lm UNIVERSAL ALGEBRA AND APPLICATIONS
BANACH CENTER PUBLICATIONS, VOLUME 9
PWN—POLISE SCIENTIFIC PUBLISHERS
WARSAW 1982

THE FUNCTOR K, FOR THE RING OF INTEGERS
OF A NUMBER FIELD

JERZY BROWKIN

Institute of Mathematics, Warsaw University, Warsaw, Poland

Let Op be the ring of integers of a number field F. In the present
paper we give some results on the group K,0p, where K, is the functor
of Milnor.

D. Quillen proved [7] that the sequence

(1) 0 >EK,0p ~EF 5| |Fr>0
vfin

is exact, where the sum is extended over all finite places » of the number
field F, and the homomorphism v is defined by tame symbols:

{a, 8} — (a, b), = (—1)"@C)g®p—t@Ymod v).

The group K,Oz is finite (see H. Garland [4]). C. Moore proved [6] that
the following sequence is exact
| sy 5 w0,

|
vnonc.

(2) 0> KF > K, F >

where the sum is extended over all non-complex places v of F, u (resp. u,)
is the group of roots of unity in ¥ (resp. in the completion F,); the homo-
morphism 7 is defined by Hilbert symbols {a, b} > [a, 8], (for the defi-
nition see e.g. [5], §15), K,F = Kery, and the homomorphism 4 is given
by the formula
d((au)vmmo.) = |——I avmvlm7
Ynonc.

where m = |ul|, m, = |u,|.
It is known [1] that for any finite place v

(®) | [a, BTN = (a, B),

[187]
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holds, where Nv = |F,| is the number of elements of the residue class
tield F,. Consequently Kern < Kerz, ie. the Hilbert kernel &,F is a
subgroup of the tame kernel K,0Op.

We shall give a description of the quotient group K,0p/R,F for any
number field F.

First we determine places v satisfying m, = No—1. For a finite
place v let p be the prime number satisfying o(p) > 0; then we write
o]p.

TEEOREM 1. For any field B satisfying F < BEc F, let ugy be the

group of roots of unity in B, and let mg = |ugl. Then for every finite place v
of B we have

mgtNo—1 <, el,
where , is a primitive p-th root of unity and vlp.

Proof. =. Let £ be a generator of ug, and 5 =¥ Then g
=1 (mod v) and n % 1 by assumption. Hence

0 =1+n+n2+ ... +4"87" = mgz(mod v).

Consequently plmg, ie. {,eH.

<. From plmgz and p|No it follows that mgytNo—1.

COROLLARY 1. (i) mtNv—1 « {, € F,

(ii) m, # No—1 < mgNv—1 <, eF,.

Proof. Put in Theorem 1L F = F and E = F,, respectively. Moreover,
from Nov—1lm, it follows the first part of (ii).

COROLLARY 2. If m, # Nv—1, then p—1 divides the ramification
index e,(F[Q). Consequently p =2 or v ramifies.

Proof. From Corollary 1 we have {, € F,. Since ¢,(F,/F) =1 and
e{@(5,)/Q) = p—1, in view of the diagram

Q)

> B,
i 1
Q ———F
we obtain p —Lle,(F/Q).

COROLLARY 3. For almost all places v the Hilbert symbol [a, b], 18
equal to the tame symbol (a, b),.

THEOREM 2. The group K,04/K,F is isomorphic to the abelian group
defined by the generators g,, where v runs through all real places of F, and

icm

©
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such finite places that &, € F, for v|p, and relations
g =1 for v real,
gro/ W=D — 1 for v findte,

d | g™ =1.

re a]l v finite
¢ peF forvip

c——

Remark. In the last relation in general not all generators oceur,
because it can happen that {, e F, and {, ¢ F for o[p.

Proof. We define a homomorphism

|l —>| IF
voonc.
1 if v is real,
Haw) = {aﬁ‘v"“"’") if v is finite,

where a, € u,.

From (1) and (2) we obtain the commutative diagram with exact
rows and columns:

0 0
4 +
0 — KF —>K,F ->Imyn -0
it Jid 7
0—>K20F—>K2F—>| | Fy =0
viin.
4
0 0

By the snake lemma we conclude that the groups K,0/SF and
Im#nnKerd are isomorphiec.

Let £, be a generator of the group u, for non-complex ». We may
assume that [™™ = £, where (, is a fixed generator of the group pu.
From the definition of A it follows that the group u,NKeri is generated
by

L,y if o is real,
o=t if v is finite.
Consequently
Kerd =| |puX | IMN”'

vreal

From Corollary 2 it follows that the group Ker is finite. The sequence
(4) 0 — Kerd, »Kerlfl—‘»,u
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is exact, where d, is the homomorphism d|Ker 1. Hence from (2) we deduce -

that ‘
Kerd, = KerdnKerl = ImnnKerl.

By the Z-injectivity of @/Z from (4) we obtain

() 0« Homy(Kerd,, @/2) < Hom,(Ker2, Q/Z) < Hom,(u, Q/2),

where d}(¢). = god, for ¢ e Homy,(u, Q/Z).
Let us consider elements g, e Hom,(Keri,@/Z) defined by the

conditions

for w =,

1
Go(Ly) = {3 for w £, if w is real,
No—1 for w=w
go(E3"1) =l m, " it w is finite.
0 for w #o,

Almost all elements g, are trivial, and Hom,(Kerl, Q/Z) is the direct
sum of groups generated by elements g,. The element g, is of order 2,

it o is real, and of order —
Nv—

T if o is finite.

The group Homy(u, @/Z) is generated by the element g satisfying
9(lm) = 1/m. Consequently the group Imd; is generated by the element
a;(9) = god,. By a direct computation one can verify that
6 i) =T |gpm.

vanonec,
It suffices to compare the values of both sides of (6) on the generators
of the group Keri.

From (5) it follows that the group Hom,(Kerd,, Q/Z), isomorphic
?o Kerd,, is also isomorphic to Homy (Kerl,Q/Z)/Imdy . Hence it is
isomorphic to the abelian group defined by the generators gy, Where v
runs through non-complex places of ¥, and relations:

M g» =1 for o real, g/ _1  for o finite,
(8) { Ig;n‘v,'m _____1

vnone,
If v is real, then m, =m = 2; if o is finite and m|Nv~1, then
mu
No—1

m
—"T" - Thus by (7) we have g7+ = 1 and (8) takes the form

| 190] |9
real v tinite
miNv—1

In view of Corollary 1 the result follows.

z‘ulm =1.

© ©
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Applying Theorem 2 we determine the group K,0z/R,F in the fol-
lowing cases: F = Q, F =Q(V/d) and F = Q(Z,), where p is an odd prime
number. The results are given in Table 1 (pp. 193-194). In the column
denoted by “v” there are given all real places, and all finite places satisfying
¢, € F, for v]|p. If there is only one such place, we denote it by o or p,
if there are several such places we denote them by co,, 0oy, ... 0T 9y, Py, ...

Let F =Q(Vd), where d is a squarefree integer. Since 6,(F/Q) < 2,
it follows from Corollary 2 that {, € F, implies p < 8. Evidently ¢, = —1
e F, for every v. It is easy to verify that {; e F, for 0|3 if and only if

= —3(mod9). Thus in the case d % —3 (mod 9) the group K,05/R,F
hags generators g,, where o is real or /2. In the case d = —3 (mod 9)
there is one more generator g, corresponding to the place v satisfying
?|3.

In the case F = @((,) the argument is similar.

The description of the group K,0x/R,F in the case F = Q((,) has
been applied by St. Chatadus [2] to obtain an estimation from below of
order of Kz('ZC'p), where Z(, is the group ring of the cyclic group C,
of order p. He proved that

|E,(ZC,)] > 27,

where r is the number of prime ideals in @ ({,) dividing 2. For a non-cyclic
elementary abelian p-group @ an estimation of order of K,(Z@) has
been given by R. K. Dennis, M. E. Keating and M. R. Stein [3].

For any finite abelian group 4 let r,(4) = dimp, (F,®;4), and let 4,
be the subgroup of A consisting of elements of order < 2. Evidently
r4(4) = 75(4,).

For a number field F lét Cl(F) be its class group, and let Cl,(F)
be the subgroup of Cl(F) generated by classes containing prime ideals
dividing 2. Let j = r,(CL(F)/CL(F")).

Denote by 8(2) the set of all archimedean places of F and of finite
Places v satistying v|2. Let 7y, r;, r be respectively the number of real
places, of complex places, and of finite places dividing 2.

- THEOREM 3. For every number field F' we have
73 (Ky0p) =1 +r—147.

Proof. Let I' = {a e F*: {~1,a} eKerz} and 4 ={aeF*: {—1,a}
=1}. J. Tate proved [9] that every element of order 2 in K,F has
the form {1, a} for a e F*. Thus the groups I'/4 and (K,0p), are iso-
morphic, and I'=> 4 o F*. Consequently 4/F* and I'/F™ are linear
spaces over F,.

J. Tate proved [97] that ry(4/F*?) = r,-+1. Consequently it is sufficient
to prove that r,(I|F*?) = ¢y4-r,4+7+].
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Let 4; (i =1,2, ..., ) be a basis of (CL(F) /CL,(F)),, and let ¥, e CL(F)
represent 4, and let an ideal g; of the ring Oy belong to the class ;. Then
&) a; = (a;)b;,
where a; € F* and v(b;) = 0 for v ¢ 8(2).

From the Dirichlet-Hasse~Chevalley theorem on units it follows that

the group
U@2) = {s e F*: v(a) =0 for v ¢ §(2)}

is the direct sum of the group # and a free abelian group of the rank
t =ry+ry+r—1L. Let ¢,4,...,5 be a free basis of this group. We shall
prove that the elements

(10) Ly E11 E25 vy gy Byy Qoy vvey @
form a basis of I'/F™*.

For any finite place v we have (—1,¢,), =1, (—1, &), =1 and
(-1, a;), = 1, because v(a;) is even for v ¢ §(2) in view of (9). Consequently
elements (10) belong to I'."We shall prove that they are linearly indepen-
dent over F,.

Suppose that for some a, ay, a5y ..., oy, By, fay +. .y Bi=0or 1 and
b eF* we have

(11) Cmetleg? ... etafial: ... afi = b,

Then the class of the ideal afiaf? ... a%(8)™* belongs to Ol,(F) and conse-
quently Af14%2 ... 4% < 1. Hence f, =, = ... = B; = 0 and (11) takes
the form

{meiteg? oo et = b2,
It follows that ¢« =a; = ay = ... = a =0.

Now we shall prove that the elements (10) generate I'/F™. If ¢ € I,
then 1 = (—1,a), =(—1® (modv) for every finite place ». Thus
2v(a) for » ¢ 8(2). Consequently (a) = o’h, where the ideal b satisfies
2(b) =0 for v¢8(2). Let A be the class containing a, and let A €
CL(F)[Cly(F) be the element represented by . Since M = [b]* e Cly(F)
then A is a product of some 4 )s. Let e.g. 4 = A4, 4,... 4,. Then U =
Ay ... Ay-B, where BeClL(F), and consequently a — aya, v b (o)
for some ¢ e F* and b satistying o(5) = 0 for » ¢ §(2).

Hence (@) =0’ = (a;)(as) ... (@,)b,b; ... b;5*(¢)* and it follows that
40485 ... 0,6")™ € U(2). Thus there exist y, y,, ys, ..., ; € Z such that

@ =040y ... G L ENELR .. gt
COROLLARY 1. For every number field F we have
2(RF) = 11+7 —1 4§ —1, (K, 05/, F).
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Proof. For the exact sequence 0 -4 — B — ( —0 of finite abelian
groups we have evidently 7,(B)<7y(4d)+7,(C). Hence 1,(K,05)
L 73(KF) + 7, (K02 /R, F), and corollary follows.

COROLLARY 2. If F' = Q(Vd), d squarefree, satisfy

1 if d =5 (mod 8),
ro{OLF)) =18  if d =T (mod 8) and d< 0,
2 otherwise,
then r,(K.F) > 1.

Proof. If d =5 (mod 8), then 2 is inert and hence Cl,(¥) = 0. Thus
j =1,(CL(F)). From Table 1 we have r,(K,0p/R,F) =r;+r—1, and the
corollary follows from Corollary 1.

‘We proceed analogously in the remaining cases, due to the observation
that j = r,(CL{F)) —1, if 2 splits or ramifies.

Exaweres. 1. (J. Tate [8]). Let d = —35 or more generally let
d =5 (mod 8) have at least two prime factors. Then the class number
of the field F =Q(1/E) is even and from Corollary 2 we obtain that
75 (S F) = 1.

9. Lot F = Q({,,). Tbis known that 2 is inert in F' and CL(F) = (Z/22)*.
Then CL,(F) = 0 and from Corollary 1 and Table 1 we obtain r,(K,F) > j
= r,(CL(F)) = 3.

Table 1
F m| v my | No Relations " +17 E,05/8,F
1. Q 2| o 2 ~ g =g=1 1 Z[2Z
2 2 2 | googp=1
2.1 Q@) i | 2 4 2 |gh=1¢g=1 0 0
s.lev=3) |6 | 2 6 4 |g=g=1 0 0
3 6 3 | ggs =1
Q(Vd), d<0
ds -1,
-3
d = —3(9) ‘
4.0 d=1(8) |2 2, 2 2 gy =g, =1 1 Z[2Z
2 2 2 | gogp, =1
5.|d=5(8) |2 6 4 |@=Lg=1 0 0
6.|d=3(8) |2 2 2 2 |gi=1g=1 0 0
d=2(4)
7lda=768) |2 | 2 4 2 |g=1gi=1 0 Z[3Z

13 — Banach Center Publ. {. 9
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Table 1, cont.
F m| v my | Nv Relations ﬁ‘l“’ Ky 0p/S,F
Q(Vd), d>0
d = —3(9)
4l d=1(8) |2 | oo 2 - ggﬂ =g, =1 3 (Z]22)
00y 2 | =g =g5=1
2y 2 2 | ooy G0y G2y G2, =1
2, 2 2
5ld=5(8) [2 | oo 2 = | Gooy = Gy =1 2 (Z]22)2
g 2 - 92 =1
2 6 gm1°gw2'gg =1
6l d=3(8) |2 | oo 2 — | gy =%y =1 2 (Z)22y
d=2(4) 00, 2 —|g=
2 2 2 | 9o Yooy =1
T d=T(8) |2 | oo 2 = | Ghoy = 9%y =1 2 (Z122)®
D(Z/4Z)
00, 2 - g; =1
2 4 2 yool'yw2'9§ =1
8. QL) | 2 | 22-1) 2 | g =1 r—1| (Z/2Z)!
p odd 2, |207-D| 2 | g8 =1
prime O
2 | 202/-1)| ¥ | D g ey
p |pl-1)|p | =17
xgi(p_l) =1

If d = —3 (mod 9), then in the lines 4.—7. and 4’. —7’. of the table one should
add the following line

L [ [ o |s]a=2 [ |

and in the lagt column one should add the direct summand Z/3Z.
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