has only one non-trivial
ultrafilber which defines a singleton stalk isomorphic to {a}. So, clearly,
A does not satisty the maximum property because e.g. 3z = #a does
not have a maximal solution. Direct sums are special cases of sub-Boolean
powers in example 1.19.

1.14. Limit powers

Let § be a filter on Ix I and A a structure. The limit power Ay is the

substructure {& € A¥| Kera e§} of A7. (This subset is indeed a substruec-

ture because Ker(f(ay, ..., a,)) = () Ker(a;).) We claim that A7), —» A7
<n

is a Boolean produect w.r. to the Boolean subalgebra 27 Iy of 2%, As AT|g
containg all the constant maps, A’|g ~— A7 is clearly a subdirect represen-
tation. Note that 2’|y = {M < I| MPU(INM) e F}.

Let M =[a =b] for a,beAlly. a, =a;Ab; =b; implies either
a; =b;na; =b; or a #bra; #b; so KeranKerh = MPU(INMP?,
which puts [a = b] into 2’]3. For N = [R{ty, -+, a,)] We ha.ve‘ﬂ Kera;

i<m
S N*U(INN)® for the same reason, and so N e27|y. If M 2’|y and
a,bed, a #b, the map u: I - A4,

_Ja itieM,
v@) =1 iti¢m,

belongs to A7|g, and so by proving (MP) we prove the maximum property
and the patchwork property. Let ¢(w, ..., #,) be a formula, a,,...,a,
e A%y, and 6 = () Kera,.

i€ [@e p(@, ay, ..y )] = [110 € @0 (@, a4, .., 3,)],

and so we pick @, € A%, which is constant on the 6-Blocks and which
satisfies @(ag, ..., a,) for each i e[d» ¢(s, ay, ..., a,)]. Then § = Kera,
€, and 50 a, € AT|g and [p(aq, ..., a,)] = [z ¢(2, a4, ..., a,)]. We have
now seen that limit powers are Boolean products with the maximum
property, and so by reduction 3 the new stalks are elementary substructures
of ultrapowers A7/, of A.

10 — Banach Center Publ. t. 9
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1.15. Limit reduced powers

Let § be a filter on I x I, D a filter on I and 4 a structure. The limit
reduced power ALy of A is defined as the substructure of Aljy of all a/y
where a e A| which is just (4%l)/nmefiz- BY 110, ALl has a Boolean
product representation with the maximum property and stalks which
are elementary substructures of ultrapowers of 4. In fact, the new stalks
in 1.14, 1.15 are limit ultrapowers Af|y for the ultrafilters uon I (in 1.15:
extending D).

1.16. (Unbounded) Boolean powers

Let I be a Boolean space, B = I* its Boolean algebra of clopen sets,
and A a structure. D (I, A) denotes the structure of all maps I — A which
are continuous on a dense-open subset of I. For u, v € D(I, A) we define
% ~ o if 4 and v coincide on a dense-open subset of I. The Boolean power
A[B]is defined as the structure D (I, A)/ ~. Observe that this is a special
case of 1.15 because picking

§ ={U Mj| J set, M;eB, M; " M; =0 for i +j, | M, dense}
jed jeJ
and D:={M <= I| M dense-open} we get
D(I,A) = Al and  D(I, A)/~ = Abl;.

1.17. Bounded Boolean powers

If T is a Boolean space, B = I* its Boolean algebra of clopen sets and A
a structure, then the bounded Boolean power A [B]* is the structure of
all continuous maps I - A. The embedding A4 [B]* ~ AT is a full Boolean
product w.r. o B. We have seen in 1.1 that the patchwork property holds
and that for ¢, b € A[B]" we have [a = b] € B. Now assume that ¢(w, ...
-++y &,) is any formula and a4, ..., @, € A[B]*; as each a, has only finitely
many images, we can decompose I into finitely many disjoint clopen sets
MU ... UM, =T such that ay, ..., a, all are constant on each of the
My, ..., M. Thus each of the M,'s is either contained in [¢(ay, ..., a,)]
or disjoint from it, and so [¢(ay, ..., 4,)] is clopen as a finite union of
some of the M;’s. We have thus proved that A [BT* ~» 47 is a full Boolean
product w.r. to B having the maximum property. We have already seen
in example 1.13 that not each Boolean product with stalks which are
all the samestructure A (and themax. prop. ) isnecessarily a bounded Boolean
power, but we have:

TeroREM. Each full Boolean product A > CT containing all the constant
maps is a bounded Boolean power of C.
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To see this observe that each a € A coincides at each point with one
of the constant maps ¢ and [a = ¢] is clopen. I is disjointly covered by
these clopen sets, and so by compactness there are only finitely many ¢
which proves a to be continuous. Conversely, each continuous map can
be patched together from finitely many constant maps by 1.4.

CoroLrARY. If O is finite of finite type, each full Boolean product
A 0% is a bounded Boolean power.

To see this let ¢ = {¢,, ..., ¢,} and let (24, ..., 2,) be an open formula
describing up to isomorphism ¢y, ..., ¢, in €. Thus [z, ...z, ¢(@, ...
<.y ;)] = I and has a solution a,, ..., a, € A by 1.4 (3). These elements
@y o+, O, Serve as the constant maps in the proof of the theorem.

1.18. Boolean-valued structures

As the next example we give a type of Boolean products which in genera)
does not satisfy the maximum property.

Let A be a structure and B a Boolean algebra. A map assigning to
each atomie formula ¢ over A a value [¢] in B is called a Boolean valuation
of A iff it satisfies the following conditions:

(D) [6=0b]=[b=0], [a=0]0[b=c]l=[a=c]
(2) For each fundamental n-ary function f:
[ay = b N ... Nnfa, =b,] = [f(aly cery Oy) =f(b17 "'3bn)];
3) [@a =b] =1 « Ak[a = b];
(4) For each fundamental m-ary relation R
[ay =bdn ... Nla, =b,In[R(a1,...;8,)] € [B(byy -y D)l
and ' R
[R(@1y «vsy )= 1 < AER(ay, ..., a,).
We say that [...] is finitely patching iff, for be B and a,,a,c 4,
there exists an a; €4 such that b < [a; = a,] and 1—b < [a, = as].
Clearly, by 1.4 each Boolean product has the solution set map as a valu-

ation which is finitely patching.
In order to construct a Boolean product from a valuation we need

the following
LemMMA. Let [ ] be a valuation of A in B.

(1) For each filter § on B, 0y:= {(a, b)} [a = b]e§} is a congruence
on A. .

(2) The canomical map A ~>[] Al, is & subdirect representation.
: ueB*
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(3) For each atomic sentence over A we have [¢] = {u eB'| [p]leu}.

Proof. (1) is an immediate consequence of (1)—(3) in the definition
of [ 1.
(2) YueB* (a,b)eb, < [a=>0le (u={1} < AFa=b.
ueB*

(3) welp] = Alpfp = [pleu.

From this lemma we immediately infer that each finitely patching
Boolean valuation of A gives rise to a full Boolean product 4 —J] 4 lo,,
and the solution-set-map coincides with the Boolean valuation. “s5*

We can also formulate the maximum property in terms of the valuation
by stating that for each formula ¢ («) over A there exists an a € 4 such that
[p(@)] = [z ¢(@)]. As it stands, this statement needs some explanation.
[ 1 was only defined for atomic sentences, but we can extend this to
arbitrary formulas by embedding B into a complete Boolean algebra B

and then defining [pAw] = [@IN[y], [T¢] =1—[p] and [ ¢(»)]
1= sup [p(a)]; now (MP) states that sup[p(a)] exists for trivial reasons
acd

asd
Decause the set {[¢(a)]] @ € A} has a greatest element. So by induction
on the complexity of ¢ we get [¢] € B and we do not need the completion
B atter all.

‘We have now seen that in some sense the Boolean products are just
the same as the Boolean-valued structures. The main difference is that
for the Boolean-valued structures we have no information about the stalks
except that they are homomorphic images of 4.

1.19. Sub-Boolean powers

Sub-Boolean powers have also been introduced as filiered Boolean powers
and they are introduced for finite structures only. Let 4 be a finite struc-
ture and C a substructure of the (bounded) Boolcan power A [B](= A [BT").
We call C a sub-Boolean power of A if € has the patchwork property, i.c.
¢, eC and beB implies ¢;€0,b S [¢;, =¢]&1—b < [¢, = ¢;].

For later applications we need the characterization of sub-Boolean
powers as filtered Boolean powers. A filtered Boolean power of 4 is deter-
mined by a Boolean algebra B and a sequence (F,| 7 << n) of filters on B
corresponding to a sequence (4,;] ¢ < n) of substructures of 4. It is defined
as the structure ¢ of all continuous functions f: B* — A such that for
each ultrafilber # € B* extending F; the value f(u) belongs to 4, for all
% < n. Clearly, each filtered Boolean power is a sub-Boolean power because
the filters on B correspond to the closed subsets of B* and the condition
says that each f e € takes only values in A4, on the closed subset I; of B*
corresponding to F'; now the patchwork property is obvious.

If we assume conversely that ¢ << A[B] is a sub-Boolean power,

icm
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we can see that the set I, = {uw e B*| Vfe 0 f(u) e A} is a closed subset
of B* because for the constant maps @ € A [B] with value a €4 we have
I, =N N [f #41. Now, if f e A[B]satisties weI; = f(u) € 4;, we claim

feCagd;
that f belongs to €. For each u € B* we find ¢, € € such that g,(u) = f(u),

indeed, if this were not so, there would be a substructure 4; of 4 containing
all g(u)+(¢g € C) but not containing f(u), which contradicts u € I; = f(u)
€ A,. Thus the [, = f]form a cover of B*, and so we find a finite subcover
{g; = fl,% =1, ..., m, which we can assume to be disjoint. Now, the patch-
work property of C yields f € . This shows that C is the filtered Boolean
product determined by the filters F, = () u (i<n) on the Boolean
algebra B. uel;

As the last example we have the Hausdorff-sheaves of structures
over a Boolean space. In fact, the structures of all global sections of such
sheaves are precisely the Boolean products.

1.20. Boolean sheaves

A Boolean sheaf of structures is a triple § = (8, 7, X) such that:

(1) 8 is a Hausdorff-space and X is a Boolean space;

(2) n: 8§ - X is a local homeomorphism;

(3) for each #eX the sets §,:={s €8] s =2} form structures
of the same type;

(4) for each n-ary (n > 0) fundamental operation f the induced map
Fr 8% i= {(s1, very $p) €87 98y = ... = 78,} = 8 Is continuous;

(5) for each m-ary fundamental relation F the set

B:= {(8g; -y S) € 8™ (81, ..., 8) € B}

is open in S8™.

The spaces § and X are called the sheaf-space and the base-space
of 8 and the structures S, (¢ € X) are called the stalks of 8.

A continuous map o: X — 8 is called a section of S if nos =idy
and I'S denotes the set of all section of S.

THEOREM 1. I'S — [] 8, is a full Boolean product.
X

‘We have to show (1)—(3) of 1.3. We first prove (2).

Let o, v € I'S and « € [0 = 7], i.e. 0w = 7z. Let N be 2 neighbourhood
of © on which # is a homeomorphism. Then ¢~'¥ Nt N < [oc =7] is an
open set ¢ontaining #, and thus [o = 7] is open. Now assume # € [o # 7],
ie. ow % . As S is Hausdortf, we find disjoint neighbourhoods N, M
of oz and v on which 7 is a homeomorphism. The set 77> N N 7'M is an
open neighbourhood of z entirely contained in [¢ % v]; thus also [¢ # 7]
is open and hence [¢ = 7]is clopen. The proof of the patchwork property (3)
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is quite obvious since the disjoint union of continuous maps both defined:

on disjoint clopen subsets of X is clearly continuous again. In order to see
(1) pick s € 8, and a neighbourhood N of § such that 718 a homeomorphism
on N. »¥ is a neighbourhood of s = x and hence we find a clopen snbset
M < 9N with # € M. Let o be any section and 7:= olx\ 2097y ; then
7(#) = s, which shows that the projections I'S — 8, are all onto (x € X).
Now assume R is a fundamental relation and (81y «vny 8y) € Szg satisties

(813 +++; 8,) € B. Then (sy, ..., 8,) € R and we pick neighbourhoods ¥,, ...
«ony Ny 0f 84, ..., 5, o0 Which 7 is a homeomorphism. Pick a clopen neigh-
bourhood M, of z, =55, = ... =178, contained in 3N,n...NyN,.
Thus we find a section oy, ..., 0, € I'S such that 01(To) = 81y +uvy O (7,)
=8, and for y e My(0y(y), ..., 0,(y)) € R. We do this for every z e X
and thereby cover X by clopen sets M. As X is Boolean, we can agsume
that the M’s form a finite digjoint cover and by (3) we .can patch the
o’y together so that we find 01y +-+; 0, € I'S such that (oy,...,0,) e R
and (03(#q), -, 0,(2y)) = (81, ..., 8,). Altogether we see that I'S is a sub-
direct product of its stalks 8, (zeX).
Also the opposite of the above theorem is true.

TrEEOREM 2. If A — [] 4, is a full Boolean product, then there is
iel
o 8 = (8,n,I) with stalks 8, ~ A4, (i el) such that I'S ~ 4.

A proof can be obtained by means of the standard construction of
a sheaf from a subdirect product by taking for § the disjoint union of the
Ags (1 eI), for 5 the obvious map 8 —1I and the sets {a(?)| ¢ e N} for
acd, N = I clopen. Fasy checking yields 4 ~TS.

Chapter 2
FEFERMAN-VAUGHT -TECHNIQUES

The Feferman—Vaught theorem gives a procedure for determining whether
or not a given sentence ¢ holds in a direct product. 8. Comer generalized
this theorem to Boolean products, Weinstein gave a similar theorem
for reduced products, and B. Weglorz and B. Banaschewski & T. Nelson
gave a proof for limit reduced powers and thus also for Boolean powers
and bounded Boolean powers. The most streamlined proof was given
by H. Volger for Boolean-valued structures, and we give his proof here
in a slightly generalized version.

For a language I a sequence (®os +-vy @) 18 called acceptable, if ¢, is
a formula in the language of Boolean algebras in at most n free variables
and ¢, ..., ¢, € L; the acceptable sequence (gq, ..., @,) is called partition-
ing (or special) if the formulas PV oo Vo, and T(g;Aq) for ¢ £ §
are logical tautologies.

© ©
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2.1. LeMmA. There is an effective procedure for constructing for each
acceptadle sequence (g ..., ¢,) @ partitioning sequence (g, ..., w,) such
that, for each structure A and each Boolean valuation [ | of A in B and el-
oments @y, ..., 0, € 4, we have

B E@o([p1(a1y -3 )]+ [@n(@1y oey 8,)])
iff
BEgo([91(a1; +eey )] oo 91 (agy ey )])-
Proof. Let {8, i =1,...,%} be the set all subsets of {l,...,n}
and set
wi=UpaJ Ty (E=1,...,k)
jeS; jés;
and
Yo( @1y oeey Bg) 1= ‘Po(lg_sjj % g‘”;)
Clearly, the sequence (v, ..., ¥,) is partitioning,
= A BiyoeeyQp)
2%[’1”1(“1’ ceey @y)] iESJj [kggj‘l’k(au ) O) kl{,s{_lq’k( L1yery m]
= [g;(@1, ..., @p)] for i =1,..,mn,

which proves the lemma.

2.2. The companion sequence

We now give an effective procedure for construci:,ing for each formula
o €L an acceptable sequence ¢* = (gq, ..., ®,), Which we call the com-
panion sequence for .
(i) @ atomic: a*:= (2, =1, a).
(i) @* = (Pos -++s Pu)s ¥* = (Vo5 ++es ¥m)
= (@A "P)* = (00 @1y +vs Pns Y1y +o0y Pmady

Bo(@1y vevy Tpm) = Pol@1y ooy Bp) AW (Bpgrs o ooy Trgm) -
(i) ¢* = (%(wn ooy @n)y 1y "'7%;)
= (_19")* = (_19’0(1‘—‘”1; ey L=2,), Tlpyy ey _I‘Pn)-

(iv) If ¢* = (@oy +++y Pn) aDA (Yo, ..., ¥y) 18 the corresponding parti-
tioning sequence, then (Iz¢)* = (6,32 vy...dwy,) where &(w,, ...
veey &) is the formula

=1A 2,02 =BA N 2, <SBAP(R1y oony 2o
d2,...35, 2,V ... Uz, i<é\<m,_ i A n)
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The important property of the companion sequence is the following
monotonicity property of gg:

I <y ..., 2,<y, and BEgy(%1, ..., 2,), then BEgy(y,, ey )

Clearly, #; = 1 is monotone in this sense, and the conjunct of two mono-
tone formulas is monotone. The formula 8, in (iv) obviously is monotone.
It ¢(2y, ..., x,), is monotone and y(z,, ooy @) = Tlp(1—my, ..., L—a,),
we have to show that y(,...,q,) is monotone; so assume #, < ¥y, ...
s 8, <Y, and BFy(e,...,,); then BE (1 —ay, ..., 1—s,). If
Brp(l—41, ...,1—y,) were true, we would have Brp(l—a,, ..., 1 —a,)
by the monotonicity of ¢ — a contradiction; thus BEyp(Y4y -y 4,)- So an
induction over the complexity of g, broves the monotonicity of ¢,.

We are now ready to formulate the Fefermann~Vaught theorem

in its generalized form for Boolean products (or Boolean-valued struc-
tures).

2.3. TEEOREM. Lot A>>[] A, be a Boolean product w.r. to B <o
iel
with the mawimum property. If o is a sentence over A with the companion
sequence ¢* = (¢o; -, @u); then AFg < Bk, ([py], ..., [p,])-

Proof. We proceed by induction on the complexity of ¢. The proofs
for atomic ¢ or Tp, p Ay are easy, and 80 assume ¢ = 3z y(x).

Assume that the partitioning sequence corresponding to u(z)* =
(%o, P1(@)y vey (@) 38 (g, (@), ooy B (@)}, It is clear from 2.1 that
also u, is monotone. :

“=7: Assume Akp; so for some acAd AFy(a), which implies
BEyg([p(a)], ...y [yu(@)]) by the induection hypothesis. By 2.1
Btuolls ()], ..., Lu(@)]) and thus Brsy[A py(@)], ..., [3 @ un(a)]) as
(@] € @e p(@)] (8 trom 2.2 (iv)).

“=?: T BE§([ap(2)], ..., [2un(2)]), we find N, ey N, eB
forming a partition of I such that ¥; € 32 p(»)]. By the maximum
property we find a;, € 4 such that N; < [#;(%)] and by the patchwork
property we find a € 4 such that N, c [a = a] (i =1, ..., m). Beeause
of BEpuy(Ny, ..., N,,) and the monotonicity of to We have Brug([uy(a)], ...
-y [ (@)]), which by 2.1 implies Bryy([py(a)], ..., [%.(a)]). Thus the
induction hypothesis yields AFyp(a), and thus 4 =P p(z) or AFkg.

24 OORQLLARY. L?t [..] be @ finitely Dpatehing Boolean valuation
of A n B with the mamimum property. If ¢ is a sentence over A with the
COMPANIOn S6quence o* = (g, ..., @,), then Akg < BEg,([g,], ceey [0, 1)

We can formulate similar corollaries for all the examples 1.11-1.17
and so cover all the special theorems mentioned at the beginning of this
chapter. Now, that we have this theorem, we should agk just what it

©
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might be used for. We shall investigate this question in the next part of
this chapter.
2.5. THEOREM. For each theory T of Boolean algebras t.f. we have
(1) Th(¥) = Th(B) = Th([AN) = Th(ILB).
(2) Th(¥) k complets, 4 €A = Th(IEA) = Th({A[BI*| BFT}).
(3) Th(2) complete, T complete, A €A, BET = Th(I') = Th(A[B*.
For the proof of this theorem we need the following auxiliary lemma:

2.6. LeMmA. Let ¢* = (@, ...,¢,) be a partitioning companion se-
quence for ¢ and assume that @, ..., , are those g; for which WET ;.
Then for each theory T of Boolean algebras

Ik iff

THV2; ... Va(eU .. Uz, =1A A 02=0) = @;(21, -+, &, 0, -
i<j

. 0).

Proof. Suppose the second condition holds. Then for any 4 e I'gll
the sets [¢4], ..., [p,] form a disjoint cover of B*, and so BEg,([py], ..-
cooy [90), 9, ..., D); hence AFp and I'Wkp. For the converse suppose
I'7Uke and let by, ..., b, e BET with byv ... vb, =1 and bAb; =0
for 1<i<j<m. X;:={ueB" beu} (i<n) are disjoint covers of
B*. For i e m pick A, €% such that 4,kp and put 4 = [T A;[#]T". Then

<

A e I't¥ and Bro([p4], ..., [Pndy Dy sy B) = @by, vy by, 04 ..., 0).

Now we proceed to the proof of Theorem 2.5:

Let ¢* = (g5, ..., ) be a partitioning companion sequence for ¢
in the language of A, B.

(1) As Uk g, <> BETg;, the conclusion follows from Lemma 2.6.

(2) The completeness of Th() leads to Cke < Bkgy(B,d, ..., d)
for € e I'fW and hence Ckp < A[B*]kp.

(3) The completeness of T' shows that in proof (2) the choice of B
is unimportant.

‘We are now going to apply the Feferman—~Vaught technique to prob-
lems concerning N,-categoricity and 1st order decidability.

2.7. THEOREM. Assume that the language of A is countable. If A is
finite or Th(A) s Ne-categorical and B is finite or Th(B) is Ny-categorical,
then A[B]* is finite or Th(A[BT") is N,-categorical.

Proof. By a theorem of Ryll-Nardzewski a countable theory with
no finite models is Ny-categorical iff there are only finitely many (principal)
n-types consistent with 7T for each n < w. If A[B]* is not finite, Th(A4 [B1*)
is complete and has no finite models. Fixing n < w, suppose there are &
n-types i, ..., 7, realized in A and m k-types ui, ..., g, Tealized in B.


GUEST


154 H. WERNER

-

Jswoos [5()])- By 2.6 (3)
, we have homeomorphisms

I fyy ooy fu € A[BI" Lot o(f) =i if Bl;ﬂi([fl(
we can assume B to be countable. If ¢(f)= o(g

Br>y

A [ri(f))] —>[ri(?;)] (L<i<n) which induce an automorphism o of
A[B]* such that, for & € B, a(f)(#) has the same n-type in 4 as g(x).
Now, by Theorem 2.3, a(f) and ¢ realize the same type in .4 [B]*.

2.8. TurorEM. If ThU is decidable and T is a finitely amiomatized
theory of Boolean algebras, then Th(I'ZU) is decidable.

Proof. Let § be an axiom for T. Let ¢ be a sentence in the languagoe
of 9 and let ¢* = (g, ..., ¢,) be partitioning companion sequences of .
Use the decidability of 9 to determine for which ¢ < Ak g,; wlo.g.
these are ¢y, ..+, ¢, - The theory of Boolean algebras is decidable (Tarski:
Bull. AMS 55, 63—64), and so it is decidable whether or not

B>V .. Ve, (v ... va, =1A Agag =0)
i<y

> (%15 eeey 2y 0, .04, 0)

holds in every Boolean algebra, which by 2.6 is equivalent to TiAkg.

2.9. CorolLARY. If U is a finite set of finite structures, then I
has a decidable theory.

We also want to get some decidability results for the operator I

2.10. TuEOREM. If U is a class of structures with Th (A) model complete

and A — [ A, is a Boolean product with A, e A (v € X), then A 14,
S

A zeX
has the mavimum property.

Proof. For each sentence ¢ there is an existential sentence w such that
Akp <y as Th(A) is model complete, and thus [p] = [%] because all 4,
belong to A. For each existential sentence v the solution set [y] is open,

and thus, for each sentence g, [p] and [TJp] are open and hence clopen;
thus 4 > [] A, has the maximum property.
weX

2.11. CoROLLARY. If Th() is model oomplete, then I'2W = I'f.

2.12. CororLARY. If % is a finite set of finite structures such that no
two different members of U are embeddable into each other, then Th(I*9)
is decidable.

Proof. I' is an axiomatic elass whoge all embeddings are isomorphisms
and hence elementary; thus Th(2) is model complete. Thus by 2.9 I'*Y[
= I""% has a decidable theory.

In order to get a much better result we need a certain refinement
of the Feferman—Vaught technique. This refinement is based on an idea
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of Ershov, who found a much more direct translation for Boolean powers.
We want to use this translation for filtered Boolean powers and we are
going to translate each sentence in the language of the structures in question
into the language of Boolean algebras with quantification over filters;
in fact, we can even effect this translation for sentences with quantification
over “closed” congruences in the filtered Boolean powers. The most
important result we are going to use is Rabin’s theorem stating the de-
cidability of the theory of countable Boolean algebras with quantification
over filters (Trans. AMS 141, 1-35). For a substructure (' of A[B] and
a closed subset I of B* (le. I = {ueB*|§ < u} for some filter F on B)
the relation 0;:= {(f,9)| f,9€0C, I = [f=g]} is a congruence on O
and will be called a closed congruence. ITn many examples all congruences
are closed, or at least the closed congruences can be characterized internally
within C. For the remainder of the section A4 is a fixed finite structure
with substructures (4, ¢ < ) and I is the language of the filtered Boolean
powers of A with quantification over closed congruences.

2.13. The Ershov translation

To each formula ¢ € L we want to assign a formula ¢ in the language of
Boolean algebras with quantification over filters. Assume that we have
numbered the elements of A, 4 = {a,, ..., a,}:

@

@ =f(®1y o0y B) = Bpy,

~ ’
o =] A (@ A oo ATpg) V B ] = 1,
A hf(uil,. "’ailc)=aik+1

=R(®y) ..., %),

@
=] Big A e Awkﬂ-k] =1,
A ER(a1),ees01,)

@

p=(yeb,
P = [.le/\ '.'/i] € T,

i<m
- /\ A
&y, 1o ="19,

E|
(6) Az =32, ...32, 0 &2V ... v, =1& V zA2; =0
i<j ,
& A Vg eg;.

i<n agéd;
We now want to show that this translation does the same for the
filtered Boolean powers of A as the Feferman—Vaught translation did.
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It C<A[B] is a sub-Boolean power, we let § = ("){u e B%
VeeCo(w)ed} for i =1,...,n. For each ceC we let ¢, = [¢ = a;]
(i < m) where ¢; € A[B] is the constant map with value ;. To each closed
congruence § on € corresponds a filter F, on Bvia (#,y) € 0 < [z=y] e Fo-

2.14. TeporEM. Leét O < A[B] be a sub-Boolean power of A and
@{Cyy +eey Cpy 01, ovvy 0;) € L. Then

OFp(es s Gy Oayevny 0))  iff  BEQ(Gr1y «vvy Gy Ty coey §o))s
Where iy ooey Ty C1ny vy Cims LTI if'aj are defined as above.

Proof. We proceed by induction over the complexity of @.
1 P =fle1, ey ) = G,

‘;75[ A (Cuay A ooe A ) Vi1 =1.
Aﬁf(“il’-'-’“ik)=%c+1 1 e -+ ’Lh+1]

Brp  iff Fllyyenny @) = By = O A vee MOy K Oprgy s

B flag, e ay) = Gy & O1(UW) =0, & ... &ep (1) = @y
> Cpeqa (W) =@y,

it YueB* fle,(u), ..., (1)) = ¢y (1),

iff Ckf(ey, ..., ¢) = Gpyy-
(2) » = R(ey, ..., ¢),
? =] G A e AG ] =1

AFR(@)5e0 104, )
iff VueB* e,
iff  VueB* (e,(n),..., (1)) € R4
it CER(cy, ..., q).
B  p=(cdeo,
@ E[/\ ﬂ'z'/\d«:] € Fs

=<m

oy @) €RY 0y (u) = &, & ... & o (u) = a;,

2

Bkp  itf [¢c =d] ef,,
iff CE(¢,d) € 6.

@ A,

(5) 3 6 are obvious.

(6) p=3zy,

¢ =3...32, p&a,v ... va, =1&Vaag; =0
i<j

& A A €.

T<n a;ed;
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Each sequence satisfying #,v ... vae, =1&V 24 @; = 0 defines a dis-

joint cover of B* and thus defines f eA[B],«taking value a; on uex;
(¢ =1,...,m). The condition A A «}ef; means that, for u = §,,
i<n a;ed;
flu) e 4;, because flu) =a; ¢4, would imply #%e®; cu and ueg,
ie. 2; eu —a contradiction; thus fe (. Conversely, each feC defines
a sequence @, = [f =4,] (§ =1, ..., m) satisfying those three conditions,
because for 4 <<n and a; ¢ 4; we have [f s d;]e ;. This shows that
AFg iff Bk, which finishes the proof.

2.15. COROLLARY. Kor each structure A the class of all sub-Boolean
powers of A has a decidadle theory.

Proof. Let & be the class of all sub-Boolean powers of A and let &,
be the class of all countable members of & Note that the members of &,
are precisely those for which the corresponding Boolean algebra is countable.
Clearly Th(&) = Th(R,). If ¢ is a sentence in the language of & and ¢
is its Ershov translation, then by Theorem 2.14 K, Fgiff V§,...V§, ¢
belongs to the theory (with quantification over filters) of all countable
Boolean algebras, which by Rabin’s theorem is decidable.

2.16. THROREM. If A is a finite structure and U is a set of sub-struc-
tures of A such that each isomorphism between substructures of A isomorphic
io a members of W extends to an automorphism of A, then each countable
member of U is a sub-Boolean power of A.

Moreover, for each finite set of finite structures W such a structure A
€x1sts.

The proof of this theorem is rather complicated and will be given
in 2.22.

2.17. CorOLLARY. If U is a finite set of fimite structures, then IU
has a decidable theory.

2.18. CorOLLARY. For each finite set W of finite structures the theory
of the countable member of W with quantification over closed congruences
18 decidable.

Proof. Let A be a structure satistying the properties of 2.17, 4,, ...
<oy A, all substructures of 4 and A4,, ..., 4, those isomorphic to some
member of %. Then each countable member of I'*Y is a sub-Boolean power
of A satisfying 6 =Va2,... Vo, &2, e§; = o, v ... v, = 1. Oonversely,

=<n
each sub-Boolean power of A satisfying 6 belongs to I'*%. Let & be the
class of countable members of Y. For each ¢ e L (see 2.14) we have
KEp ift VF,...VF, 6 -¢ holds for all countable Boolean algebras,
which is decidable by Rabin’s theorem.
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‘We close this section with some remarks about what can be done for
Boolean products which do not satisfy the maximum property. We have
already handled the case of sub-Boolean powers, but in the general case
we can still go up to existential formulas; however, we cannot say anything
about more complex formulas.

2.19. THROREM. Let f: A > [] A, be a full atomic Boolean product
xed

and lot aol® Yy vees @y (@) be atomic formulas over A with 5 = (Dyy -evy B
Sor some m < n let
@ =38 0@ Aan(@)A ... Aay(7)

for

Ay, (€)

1=0,...,m—1,

Om =3 an@)A ...
and

9 =137 Tloy@)A ... A_iam_l(i)/\am(z?)/\ Aan(E).

() Akg,, iff [pp] = X.

(2) Ak, iff [pn] = X & [p] # 9.

() If X has no isolated points: Arp < [p,] = X & &[] + 0.
i<m

Proof. We prove (3) and we shall see that for the special cases (1)
and (2) the assumption that X has no isolated points is not necessary.
Cleary, if A kg, the solution & e A* shows [g,] =X and [ #6O for
% =0,...,m—1, and 80 we assume for the converse that [¢n] = X and
[p] @ for i =0,...,m—1. We pick ,, vy @y, €X such that
2 elg] (2=0,...,m—1). Ag X has no isolated points, we have infinitely
many choices for each #; and thus we can assume them to be all different.
For each w; pick a clopen neighbourhood N; = [¢;] such that for i< j
NAN; =0 and a; e A* such that for o eEN,

A F a(@(@) A (@ @) A ... A afay(@) (=0, ..., m—1).

For each point & € M := X\ | J IV, we find a, € A* such that
i<m
Ak (@ (@) A .. Aay(d, (@),
and so the sets

Ny := [am(;z)/\ v /\an.(a';)]

form 2 clopen cover of M; thus finitely many of them do so, 8ay Ny 5 een
-y N,y and they have a disjoint clopen subecover N, ..., N, "with
_.Z»Vi < in (i =m,...,7). By the patchwork property there. exigts an
a € A* such that for j =0,...,» and velN, a(x) = a;(%) (j< m)or
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Z(m) = ij(m) (j = m), respectively. Now by costruction Ak‘jai(g) for

i=10,...,m—1, and Akg,(a) for ¢ =M, ..., n, which proves AFgp.

Remark. Observe that in 2.19 (3) the points with singleton stalk
may be isolated.

2.20. COROLLARY. Let A = J] A, be a full Boolean product.
X

Q€.
(1) Bach universal Horn-formuls true in A is also true in [] 4,.
zeX
(2) 4 is a pure substructure of [] A, (i.e. each positive emistential
zeX

sentence over A true in [] A, is also true in A).
zeX

(8) If X has no isolated points, then A is an ewistential substructure

of [T 4, (i.e.each existential sentence over A true in [] A, is also true in A).
xeX zeX .

Proof. Recall that a universal Horn-formula is a universally quan-
tified conjunct of basic Horn-formulas and a basic Horn-formula is a disjunct
of negated atomic formulas and at most one atomic formula; so a basic
Horn-formula in either a(i; ) or _]a(:?) or ,81(5 YA co A ﬂn(}Z) —>a(a_a> )respect-
ively.

AsVD A a(@) < A\ V2 a(i), we can assume for our purposes that the

.oi<n i<m
formula ¢ is a universally quantified basic Horn-formula, and so its negation
satisfies the conditions of 2.19 (1) or (2). Both 4 and [] A, are Boolean
zeX

products over the same set X (with different topologies), and so, by 2.19,

Arpiff [] A Fe. (2)is the special case of (1) where all basic Horn-formulas
xeX - .
are of the form Te;(#). For the proof of (3) we can assume that ¢ is of

the form as in 2.19 because
35V (@) <V 3G 3, (3).
i<k i<k
Now, it [] A, = ¢, we clearly have [g,] = X and [p;] #@. As X with
xeX

the topology belonging to .4 has no isolated points, we can conclude that
Akg by 219 (3).

2.21. COROLLARY. Assume that ¢ = VT B(T) — y(@) where f(T), y(@)
are primitive positive. Then a full Boolean product satisfies ¢ provided all
stalks satisfy .

Proof. Assume that 4 = [] A, is a full Boolean product and all
reX . >
stalks satisty ¢. If @ e A* such that AFf(a), wehave [f(a)] =X and hence

[y(a)] = X, but this implies Aky(Z) by 2.19 (1). We thus have proved
AFg.
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2.22. Proof of 2.16. U is a finite set of finite structures which we order
by embeddability <. We now prove by induction on |A| that, for each
countable B e I"(N), R — H A, and ¢ €1 there is a clopen neighbourhood

NofiandforjeN embeddmgs o;: A; ~ A such that forreRand a e 4
the set {j e N| o;r(j)) = a} is always clopen in I.

[ =1: Pick the same embedding for each iel.

1% >1: Pieck el. Let 8(wy,...,o,) (n =|4,) be the econjunct
of all atomic and negatomic formulas holding for the n elements of A,;
then N = [8(ry, ..., 7n)] is @ clopen neighbourhood of 4 for suitable 7y, ...

wey ¥y €R. The set M =[x 6(ry, ..., 1) A /\ @ #1,] 18 an open seb

avoiding . Let o; be any embedding of 4, mto A For each j € N the map
Az 1) = 1(§) (B =1,...,m) is an embedding of A, into A; which i3
an isomorphism for j € N\ M. For j e N\ we piek o;:= d;047". As all
stalks over M properly contain 4,, we have by the induction hypothesis
for each j € M a clopen neighbourhood N; and embedding oy, 4; —~ 4
for ke N, such that for r € B and ac A the set {k e N,| oyfr(k)) = a
is clopen in I. As R is countable and all clopen sets of I are of the form
{r =s] or [r # s8] for r, s € B, we can pick countably many j;, ja, ... € M
suchthat the N, , N; , ... cover M. Now, let N; = N; , Ny = N\ Ny, ...

H 1.

—N,k\:pkl\}i, ..,then N, N,,... form a disjoint cover of M
<

and they are all clopen. Moreover, for ¢ € N, seb u, 1= o;,,. Assume that

Doy ++ey P, are the different embeddings of 4; into A, and a, ..., a, are

the automorphisms of A such that o;0 ¢, = ;. For each keN, t<m,

the set Ny = {j e N, wod; = ¢} is clopen. Now we pick o;:= a0u;

where j € Ny.

{ieNlgr(j) =a} =[r =r)nN whenever o, (i) =a

and

[ el ofr(i) = a} = UU{feNkrla( (3) = al

—UU{]ENMI Ilj( = }7

keN =0

which is open. The open sets form a finite disjoint cover of I and hence
they are clopen. Now we are in a position to prove our theorem.

As in the proof for M, we know that we find embeddings o;: A;
=4 (i eI) such that for each r ¢ E and a € 4 the set {j e N| qr(j)) = a}
is clopen in I. Consider the map ¢: B — 47, 5(r)(i) := g(r(s)). Clearly,
o is an embedding and &(R) satisfies the patchwork property because E
does. We only have to show o(R) < A[I*]. If reR and ac A, then
[o(r) =a] ={j eIl gr(j))} is clopen, where & is the constant map
4: I — A with value a, but then ¢ () is continuous.
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3. Axiomatic classes of Boolean products

In this chapter we investigate classes of structures 9 for which the class
I'Y is axiomatic. The way we do this is via the generalization of Comer’s

theorem by investigating for a Boolean products A — I 4; the special
congruences iel
D@,9):={(a,)| [o =y] = [a =b]} (v,y¢cA4).

These congruences satisfy the assumptions of Theorem 1.10.2:
(1) D(z,y) is a congruence.

2 Dz, 2) = 4.
(3) (2,9 eP(zy).
(4 (z,9) € D(u,v) > D(z, y) < O(u, v).

D(z, y)ND(u, v) = O(z, w) for some 2, w.
(@, y)o(P(u, v)ND(2, w))

2 (@ (z, y)od (4, v))O(P(z, Y)od (2, w)).
(@, y) < B(u, )

=3z3w D(2,y)o D(z, w)=

)
)
)
5) @(z,y)od(u,v) = D(z, w) for some 2z, w
)
)

D(u,v) & Dz, y)ND(z,w)= 4.

(9) Tor each m-ary fundamental relation R and (ay,..., a,),
(bsy ..., b,,) € B we have
& (a;,b,) e D@, y)oD(u,v) =Tey ... e, (61501 6n) ER &
i<m
& ((a;,6) € D(z,y) & (e, b,) € D, v)).
i<m

If we also want to axiomatize atomic Boolean products, we have
to replace (9) by

(10) For each m-ary fundamental relation R and a,.
there is a smallest @(z, y) such that

A0, ... Ay (byy ooy b)) € R & (a5, b)) € P(2, 7).
i<m

@, €A

In most cases we have a formula <(x,y,w,v) expressing (u, )
€ @ (2, y). Then we can reformulate (1)—(10) in. a first-order fashion using 7.
In several applications we find a formula = expressing (u,v)e @(z, y)
at least for some pairs (@, y) € A®* but not for all. If we bave a formula
a(z, y) selecting the “good” pairs from A% we can again formulate (1)—(10)
by relativizing all quantifiers to a, but then we have to add the additional
condition :

(11) For a, b € A there is a smallest D (=, y) such that (a, b) € D(z, ¥).

‘We want to give this translation into first-order sentences in. the special .
case of a theory with a constant 0, where we only consider the congruences - .

11 — Banach Center Publ. t. 9
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of the form @ (0, z) where AFa(z) and we have a ternary formula 7 (2, u, v)
expressing (u, v) € @(0, #) provided AFa(z). Then the axioms are:

1. a(®) — (2, u, 4),
a(a)Ar(z,u, v) = t(z, v, 4),
ala)Az(e, u, v)AT(, v, w) = 7(T, %, W),
for each m-ary fundamental operation f:

alZ)AT(@y Ug, VA oo AT(T,y Uy, V)

"'T(w7f(u17 cony tn)y F(O1y ooy '”n)):

o

. a(0)A(r(0,m,y) >z =y},
. a{z) > (2,0, ),

ca@Aaal@aT(@, 0,y) ATy, u, v) >T(@, 8, ),

ot o W

ca(@Aaa(y) >332 alz)av(z,0, 2)AT(2,0,9)A
AVuVY (2, u,v) >~ 3w (@, v, w)Ar(y,w, v),
6. a(@)ra(y) >3z al@)ar(z, 0,2)At(y, 0,2) AVuV v(z, u, v)A
AT(Y, %, 0) = T(2, u, V),
1. a(@)Aa(y)rale) ATz, u, 8)AT(Yy, s, V) AT(®, %, 1)A T(2, T, 0)
>3w v(@,u, w)AT(y, w, v)AT(2, W, ),
8. a@)Aa(y)rz(z,0,4) ~32 a(@Aa(z, 0,2)ATu v(y, 0, u)A
ATz, u, ®) AVOYw (Y, v, w)AT(2, 0, W) >0 = w,
9. for each m-ary fundamental relation R:
a(@)Aa)ade ... e,
N (@, a5, 6)AT(Y, ¢ B)AR(ay,y «vvy @) AR(Dy, ...

<m

» b)

yea)A A T(@, 05 0)AT(Y, 00 by),
<m

10. for each m-ary fundamental relation R:

3238, ... 30, a(@)AR(by, ..., B ) A A (@, @ by A

i<m

-3¢,y ... 3¢, R(e, ...

AVYYe, ... Ve, a(y)aRB(ey, e A N (Y, 6, 0) > (Y, 0, ),
i<m

11. 32 a(@)Av(@, 4, 5)AYY a(y)At(y, a,b) —><(y,0,n).

As we ghall soon see, the form of the axioms is rather unsatisfactory
for some of the applications and so we shall sometimes have to refine the
method. In the following chapter we refer to these axioms as to axioms
1-11.
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If we have a class & of structures such that for some formulas a, ©
the axioms 1-11 hold, we know by Theorem 1.10.2 that the members
of & have a Boolean product representation and the stalks are homomorphic
images of the members of & such that the special congruences ®(x,7)
induce the two trivial cogruences. If the formulas a, = are both positive,
we infer that each stalk is a homomorphic image of some member of &
satisfying axiom (8):

®) Iz alz,s)Adz Ty @ 3£ yAalz, y) AVVYYUYY oz, v)
~>[1(z,¥,4,9) <= (@ =y >u =0)].

Clearly, if we have a constant 0, 1-ary e, and 3-ary 7, we replace (S) by

(80 a(0)adw @ 5= 04 a(z)AV2VuYD v(@, %4, 9) < (@ =0 >u =2).

If a class of structures satisfies (8), it is not clear that each Boolean
product of these structures satisfies axioms 1-10, because a and v need
not define the desired congruences @(xz, ) unless both a and = are primitive
(= existential conjuncts of atomic and negatomic formulas).

For the rest of this chapter we make the following general agsumptions:
(A) Let & be an axiomatic class of structures closed under subdirect

products and homomorphic images. Let a, © be primitive-positive
formulas. For any formula s let &, := {4 e ]] AE(s)}.

3.1. TaEorREM. Under the assumptions (A) the class I', = & s
aziomatized by axioms 1-9, 11, relative to K. IR, is awiomatized by axioms
1-11 relative to K.

Moreover, A € ] has a full Boolean product representation with stalks
n K, (i.e. no singleton-stalks) ff it satisfies the additional awiom

(12) dedy a(@,y) A YuVo v(z,y,u,0).
This theorem is a first step towards characterizing I' or IR for an

axiomatic class K Unfortunately, we only get good general results for
inductive classes K.

3.2. COROLLARY. Under the assumptions (A) let & = &, have a set
Z of positive V I-axioms relative to K. Then I'W is awiomatized by X together
with awioms 1-9, 11.

Proof. By 2.21 all members of 'Y satisfy X and, as the axioms in ¥
are positive, they hold for all stalks of B e I'%.

3.3. COROLLARY. Let U be a class of structures having a set X of positive
Y 3-amioms (relative to some aziomatic class K). Let a, v be primitive-positive
Jormulas such that Ak (8).

Then I'Y is axiomatized (relative to &) by X and awioms 1-9, 11.
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‘We can sharpen this result considerably if we assume that U has an
encoding formula, i.e. a primitive-positive formula z(x, ¥, %, ¥) such that
Uk (w, Yy, u, ) < (® =y —w = v), which means that we are considering
the case above with a being a tautology, e.g. a(%, ¥) = = . We say that
a formula = has no negated relations if in its prenex normal form it has
no subformula of the form TR(wy,...,2,).

3.4. COROILARY. Let U be a class of siructures having o set X of ¥ 3-
axioms without negated relations and having an encoding formula ©. Then 'Y
is awiomatized by amioms 1-9, 11 and a set X of positive V A-azioms related
to X, as the proof shows.

Proof. Let u, v be two new variables not occurring in X. In the normal
form of 7 e X, replace each inequality s =t by <(s, ¢, u,v) to obtain
7(u,v) and put X:= (VuVv 5(u, )| o€ X}. Clearly, if AF(S) with a
being any tautology, then A kX iff A =X but X is a positive set of
V3-sentences and we are back to 3.3.

For relational structures it is unsatisfactory not to be able to negate
relations, but we can overcome this in the same way as we did in 3.4.
For each relation B we need an encoding formula for R, i.e. a primitive
formula vz(@y, ...y @y, 2, y) which is equivalent to B(ay, ..., 8,) +o = 4.
In this terminology the encoding formula above is an encoding formula
for the equality =. Recall that an axiomatic class is inductive (closed under
directed unions) iff it is V3-axiomatic.

3.5. CoroLLARY. Let U be an inductive awiomatic class of structures
having encoding formulas for equality and all fundamental relations. Then
I'Y is awiomatic, satisfying awioms 1-9.

Recall that in 1.9 we characterized Boolean products as those sub-
direct products which are closed under the pointwise discriminator. We can
use this result to get a much simpler axiomatization of Boolean products
in a special situation.

3.6. Discriminator formulas

A formula é(z, ¥, 2, %) is said to be a discriminator formula for U if it is
primitive positive and Ukd(z,y,z, %) <[z =y >2 = WA #EY >
=u)]. Clearly, the formula 3z &(w,y, u,2)A é(x,y,v,2) is then an
encoding formula for % and Irds 8(z,y, u,r)A 8(z, y,v, s)A 8(r, 8,0, u)
is equivalent to # =yvu = on . Conversely, if 9 has an encoding
formula together with a primitive positive formula equivalent to # = yv
vu =9, then % has a discriminator formula.

(1) Tt A has a discriminator formula 8, then I'Y is axiomatized relative
to the elass P, of all subdirect products of members of 9 by the axiom

(D) VaVyVz3u o(z, y, 2, u).

icm
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Clearly, each member of ') then satisfies axioms 1-9 with the for-
mulas

az,y) =2 =o and (z,y,u,v) =32 5(z,y,u,2)Ad,y,0,2).

It we axiomatize 'Y with axiom (D), there are two ways in which
new stalks might come into play: firstly, when we construct the full
Boolean product by the reduction 1.5, and secondly, when we look ‘into
members of SPY satisfying (D). In both cases the new structures turn oub
to be substructures of members of % for which § is still a discriminator
formula. In any case we know that the new subdirect factors are sub-
structures of (ultraproducts of) members of 9 which satisty (D), as (D)
is positive. Now a substructure of a member of U satisfies (D) iff 6 is
a discriminator formula for it, and hence we have

(2) If A has a diseriminator formula & and contains all members of
S for which 4 is a diseriminator formula, then ') is axiomatized relative
to SP by the axiom (D).

(3) If A is axiomatic with the assumptions of (2), then each member
of I'Y is a full Boolean product with stalks in 9.

‘We close this section with some examples of encoding formulas and
diseriminator formulas.

3.7. Examples

(1) Semdilattices. Let 8, = ({0,1}, U, 0) be the 2-element join-semi-
lattice with zero. As formulas e, v for U = I(8,) pick a(z,y) ==z =0,
(@, ¥, u,v) =uVUY =oUY.

(2) Distributive lattices. Let D, = ({0,1}, U, N) be the 2-element
distributive lattice. The formula = (%, ¥, %, ) =uUsUY = 9U8UY A 4N
NzNy =vNnzny is an encoding formula for D,.

(3) Bounded distributive lattices. Let % be any axiomatic class of
bounded distributive lattices with join-irreducible unit. Pick a, = as follows:

a(@,y) =2 =0Ad2 ynz =0AyuUz =1 and

(@, Y, U, v) =uVY =0VY.

(4) Heyting algebras. In all subdirectly irreducible Heyting algebras
(= bounded distributive relatively pseudocomplemented lattices) 1 is
join-irreducible.

For pseudocomplemented lattices or relatively pseudocomplemented
semilattices with join-irreducible 1 the formulas e(z,y) =1 =zAyv
Uy >0)=1and v =uny =00y 0T 7 =4 >0 YAv >u>Yy do the
job.
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(5) Fields. For each field F the following formula § is a diseriminator
formula:

S, y,z,u) =Tr (y—a)r =y—2Au =2+(@—2)7r-(y —).

(6) Discriminator varieties. If ¥ iy a discriminator variety (see 1.9)
and U its class of subdirectly irreducibles, then #(x,y, #) = u is a discri-
minator formula.

4. Atomic compactness

In this chapter we investigate atomie compact structures in 'Y and then
we concentrate on injectives, weak injectives and subretracts in ') and
more general in SPYA. A structure 4 is said to be atomic compact if each
set X' of atomic formulas over 4 has a solution in 4 provided its finite
subsystems have solutions in 4. It is known that 4 is atomic compact
iff A is a pure retract, i.e. A is a retract of each pure extension of A. Specia]
cases are injectives, weak injectives and subretracts in a class & I e g
i8 injective in & iff for each embedding 4 2. B each morphism g: 4 - T
lifts to B, ie. ex. §: B ~I such that g = jof. If we demand that only
ontomorphisms or isomorphisms lift to B, we say that I is a weak mjective
or a subretract respectively in K. A special case of atomic compact strue-
tures are compact structures (structures which can carry a compatible
compact Hausdorff topology). In fact, atomic compactness has been
introduced as an algebraic version of topological compactness. If we speak
about algebras only, we use the term equationally compact instead of atomie
compact. The most important basic facts to keep in mind are that products
and retracts of atomic compact structures are again atomic compact,
and the same is true for the injectives in a clags K. Regarding the weak
injectives in &, we only know that they are closed under subdirect retracts,
Le. retracts of a direct product such that the projections are still onto.
These well-known facts are easy to verify. Clearly, each finite structure
is compact — with the discrete topology — and hence must be atomic
compact. As each complete Boolean algebra B is a retract of some 27 ,
the Boolean power A[B] is a retract of 47 for each finite structure 4
because A[-] is a functor for each finite structure A. Thus each Boolean
Dower of a finite structure by a complete Boolean algebra and all products
of those are atomic compact. We are going to show that all atomic compact
structures in I look like that under certain assumptions on 9.
As the first result we keep in mind

. 4.1. THEOREM. Lot 4; (icI) be a sequence of finite structures and
B; (i e I) a sequence of complete Boolean algebras; then [] A,[B,] is an
atomic compact structure. el
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In general, not all atomic compact structures look like that, e.g.
the real interval [0, 1] is a distributive lattice but it does not have a rep-
resentation as a Boolean product of smaller structures. Even if the class o
of structures is nice, the atomic compact members of SPY usually do not
belong to I'Y, but for those which belong to I'Yl we can show that they
look like those in 4.1.

Throughout this chapter we assume that % is an V3-axiomatic class
of structures and a, r are primitive-positive formulas such that Uk (S)
and I is axiomatized by some positive ¥ 3-axioms together with axioms
1-11.

4.2. Lemma. Assume that A e I'W is atomic compact.

(1) The congruences ®(a,b):= {(=,y)| Akr(a,b,s,9)} (Aka(a, b))
form a complete Boolean algebra.

(2) If ¢ is primitive-positive, then [p] is clopen.

(8) If U; (i eI) are disjoint clopen subsets of the base-space and a,
€A (iel), then there exists an a4 such that U; < [a = a;] for ie1.

Proof. As A is atomic compact, each set X of primitive positive
formulas has a solution iff each finite subset of 2 has a solution.

(1) Let M < {(a, )] AFa(a, b)}; as our set X' of primitive positive
formulas we choose

2= {a($) YAz, y,a,b)| Aka(a, )} U{z(c, d, z, y)| Aka(c, d)A

Az(e,d,a,b) for all (a,bd) e M}.

% is finitely solvable since the join of finitely many &(a,b)’s is again
of this form, and thus the solution (e,f) of X' describes P(e,f) =
sup{®(a, b)| (a, b) € M}. _ ,

(2) Let ¢ be primitive positive and &, ¥ two new wvariables not in ¢.
®(z,y,z) is the quantifier-free part of @, where each equation p = ¢
is replaced by v(, v, p, ¢). The set

2= {a(w, YA T(w7 Y, a, b)A¢(w, Y, %) [a = b] = [‘P]}
is finitely solvable and so its solution ¢, d, € gives a solution for ¢ on [¢]
= [c¢ = d], a clopen set.

(3) By (1) we conclude that the whole base-space of A is of the form
[a = b], and so we can assume all clopen sets to be of that form, in par-
ticular U; = [b; = ¢;], AFa(b;, ¢;). The set

T = {v(b;, 0;, v, ;)| t I}
is finitely solvable and its solution is the desired a.

Remark. If a is a tautology, we can allow in 4.2 (2) also ¢ to be an
existential conjunct of atomic formulas and inequalities. In this case we
replace each inequality p # ¢ by 7(p, ¢, @, b), where &(a,b) = V.


GUEST


<168 H. WERNER

) 4.3. THEOREM. Leét a be a tauiology. A € I'W is atomic compact iff
A ~ [T A;[B;] where A; e W is finite and B; is & complete Boolean algebra
iel

for each i el.

Proof. For each finite structure ¢ there is an existential conjunct ¢,
of atomic formulas and inequalities such that B = dy iff C is a weak sub-
structure of B. Clearly, for each finite structure O there is a finite set
{01, ..., C,} of (partial) structures with at most one more element such
that B = §y and B ~ 0 = BFdy, for some ¢ << n. Let gy = dpA 1t/\l 10g;-

By the above remark [uq] is clopen for each finite € e U and ¢ & [ug]
iff the stalk A, is isomorphic to C. Thus the sets [ug], C € U finite, form
clopen disjoint subsets of the base space of 4, and by 4.2 (1) the Boolean
algebra By of clopen subsets of [uy] is complete. We now show that
T:={J {{#c]l C e finite}is dense in the base space of A. If o 52 b
and T < [a =b], then for x»>|4| we consider the set X = {v(z;,
@, @, b)| 1< j < x}, which is finitely solvable in 4 since all stalks over
[& # b] are infinite. A global solution cannot exist since no stalk of size
%> |A|is possible, and thus T is dense in the base space of 4. Let {4;| ¢ e I}
be, up to an isomorphism, the set of all finite stalks of 4 and B, = By,
the corresponding complete Boolean algebra. Consider the morphism
A —f>n A;[B;]. As T is dense, f is an embedding which by 4.1 (3) is onto
iel

and hence an isomorphism.

In the presence of a non-tautological ¢ we cannot imitate this proof
because we cannot express inequality in a primitive formula (only in-
equality between pairs satisfying o). Still we have a primitive positive
formula 65 satisfied precisely by those structures D which have a weak
morphism B —.D. Assuming further that each finite member B of U
has only finitely many covers in 9 with respect to embeddability, we can
imitate the same proof as before:

4.4. TaROREM. Let §F be the class of all finite members of U and assume
that:

(i) Each morphism in § is an embedding.

(il) Bach member of § has only finitely many covers in § w.r.
to embeddability.

Then A e I'§ s atomic compact iff A ~ [] A,[B,] where 4, F and

iel

B; is a complete Boolean algebra for each 4 e I.

If a is a tautology, 4.3 gives a full characterization of atomic compach
structures in 'Y, but in general there could exist infinite atomic stalks
and we cannot expect a similar characterization. Practically, nothing

is known about conditions on U that force all atomic compact structures
of SPY into I'Y. The situation is quite different if we consider subretracts
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in SPY. Each member of SPY can be embedded into a member of I,
and so, if we can state the axioms of I'Y in such a way that they are pre-
served under retractions, then each subretract of SPY belongs to o,
and thus 4.3 or 4.4 can be applied. So we first investigate sentences which
are preserved by retractions.

4.5. LEMMA. Let f: A>>B, g: B—» A be such that gof =1,. Let
sy v be positive and et 6, A be existential formulas or sentences.

(1) BEp = Akp.

(2) AFd = BF4.

(3) BEVZ (8(%) — u(7)) = AEVE (6(F) - u(3)),

(4) 9 =Vz (8(z) > 37 [u(&, )AVZ (AF, §) >»(F,7,2))),

. BEgp = Akg.

Proof. We show (4). Assume Bk and Ak (%) for some sequence @
in A. Then BF4(fa) since 6 is existential, and hence BEkpu(f,a,b) and
Bz (A(fa, 2) > »(f@, 5, ) for suitable 5 in B. As @ = gfa and o is
positive, we have AFu(@, gb). Now assume AFA(@, ) for some & in A.
Then BFA(fa,fe) and hence BFy(fa, b, fc). Again we get Ak (@, g5, c)
sinee » i3 positive and gf¢ = ¢, and this proves Akg.

If we now review the axioms for I with respect to preservation
under retract, we immediately see that the positive V3J-axioms and
axioms 1-4, 6, 7, 9-11 are preserved under retracts and we only have
to consider axioms 5 and 8. Consider y(u, v, w,®,y,?) = (¥, 2, 4, v) A
Av(Y, 2, w,5)Adr T(u,v,y,7)AT(w,2,T,2). Clearly, Ak a(u, v) A a(w, z)A
Aa(y,2) > [y(w,v,w,5,9,2) < (4 =vAw =2z <y = £)], and this im-
plies that A e A satisties y(a, b, ¢, d, ¢, f) itf D(a, bod(c, d) = D(e, ).
Now we can formulate axiom 5 using this primitive-positive formula y:

5a. a(u, v)A a{w, z) _)ayaz y{u, v, w,x,y,2)Aaly, 2),
5Db. a(u, v)A alw, @) A aly, 2)Ap(u, v, w, z, ¥, 2)A ©(Y,2,D,9)
—=3qr v(u, v, p,")AT(w, 2,7, q).

These axioms are covered by Lemma 4.5 as well, and so only the rela-
tive complementedness (axiom 8) remains to be investigated. In order
to handle axiom 8 we need a formula o(z, ¥, 4, v) expressing the fact
that &(z, y) NP (u, v) = A. On the stalks, o must be equivalent toz = y v
v % == v under the proviso a(z,y) and a(u,v). If we have a positive-
primitive formula ¢ with this property, we say that o expresses disjointness;
clearly disjointness of congruences is preserved under any homomorphism
and thus axiom 8 is true for each homomorphic image of 3 member of I'.
In all the examples in 3.7 such a formula o is easy to find.

4.6. TEEOREM. If U has a primitive-positive formula o expressing
disjoininess, then each retract of a member of I'*U belongs to I'YU.
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4.7. CoroLrARY. If W has a primitive-positive formula o expressing
disjoininess, then each subretract in SPU belongs to I'U.

If a is a tautology, then by 3.6 the existence of p i3 equivalent to 9
having a diseriminator formula 4, and we have

4.8. CorOLLARY. If U is an inductive class of structures having o
discriminator formula, then each subretract in SPU is of the form H A,[B;],

where all A, € A are finite and all B; are complete Boolean algebms

In the case where a is not a tautology we have a similar result if 9%
is (up to isomorphism) a finite set of finite structures.

4.9. CorOLLARY. If U is a finite set of structures, a, v, o being primitive-
positive such that
UL(S)A(al@, y) A a(w, v) > [o(@, ¥, u, v) <5 =y Vu =0v]),
then each subretract in SPY is of the form
A [By]% ... xA,[B,]
where Ay, ..., 4, €W and By, ..., B, are complete Boolean algebras.

If we have a product of structures which is injective, neither of the
factors has to be injective, but the matter is quite different if we consider
weak injective or subretracts. Here we can characterize the weak injectives
at least in the case where Q& = SPY has factorizable congruences, i.e. if
4,Be® and 6 cCon(4 x B), then

da (a,b)6(a, b') < Va (a, b) 0(a, b’).
In other words, 6 = 0, x5 for some 6, ¢ Cond and 6 e ConB.
4.10. Leuva. Let & be a class with factorizable congruences A, B, A x
XBe§.
If AXB is a (weak) injective (subretract) in R, then both 4 and B

are (weak) injective (subreiracts) in K. For (weak) injectives also the converse
8 true.

Proof. Assume that 4 xXB is a weak injective (subretract) in &, f: ¢
D an embedding in & and g: 0 — 4 an (onto-)morphism (1somorphlsm)
There exists an h: D x B — A XB such that ho(fx1y) = g X1g, and we
consider & = p,0h: DXB — A. Kerk = 6, x ap and for ¢ 0 we have

k(fe, B) = p10ho(f x1g)(e, b) = p1o(g X15)(e, b) = go
and thus 6z = V5, which implies
Vi eDVb,b' eB kid,b) = k(d, b'),
and so for each b € B the map d — k(d, b) is a homomorphism k; DA
which satisfies kof =g.
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We get a similar result for (bounded) Boolean powers A [BT¥, the
structure of all continuous maps B* — 4 with the natural embedding
dy: A - A[BT* which maps each aeA onto the constant map with
value a.

4.11. Lemma. If A, A[B]* e & and A[B1* is an injective (a weak
injective, a subtract) in K (K closed under bounded Boolean powers), then
s0 is A.

Proof. Assume that f: ¢ >>D is an embedding and g: C - 4 a mor-
phism (onto-, iso-). Then we have an embedding f*: ¢[B]* — D[B]* and
a morphism ¢*: ¢[B]* - 4 [B]* (onto-, iso-) such that the following diagram
commutes:

S

C — D
\ ldﬁ
& C[B]*>—j*—> D[B]* N

e
- 7
£ S h
e
Vd

A>—lh—>A[E]*

By the injectivity-condition on .A[B]* we have & commutative
diagram-completion h: D[B]* -~ A[B]". For any zeB* we have the
projection p,: A[B]* — A, which satisfies p,od, = 1, and thus p,ohodp:
D — A is the desired morphism because

(pohodp)of = pohoffod, = pog*od, = podog =109 =9.

If B is a complete Boolean algebra, then 4 [B]* is a subdirect retract
of 4%, and thus A [B]* is an injective or a weak injective just in case A
is, but for subretracts the converse of 4.11 is not true in general. In view
of the results above we only seem to be able to characterize fully (weak)
injectives in & if & has factorizable congruences. Therefore we first study
classes such that & bas factorizable congruences.

4.12. Factorizable congruences

We say that a class & has a congruence formula o(z,y,w,v) iff for
A e & we have (, 9) € 04(a, b) (= the smallest congruence on A containing
(@, b)) < AEkc(a, b, x, y). We only consider the case where o i3 primitive-
positive.

1) If & has a congruence formula, then K has factorizable congruences.

Lkl
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Proof. Assume A,B,AXBef, (a,b)0(a,d’) for some a ed,
0 e Cond x B. Clearly, o(a, a, s, x) and o(b,b’, b, 5") and hence (z, b) ¢
(%, ") for all » e A.

2) If o is a congruence formula for U, it is also a congruence formula
for I'U.

Proof. The fact that o defines congruences is expressed by axioms
like axiom 1 in §3, which by 2.21 are preserved by forming Boolean
products. Now, clearly, (a,b)e0(c,d) implies (a;,b;) €0(¢;, d;) in all
stalks, and thus o(e, d, ¢, b) holds.

3) If U is a finite set of finite structures with factorieable congruences,
then U has a congruence-formula o.

Proof. Assume that % has factorizable congruences and let 4 = [T 4,
i<n
be a finite product of members of A with a, b, ¢, d € A such that for each

quadruple o, y, %, veB W with (u, ) e OB(w, y) there exist an i< n
and an isomorphism f;: B — A4, such that f;(v) = a,, f;( v) = b, f;(2) = ¢,
fi(y) = d; and such that, for each i < n, (a;, b,) € 04,(0;5 d;); then 6,(c, d)
= H 6,4,(0;, ;) since A has factorizable congruences and (a b)eb,(c,d).

By Malcev 8 Lemma there exists a primitive-positive formula ¢ such that
o{¢c, d, a, b) which by construction is a congruence formula for 9.

4) If A has a congruence formula, then each quotient of A e I'Y again.
satisfies axiom 8.

Proof. On U (and I'Y) the following axioms hold:

() ala,b)Aaz(a, b, 3, 9)A (0, d, 9, 2)

—3r ofe,d, z,r)AT(a, b, r,8),
(i) a(e, d)A ale,flro(a, b, m, y)rz(o, d,y,2)A 0(a,b, s, u)A
Azle,f,u,2) >3 o(e,b,5,0)Av(e, d,v,2)A (e, f, v, 2).
The first axiom implies 6o®(a,bd) = B(a,b)od and the second

(fo B (B, c))/\(Bodi(e,f)) = 0o(®(b, ¢) A B(e, f));
80 each homomorphism maps disjoint @ (a, b)’s onto disjoint congruences,
which makes axiom 8 hold for each homomorphic image of 4 e I'Yl.

This result enables us to characterize fully (weak) injectives in the
case where U has factorizable congruences.

4.13. TEROREM. Let U bs an ¥ -class of structures with an encoding
Sformula v and & congruence- fo'rmula 0. I e &:=SPU is a (weak) injective
in Kff I ~ H A;[B;] where, for each i e I, A, € U is finite and a (weak)

injective in R aml B, is a complete Boolean algebra.

Proof. By 4.12 (4) I satisfies axiom 8 and thus belongs to I, whence
by 4.3 has the desired form. By 4.10 and 4.11 all 4; are (weak) injectives
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in K. To see the converse we just use the fact that weak injectives are
closed under subdirect retracts.

4.14. TueoREM. Let U be finite st of finite structures satisfying (S)
and having factorizable congruences. I € & = SPU is a (weak) injective
in K iff T ~ [] AJ[B;] where, for each i <n, A; €A is a (weak) injective

i<n

m K and B; is a complete Boolean algebra.

Proof. By 4.12, I belongs to I')l and the proof proceeds as before.

In these theorems we reduce the question of determining the (weak)
injectives in & to determining those members of A which are weak injectives
in K. A proof of this might still be very difficult, and so we investigate
under which conditions on & we can even reduce to weak injectivity
within .

4.15. LeMMA. Assume that R is congruence-disiributive and all mem-
bers of W are finitely subdirectly irreducible (i.e. 4 is N-irreducible). Then
A e W is a weak injective in K iff A is a weak injective in A. Moreover, if
each A €8S is finitely subdirectly irreducible, then A e is injective in
K iff A is injective in A.

Proof. Assume that A is a weak injective in 9 and B > O is an embed-
ding in & and g: B—» 4 an ontomorphism. ¢ e SPY has an embedding
h: O[] 0C; (C;e).

iel

As A is finitely subdirectly irreducible, the congruence Kerg of B
is meet-prime in Con B, and so by Jénsson’s lemma there is an ultrafilter U
on I such that the restriction of the congruence defined by U to B is smaller
than Kerg. Thus we have the following situation:

B >—f——-> C >-——I—1—> bi(ed
& Py
A 7 Bly Clu IICi/y

[]6, /5 is an ultraproduct of members of Y and thus itself belongs to A,
and so the weak injectivity of A in % yields a diagram completion i: [] C;/,
— A and altogether wehave lopyoh: C — A, which is the desired diagram-
completion shoving the weak injectivity of A. If we consider injectives
we do not agsume g, to be onto and, in order for the same proof to work,
we have to assume that the image of ¢ is also finitely subdirectly irreducible.
Then exactly the same proof works with A’ = g(B).

If 9 is a finite set of finite structures, we can eliminate V-quantifiers
in formulas over 9 by introducing enough constants in the language of .
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This allows us then to have a and = of arbitrary quantifier-type and we
still can get 4.15 to hold. We just have to investigate what influence the
introduction of new constants has on the weak injectives.

Let U be a finite set of finite structures and A* the same set endowed
with a finite set of new constants. Let & = SP and &* = SPU*. We have
a map U: & — &, which forgets the new constants again.

4.16. Lemva. If A € 8 is a (weak) injective in K, then there exists a
(weak) injective A* in K such that A = U(4%).

Proof. Assume that 4 is a (weak) injective in K. Then 4 has an
embedding 4 — [ 4; (4; e W) which has a left inverse g: [] 4, - 4.
iel iel

We now endow the 4; (¢ € I) with the new constants to obtain A} and
define the new constants on 4 by g: [] A} — A*. We now claim that 4*

1€l

is a (weak) injective in &*. Assume that B* > C* is an embedding in &*
and B* — 4™ is an (onto-)morphism. Now by the (wealk) injectivity of 4
we have a diagram completion U(0*) - U(4*) = A, which clearly pre-
serves all the constants because they are already inside B* ; 8o in fact we
have *a diagram completion B* — A* which shows the (weak) injectivity
of A7,

If we have an 3V-conjunct of atomic formulas, we can introduce
new constants ¢ = {ey, ..., ¢,} naming each element of each 4 e A, and
then we replace V...V, f(2y, ..., 2,)by A Bley, ..., 6,), obtaining

Lo . L Bt eC
a primitive-positive formula over A* (A with the new constants from Q).

4.17. COROLLARY. Let A be a finite set of finite structures with Sactor-
izing congruences amd such that Ak (S) for some AV-conjuncts of atomic
Jormulas. Then I € & = SPU is a (weak) injective in | iff I ~ [] A,[B;]

. . L. i<n
where, for each i< n, A € U is a (weak) injective in A and B; is a complete
Boolean algebra.

In the congruence-distributive case we can also use 4.15 for a reduction
to the question of injectivity of the stalks 9L

5. Medel companions

In search of model-complete theories A. Robinson invented the notion
of the model-companion T* of a theory T, i.e. each model of T* is a gub-
structure of some model of T and vice versa (T and T™ are model-consistent)
and T* is model complete. If 7' is an VEI~theory, then each model of 7™
also satisfies T'. Abusing terminology, we also say that Mod(T™) is the
model companion of Mod(T). Not each theory has a model companion
but if 7' has a model companion T then Mod(T™) is the clags of all struc-
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tures which are existentially closed in S Mod(T), i.e. each finite set of atomic
and negatomic formulas over 4 e Mod(T*) which has a solution in some
extension B € Mod (T) of 4 (4 < B) already has a solution in 4. In other
words, each embedding f: 4 — B eMod(T) is existential. Sometimes
the notion of algebraically closed structure is used. A structure A4 is
algebraically closed in U if each embedding f: A — B e % is pure (i.e. each
finite set of atomic formulas over .4 which has a solution in some extension
B e of U has a solution in 4. If A has an encoding formula v and all
relations defined algebraically (i.e. R(ay, ..., a,) < @(dy, ..., a,) for some
open formula p without relations), the two notions coincide for members
of U, because each inequality # sy can be replaced by <(z, ¥, a, b)
where a, b are different elements in A. The only exception is the singleton-
structure, which is always algebraically closed but existentially closed
only in ease it is not embeddable into any larger structure in %. For each
class of structures K the class of all members of SK existentially closed
in K is denoted by &*. If both & and &* are axiomatic, then & is the model
companion of & and we have Th(&*) = Th(K)*.

In this section we want to use the Boolean produet techniques to
investigate the existentially closed members of SPYU for some classes %.
Throughout this section we assume that o is an axiomatic class of struc-
tures which has a discriminator formula 6 and algebraically defined re-
lations (hence I'Y = Y and we can assume the members of U to be algebras
only), and we assume 2 to contain all structures of HSPY for which ¢
is a discriminator formula. Let %" be the class of all algebraically ( = exis-
tentially) closed members of %. If UA* is axiomatic, note that it has a set of
V3-axioms. Under the assumptions just made, each embedding f: 4 ~» B
in 'Yl induces embeddings between the stalks. If 4, is a stalk of 4 and B;
is a stalk of B with the projections p;: 4 -» 4, g;: B —» B;, then f induces
amorphism f;: A; — B; iff Kerp, < f~* (Kerg,). In this case, f; is defined
by fy(p) := A{f(a)). For each congruence fecConB we call f~'(6)
1= {(z, ¥)| (fz,fy) e 6} e ConA the restriction of 6 to A.In 2.13 we studied
closed congruences (congruences of the form {(z,¥) N <[z =y1})
which are characterized by (z,y)e 0 & Akz(x,y, 4, v) = (4, v) € 6, and
we saw that the maximal closed congruences (together with V) determine
the stalks. Recall that = was defined by =(z, y, %, v) =32 6(z, 9, 4, 2)A

Ab(x,y,,2).

5.1. LEMMA. Let f: A >>B be an embedding in I'Y.
(1) A congruence 0 is closed iff it preserves the discriminator, i.e.

(#,2), (9,9, (2,2") € 0& d(n,9,2,u) & 3(«, ¥, &', w) = (u,w') € 0.

(2) If @ is a closed congruence on B, then its restriction f~'(®) to A
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48 a closed congruence on A, which, in case D is mawimal, is either maxvimal
or V.

(3) If 6 is & closed congruence on A, then

{f0) : = {(u, v)] BE(fu,fy,u,v), (z,y)e 6}
18 a closed congruence on B whose restriction to A is 6.

Proof. We prove (1) in three steps.

(a) £ O preserves the discriminator, then (x,%) e 0& v(w,y,u, v)
= (4,v)ef. ’

(%, Y, %,0) =Tz 6(z,y, u,2)Ad(z,¥,0,2).

o(z, z,w,u) and é(z, 2, v,v) implies u6z6v.

MY (@ 9)e0&@,y,u,v) = (u,0) €0, then 6 = {(u,)| N
S [w=0]} where ¥ = "\{lz =yl (=,y)e6}. ¥ N < [u =0], then

K3 ;ézé] s U{l» #9]l (#,y) €6} and by the compactness of [u # 0]
we ge

[w0] sl #90V ... Ulw, #4,]  ((#,9) €0,i<n).

We claim [z =y,]n...Nn[», =¥,] = [#, = 9,] for some (@0, ¥o) € 0,
and then we are done as [2, = y,] < [4 = 0] <> 7 (%o, Yo, U, v). Clearly
we only have to consider the case of n = 2. By the patchwork propert;i
We can agsume @; = @, and we pick 2z such that

=wmlcle=y] and [z ¥l € [# = a,].

Thus [2 =y,] = [, = y11n[#; = ¥,] and (2 €0 impli
As (@1, 4,) € 0, we geb 20y,0, Gylf.y : (o 0 mples (& 3) <6
(e) 0 ={(u,v)] N = [u =]} preserves the discriminator. Assume
@, 2"), (4,9, (2,2') €0, (2, 9,2, u), 0@,y e u). As N [z = @1
Nly =y']0[z =21, we have for ieN either o, =4, &} =y or
#Y; & o #y;, and hence either u; =z, =4 — 1/ 7001" ;J, = 30 == wl
=1, and hence N < [ = u']. o ’ ' ' '
In order to prove (2) assume that 6 is a eloged congruence on B
(z,9) ef'(0) and AFz(z, ¥, u, v). As 7 is existential, we have Bev(fir fyy
fu, fv) and hence (fu,fv) e 6. Observe that F7H6) is maximal or 17, if%
for (z,y), (u,v) € 4> such that D(w, y)NDP(u,v) = A4 we have cither
(@, y) ef~(0) or (u,v) ef1(6). D@, )N D(u,v) = 4 is equivalent to

drds 8(z, ¥, u, ) A Sz, 9, v, 8)A o(r, s, u, v);

the same holds i and si i i impli
the e holds in B and since 6 is maximal, implies (fz, fu) € 6 or (fu, fv)

For (3) observe tha{; {f6)> is defined as a directed union of closed
congruences and thus is itself a closed congruence. Assume (u, )
’
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e f~YLFOD), i-e. for some (z, y) € 0 BEz(f», fy, fu, fo). Now let s,te A be
the unique (!) elements such that AFé(x,y, u, 8)A 6(z,y, v, ). We have
to prove s =t Now BFz(fx,fy, fu,fv) implies fs = ft and thus s =1
as f is one-to-one.

5.2. TEEOREM. Let & = SPUA, K" = {4 € & 4 algebraically closed
n K.

@) A = I

(2) I'w* < 8.

(3) A* awiomatic — I'A* = K.

Proof. (1): Axiom (D): u 8(w,9,2,w) is primitive-positive and
holds is some extensions of each 4 e &*; thus Ak(D) and K% < I'll.

(2): Assume that 4 e ' is embedded into some B e & satisfying
a primitive-positive formula = over 4. As each B € & is embedded into
some member of I'll, we can assume that B e I'fl and that each stalk
of B satisfies z. By 2.19 (1) we have to show that each stalk of A satisfies n.
Let A; be a stalk of A with the projection p;: A — 4; and &; =Kerp;.
@, is a maximal closed congruence on 4, and so {f®,) is a closed congruence
on B whose restriction to A is @;. For some a, b € A with (a, b) ¢ D; let
6, be a maximal closed congruence on B containing {f®,> but not containing
(fa,fb) (f: A B). We have f~'6; = &, since @; was maximal, and so
we have an embedding f,: A; ~>B;, 4, %" and B;kw and thus 4k

(3): If A* is axiomatic it has a set of V3-axioms which, by the tech-
nique of 3.4, can be transformed into a set £ of positive V3-axioms. As each
member of 9 can be embedded into some member of A%, each A e I'Y
is embeddable into some member of I'Y*, which then satisfies 2. Thus each
A e Q* satisties = and hence belongs to I'%*, which proves & = I'Il".

Now we want to concentrate on the existentially closed members
of I'Y. As in the above theorem, we want to use 2.19 in order to show
that certain structures in I'Yl are existentially closed. For aribtrary primi-
tive sentences we shall need 2.19 (3), which requires the assumption that
the base-space has no atoms. This can be expressed by the following
¥V d-sentence:

(a) VaVy z #y Judo u #Fort(, ¥, u,v)A

Adrds 8(u,v, @, 7)AS(U, v, Y, S)AT F#S.

COlearly, this axiom (a) is satistied by some extension of each 4 e R,
and thus (a) holds for all members of &*.

Let @(2) be a primitive formula with one free variable » such that
for some 4 € 9 with a singleton substructure {a} of A, AFp(a). Then each
Be& can be embedded into Bx A and thus satisfies the Y 3-sentence

(,n)  Vo,...Vzdudv Av(u,v,o, 0,,)Ae@E) (@, )ae #0,
—=<n

12 — Banach Center Publ. t. 8
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where ¢{2,) is the formula ¢(2,) with each equality p = ¢ replaced by
7(u, v, P, ¢). Let I',A* denote the class of all members of I'Y* satisfying (a)
and all (¢, n)’s.

Observe that the (p, #)’s disappear if no member of % has a singleton
substructure.
5.3. THEOREM. Let & = SPY, & = {4 € ]| 4 owist, closed in K}.

1)y 8" < I

(2) T ¥ = §*.

(3) U* aziomatic = I'A* = K*,

Proof. (1) is an immediate consequence of 5.2 (1) and (3) follows
from (2) and 5.2 (3) observing that I',¥%* is defined by ¥ J-axioms relative
to I'W*. Tt remains to prove (2): Assume 4 e I'\* and f: 4 —»Be &
and Bk where ¢ is a5 in 2.19. As in 5.2, we can assume B e 'Yl and hence B
satisfies [p,] = X(B) and [p,] @ for i< m. If we can show the same
for 4, we are done because then by 2.19 (3) Ak g. As @y, Is primitive-positive
and BFg,, , we have AFg, by 5.2 (2). Pick a stalk B; of B with projection
¢;: B—» B; such that Bk, (for @s, ..., @,_; DProceed gimilarly). Let
9, =f'(Kerg,). ¥ &, is maximal, we have Jiy: 4~ B; and A;Fg,,
as 4; e ¥*. Now assume &, = P. Then B; has a singleton-substructure
{fay, ..., fo,} where ay, ..., a, are the members of A occurring in ¢,, such
that

Bjkfay = fayA ... Afay_y = far A gy(fay, ..., fay).

A el implies AV, ...Vzdwude ATy 0, 0, 2,) A @y (@4, .., @)
|k

(w,))Au v and thus [p(ay,...,0,)] #0 in particular. This proves
AFp, and so 4 is existentially closed. -

5.4. CoROLLARY. Let U be an inductive aziomatic class of structures
such that
(1) U has a discriminator-formula 4,
(i) A Ras algebraically defined relations,
(iii) A contains all members of HSPHU, for which 6 is a discriminator
formula,
(iv) A has a model-companion UA*.
Then & = SPY has a model companion K* which oquals 0%,

Observe that %* has a model-complete theory and so I'Y* = I,
So if A is (up to isomorphism) a finite set of finite structures, we can also
assume that we have constants for all elements of members of A, and thus
Wwe can assume d to be an I V-formula and the relations can he defined by
universal formulas. In any case examples 8.7(4)—(6) satisty the assumption
of 5.4 and we get important classes of structures having model-companions.
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