UNIVERSAL ALGEBRA AND APPLICATIONS BANACH CENTER PUBLICATIONS, VOLUME 9 PWN-POLISH SCIENTIFIC PUBLISHERS WARRAW 1982

THE FUNCTOR K_2 FOR THE RING OF INTEGERS OF A NUMBER FIELD

JERZY BROWKIN

Institute of Mathematics, Warsaw University, Warsaw, Poland

Let O_F be the ring of integers of a number field F. In the present paper we give some results on the group K_2O_F , where K_2 is the functor of Milnor.

D. Quillen proved [7] that the sequence

$$0 \to K_2 O_F \to K_2 F \stackrel{\tau}{\to} \bigsqcup_{v \in \mathbb{N}} \overline{F}_v^* \to 0$$

is exact, where the sum is extended over all finite places v of the number field F, and the homomorphism τ is defined by tame symbols:

$$\{a, b\} \mapsto (a, b)_v = (-1)^{v(a)v(b)} a^{v(b)} b^{-v(a)} \pmod{v}.$$

The group $K_2 O_F$ is finite (see H. Garland [4]). C. Moore proved [6] that the following sequence is exact

(2)
$$0 \to \Re_2 F \to K_2 F \xrightarrow{\eta} \bigsqcup_{v \text{ non c.}} \mu_v \xrightarrow{d} \mu \to 0,$$

where the sum is extended over all non-complex places v of F, μ (resp. μ_v) is the group of roots of unity in F (resp. in the completion F_v); the homomorphism η is defined by Hilbert symbols $\{a,b\} \mapsto [a,b]_v$ (for the definition see e.g. [5], § 15), $\Re_2 F = \operatorname{Ker} \eta$, and the homomorphism d is given by the formula

$$d((a_v)_{v \text{ non c.}}) = \overline{|_{v \text{ non c.}}} a_v^{m_v/m},$$

where $m = |\mu|, m_n = |\mu_n|.$

11:100

It is known [1] that for any finite place v

$$[a, b]_v^{m_v/(Nv-1)} = (a, b)_v$$

holds, where $Nv = |\overline{F}_v|$ is the number of elements of the residue class field \overline{F}_v . Consequently $\operatorname{Ker} \eta \subset \operatorname{Ker} \tau$, i.e. the Hilbert kernel $\mathfrak{R}_2 F$ is a subgroup of the tame kernel $K_2 O_F$.

We shall give a description of the quotient group K_2O_F/\Re_2F for any number field F.

First we determine places v satisfying $m_v = Nv - 1$. For a finite place v let p be the prime number satisfying v(p) > 0; then we write v|p.

THEOREM 1. For any field E satisfying $F \subset E \subset F_v$ let μ_E be the group of roots of unity in E, and let $m_E = |\mu_E|$. Then for every finite place v of F we have

$$m_E$$
† $Nv-1 \Leftrightarrow \zeta_p \in E$,

where ζ_p is a primitive p-th root of unity and v|p.

Proof. \Rightarrow . Let ζ be a generator of μ_E , and $\eta = \zeta^{Nv-1}$. Then $\eta \equiv 1 \pmod{v}$ and $\eta \neq 1$ by assumption. Hence

$$0 = 1 + \eta + \eta^2 + \ldots + \eta^{m_E-1} \equiv m_E \pmod{v}$$
.

Consequently $p|m_E$, i.e. $\zeta_p \in E$.

 \Leftarrow . From $p|m_E$ and p|Nv it follows that $m_E \nmid Nv - 1$.

COROLLARY 1. (i) $m \nmid Nv - 1 \Leftrightarrow \zeta_n \in F$,

(ii)
$$m_n \neq Nv - 1 \Leftrightarrow m_n \nmid Nv - 1 \Leftrightarrow \zeta_n \in F_n$$
.

Proof. Put in Theorem 1 E = F and $E = F_v$, respectively. Moreover, from $Nv - 1|m_v$ it follows the first part of (ii).

COROLLARY 2. If $m_v \neq Nv-1$, then p-1 divides the ramification index $e_n(F|Q)$. Consequently p=2 or v ramifies.

Proof. From Corollary 1 we have $\zeta_p\in F_v$. Since $e_v(F_v/F)=1$ and $e_v(Q(\zeta_p)/Q)=p$ —1, in view of the diagram

$$\begin{array}{ccc} Q(\zeta_p) & \longrightarrow F_v \\ \uparrow & & \uparrow \\ Q & \longrightarrow F \end{array}$$

we obtain $p-1|e_v(F/Q)$.

· Officeres

COROLLARY 3. For almost all places v the Hilbert symbol $[a,b]_v$ is equal to the tame symbol $(a,b)_v$.

THEOREM 2. The group K_2O_F/\Re_2F is isomorphic to the abelian group defined by the generators g_v , where v runs through all real places of F, and

such finite places that $\zeta_p \in F_v$ for v|p, and relations

Remark. In the last relation in general not all generators occur, because it can happen that $\zeta_n \in F_n$ and $\zeta_n \notin F$ for v|p.

Proof. We define a homomorphism

$$\lambda \colon ig|_{v ext{ non o.}} \mu_v o ig|_{v ext{ fin.}} \overline{F}_v^*,$$
 $\lambda(a_v) = egin{cases} 1 & ext{ if } v ext{ is real,} \ a_v^{m_v \mid (Nv-1)} & ext{ if } v ext{ is finite,} \end{cases}$

where $a_v \in \mu_v$.

From (1) and (2) we obtain the commutative diagram with exact rows and columns:

$$\begin{array}{c} 0 & 0 \\ \downarrow & \downarrow \\ 0 \rightarrow \mathcal{R}_2 F \longrightarrow K_2 F \rightarrow \operatorname{Im} \eta \rightarrow 0 \\ \downarrow & \downarrow^{\operatorname{id}} & \downarrow^{\lambda} \\ 0 \rightarrow K_2 O_F \rightarrow K_2 F \rightarrow \bigcup_{v \text{ fin.}} |\overline{F}_v^* \rightarrow 0 \\ \downarrow & \downarrow \\ 0 & 0 \end{array}$$

By the snake lemma we conclude that the groups K_2O_F/\Re_2F and $\operatorname{Im}\eta\cap\operatorname{Ker}\lambda$ are isomorphic.

Let ζ_v be a generator of the group μ_v for non-complex v. We may assume that $\zeta_v^{m_v/m} = \zeta_m$, where ζ_m is a fixed generator of the group μ . From the definition of λ it follows that the group $\mu_v \cap \operatorname{Ker} \lambda$ is generated by

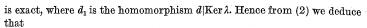
$$\zeta_v$$
, if v is real,
 ζ_v^{Nv-1} , if v is finite.

Consequently

$$\operatorname{Ker} \lambda = \bigsqcup_{v \, \operatorname{real}} \mu_v imes \bigsqcup_{v \, \operatorname{fin.}} \mu_v^{Nv-1}$$
.

From Corollary 2 it follows that the group $\operatorname{Ker} \lambda$ is finite. The sequence

$$(4) 0 \to \operatorname{Ker} d_1 \to \operatorname{Ker} \lambda \xrightarrow{d_1} \mu$$



$$\operatorname{Ker} d_1 = \operatorname{Ker} d \cap \operatorname{Ker} \lambda = \operatorname{Im} \eta \cap \operatorname{Ker} \lambda$$
.

By the Z-injectivity of Q/Z from (4) we obtain

(5)
$$0 \leftarrow \operatorname{Hom}_{Z}(\operatorname{Ker} d_{1}, Q/Z) \leftarrow \operatorname{Hom}_{Z}(\operatorname{Ker} \lambda, Q/Z) \xleftarrow{d_{1}^{*}} \operatorname{Hom}_{Z}(\mu, Q/Z),$$

where $d_{1}^{*}(\varphi) = \varphi \circ d_{1}$ for $\varphi \in \operatorname{Hom}_{Z}(\mu, Q/Z).$

Let us consider elements $g_v \in \operatorname{Hom}_Z(\operatorname{Ker}\lambda, Q/Z)$ defined by the conditions

$$g_v(\zeta_w) = egin{cases} rac{1}{2} & ext{for} & w = v, \ 0 & ext{for} & w
eq v, \end{cases}$$
 if w is real,

$$g_v(\zeta_w^{Nw-1}) = egin{cases} rac{Nv-1}{m_v} & ext{for} & w=v, \ 0 & ext{for} & w
eq v, \end{cases}$$
 if w is finite.

Almost all elements g_v are trivial, and $\operatorname{Hom}_Z(\operatorname{Ker}\lambda, Q/Z)$ is the direct sum of groups generated by elements g_v . The element g_v is of order 2, if v is real, and of order $\frac{m_v}{Nv-1}$, if v is finite.

The group $\operatorname{Hom}_Z(\mu,Q/Z)$ is generated by the element g satisfying $g(\zeta_m)=1/m$. Consequently the group $\operatorname{Im} d_1^*$ is generated by the element $d_1^*(g)=g\circ d_1$. By a direct computation one can verify that

$$d_1^*(g) = \overline{\prod_{v \text{ non c.}} g_v^{m_v/m}}.$$

It suffices to compare the values of both sides of (6) on the generators of the group $\text{Ker}\lambda$.

From (5) it follows that the group $\operatorname{Hom}_Z(\operatorname{Ker} d_1, Q/Z)$, isomorphic to $\operatorname{Ker} d_1$, is also isomorphic to $\operatorname{Hom}_Z(\operatorname{Ker} \lambda, Q/Z)/\operatorname{Im} d_1^*$. Hence it is isomorphic to the abelian group defined by the generators g_v , where v runs through non-complex places of F, and relations:

(7)
$$g_v^2 = 1$$
 for v real, $g_v^{m_v/(Nv-1)} = 1$ for v finite,

$$(8) \qquad \qquad \overline{|}_{v \text{ non c}} g_v^{m_v/m} = 1.$$

If v is real, then $m_v=m=2$; if v is finite and m|Nv-1, then $\frac{m_v}{Nv-1}\left|\frac{m_v}{m}\right|$. Thus by (7) we have $g_v^{m_v/m}=1$ and (8) takes the form

$$\overline{|\hspace{-0.1em}|\hspace{-0.1em}|} g_v \overline{|\hspace{-0.1em}|\hspace{-0.1em}|} g_v^{m_v/m} = 1.$$

In view of Corollary 1 the result follows.

Applying Theorem 2 we determine the group K_2O_F/\Re_2F in the following cases: $F=Q, F=Q(\sqrt{d})$ and $F=Q(\zeta_p)$, where p is an odd prime number. The results are given in Table 1 (pp. 193–194). In the column denoted by "v" there are given all real places, and all finite places satisfying $\zeta_p \in F_v$ for v|p. If there is only one such place, we denote it by ∞ or p,

if there are several such places we denote them by $\infty_1, \infty_2, \ldots$ or p_1, p_2, \ldots Let $F = Q(\sqrt{d})$, where d is a squarefree integer. Since $e_v(F|Q) \leqslant 2$, it follows from Corollary 2 that $\zeta_p \in F_v$ implies $p \leqslant 3$. Evidently $\zeta_2 = -1 \in F_v$ for every v. It is easy to verify that $\zeta_3 \in F_v$ for v|3 if and only if $d \equiv -3 \pmod{9}$. Thus in the case $d \not\equiv -3 \pmod{9}$ the group $K_2O_F|R_2F$ has generators g_v , where v is real or v|2. In the case $d \equiv -3 \pmod{9}$ there is one more generator g_v corresponding to the place v satisfying v|3.

In the case $F = Q(\zeta_p)$ the argument is similar.

The description of the group K_2O_F/\Re_2F in the case $F=Q(\zeta_p)$ has been applied by St. Chaładus [2] to obtain an estimation from below of order of $K_2(ZC_p)$, where ZC_p is the group ring of the cyclic group C_p of order p. He proved that

$$|K_2(ZC_p)| \geqslant 2^r,$$

where r is the number of prime ideals in $Q(\zeta_p)$ dividing 2. For a non-cyclic elementary abelian p-group G an estimation of order of $K_2(ZG)$ has been given by R. K. Dennis, M. E. Keating and M. R. Stein [3].

For any finite abelian group A let $r_2(A) = \dim_{F_2}(F_2 \otimes_Z A)$, and let A_2 be the subgroup of A consisting of elements of order ≤ 2 . Evidently $r_2(A) = r_2(A_2)$.

For a number field F let $\mathrm{Cl}_2(F)$ be its class group, and let $\mathrm{Cl}_2(F)$ be the subgroup of $\mathrm{Cl}(F)$ generated by classes containing prime ideals dividing 2. Let $j = r_2(\mathrm{Cl}(F)/\mathrm{Cl}_2(F))$.

Denote by S(2) the set of all archimedean places of F and of finite places v satisfying v|2. Let r_1 , r_2 , r be respectively the number of real places, of complex places, and of finite places dividing 2.

THEOREM 3. For every number field F we have

$$r_2(K_2O_F) = r_1 + r - 1 + j.$$

Proof. Let $\Gamma = \{a \in F^* \colon \{-1, a\} \in \operatorname{Ker} r\}$ and $\Delta = \{a \in F^* \colon \{-1, a\} = 1\}$. J. Tate proved [9] that every element of order 2 in K_2F has the form $\{-1, a\}$ for $a \in F^*$. Thus the groups Γ/Δ and $(K_2O_F)_2$ are isomorphic, and $\Gamma \supset \Delta \supset F^{*2}$. Consequently Δ/F^{*2} and Γ/F^{*2} are linear spaces over F_2 .

J. Tate proved [9] that $r_2(A/F^{*2}) = r_2 + 1$. Consequently it is sufficient to prove that $r_2(F/F^{*2}) = r_1 + r_2 + r + j$.

Let A_i $(i=1,2,\ldots,j)$ be a basis of $(\operatorname{Cl}(F)/\operatorname{Cl}_2(F))_2$, and let $\mathfrak{A}_i \in \operatorname{Cl}(F)$ represent A_i and let an ideal \mathfrak{a}_i of the ring O_F belong to the class \mathfrak{A}_i . Then

$$\mathfrak{a}_i^2 = (a_i)\mathfrak{b}_i,$$

where $a_i \in F^*$ and $v(b_i) = 0$ for $v \notin S(2)$.

From the Dirichlet-Hasse-Chevalley theorem on units it follows that the group

$$U(2) = \{a \in F^*: v(a) = 0 \text{ for } v \notin S(2)\}$$

is the direct sum of the group μ and a free abelian group of the rank $t=r_1+r_2+r-1$. Let $\varepsilon_1,\,\varepsilon_2\,,\ldots,\,\varepsilon_t$ be a free basis of this group. We shall prove that the elements

(10)
$$\zeta_m, \, \varepsilon_1, \, \varepsilon_2, \, \ldots, \, \varepsilon_t, \, a_1, \, a_2, \, \ldots, \, a_i$$

form a basis of Γ/F^{*2} .

For any finite place v we have $(-1, \zeta_m)_v = 1$, $(-1, \varepsilon_k)_v = 1$ and $(-1, a_i)_v = 1$, because $v(a_i)$ is even for $v \notin S(2)$ in view of (9). Consequently elements (10) belong to Γ . We shall prove that they are linearly independent over F_2 .

Suppose that for some $a, a_1, a_2, ..., a_t, \beta_1, \beta_2, ..., \beta_j = 0$ or 1 and $b \in F^*$ we have

(11)
$$\zeta_m^{\alpha} \varepsilon_1^{\alpha_1} \varepsilon_2^{\alpha_2} \dots \varepsilon_r^{\alpha_t} a_1^{\beta_1} a_2^{\beta_2} \dots a_r^{\beta_j} = b^2.$$

Then the class of the ideal $\mathfrak{a}_1^{\beta_1}\mathfrak{a}_2^{\beta_2}\ldots\mathfrak{a}_j^{\beta_j}(b)^{-1}$ belongs to $\mathrm{Cl}_2(F)$ and consequently $A_1^{\beta_1}A_2^{\beta_2}\ldots A_j^{\beta_j}=1$. Hence $\beta_1=\beta_2=\ldots=\beta_j=0$ and (11) takes the form

$$\zeta_m^a \varepsilon_1^{a_1} \varepsilon_2^{a_2} \dots \varepsilon_t^{a_t} = b^2$$
.

It follows that $a = a_1 = a_2 = \dots = a_t = 0$.

Now we shall prove that the elements (10) generate Γ/F^{*2} . If $a \in \Gamma$, then $1 = (-1, a)_v \equiv (-1)^{v(a)}$ (mod v) for every finite place v. Thus 2|v(a) for $v \notin S(2)$. Consequently $(a) = a^2b$, where the ideal b satisfies v(b) = 0 for $v \notin S(2)$. Let $\mathfrak A$ be the class containing $\mathfrak A$, and let $A \in \mathrm{Cl}(F)/\mathrm{Cl}_2(F)$ be the element represented by $\mathfrak A$. Since $\mathfrak A^2 = [b]^{-1} \in \mathrm{Cl}_2(F)$ then A is a product of some A_i 's. Let e.g. $A = A_1A_2 \dots A_h$. Then $\mathfrak A = \mathfrak A_1\mathfrak A_2 \dots \mathfrak A_h$ $\mathfrak B$, where $\mathfrak B \in \mathrm{Cl}_2(F)$, and consequently $\mathfrak A = \mathfrak A_1\mathfrak A_2 \dots \mathfrak A_h$ for some $c \in F^*$ and b satisfying v(b) = 0 for $v \notin S(2)$.

Hence $(a) = a^2b = (a_1)(a_2)\dots(a_h)b_1b_2\dots b_h\overline{b}^2(c)^2$ and it follows that $a(a_1a_2\dots a_hc^2)^{-1}\in U(2)$. Thus there exist $\gamma,\gamma_1,\gamma_2,\dots,\gamma_t\in Z$ such that

$$a = a_1 a_2 \dots a_h \zeta_m^{\gamma} \varepsilon_1^{\gamma_1} \varepsilon_2^{\gamma_2} \dots \varepsilon_t^{\gamma_t} \cdot c^2.$$

COROLLARY 1. For every number field F we have

10-10%

$$r_2(\Re_2 F) \geqslant r_1 + r - 1 + j - r_2(K_2 O_F / \Re_2 F)$$
.

Proof. For the exact sequence $0 \to A \to B \to C \to 0$ of finite abelian groups we have evidently $r_2(B) \leqslant r_2(A) + r_2(C)$. Hence $r_2(K_2O_F) \leqslant r_2(K_2F) + r_2(K_2O_F/S_2F)$, and corollary follows.

COROLLARY 2. If $F = Q(\sqrt{d})$, d squarefree, satisfy

$$r_2(\operatorname{Cl}(F)) \geqslant \begin{cases} 1 & \text{if } d \equiv 5 \pmod{8}, \\ 3 & \text{if } d \equiv 7 \pmod{8} \text{ and } d < 0, \\ 2 & \text{otherwise.} \end{cases}$$

then $r_2(\Re_2 F) \geqslant 1$.

Proof. If $d\equiv 5\pmod 8$, then 2 is inert and hence $\mathrm{Cl}_2(F)=0$. Thus $j=r_2(\mathrm{Cl}(F))$. From Table 1 we have $r_2(K_2O_F/\Re_2F)=r_1+r-1$, and the corollary follows from Corollary 1.

We proceed analogously in the remaining cases, due to the observation that $j \ge r_2(\operatorname{Cl}(F)) - 1$, if 2 splits or ramifies.

EXAMPLES. 1. (J. Tate [8]). Let d=-35 or more generally let $d\equiv 5\pmod 8$ have at least two prime factors. Then the class number of the field $F=Q(\sqrt d)$ is even and from Corollary 2 we obtain that $r_3(\mathfrak{R}_2F)\geqslant 1$.

2. Let $F = Q(\zeta_{29})$. It is known that 2 is inert in F and $\operatorname{Cl}(F) = (Z/2Z)^3$. Then $\operatorname{Cl}_2(F) = 0$ and from Corollary 1 and Table 1 we obtain $r_2(\Re_2 F) \geqslant j = r_2(\operatorname{Cl}(F)) = 3$.

Table 1

	F	m	v	m_v	Nv	Relations	$\begin{vmatrix} r_1 + r \\ -1 \end{vmatrix}$	$K_2O_F/\Re_2 F$
1.	Q	2	$_{2}^{\infty}$	2 2	2	$g_{\infty}^2 = g_2^2 = 1$ $g_{\infty} \cdot g_2 = 1$	1	Z/2Z
2.	Q(i)	4	2	4	2	$g_2^4 = 1, \ g_2 = 1$	0	0
3.	$Q(\sqrt{-3})$	6	2 3	6 6	4 3	$g_2^2 = g_3^3 = 1 \ g_2g_3 = 1$	0	0
	$Q(\sqrt{d}), d < 0$ $d \neq -1,$ -3							1
4.	$d \not\equiv -3(9)$ $d \equiv 1 (8)$	2	$\begin{matrix}2_1\\2_2\end{matrix}$	2 2	2 2	$egin{array}{c} g_{2_1}^2 = g_{2_2}^2 = 1 \ g_{2_1}g_{2_2} = 1 \end{array}$	1	Z/2Z
5.	$d \equiv 5 (8)$	2	2	6	4	$g_2^2 = 1, g_2^3 = 1$	0	0
6.	$\begin{array}{c} d \equiv 3 \ (8) \\ d \equiv 2 \ (4) \end{array}$	2	2	2	2	$g_2^2 = 1, g_2 = 1$	0	0
7.	$d \equiv 7 (8)$	2	2	4	2	$g_2^4 = 1, g_2^2 = 1$	0	Z/2Z

Table 1, cont.

	F	m	v	m_v	Nv	Relations	$\begin{vmatrix} r_1+r\\-1 \end{vmatrix}$	$K_2O_F/\Re_2 F$
4'.	$Q(\sqrt{d}), d>0$ $d \not\equiv -3(9)$ $d \equiv 1(8)$		$egin{array}{c} \infty_1 \ \infty_2 \ 2_1 \ 2_2 \end{array}$	2 2 2 2	_ _ 2 2	$\begin{split} g_{\infty_1}^2 &= g_{\infty_2}^2 = 1 \\ g_{2_1}^2 &= g_{2_2}^2 = 1 \\ g_{\infty_1} \cdot g_{\infty_2} \cdot g_{2_1} \cdot g_{2_2} = 1 \end{split}$	3	$(Z/2Z)^3$
5′.	$d \equiv 5 (8)$	2	$ \begin{array}{c} $	2 2 6	 _ 4	$\begin{array}{c} g_{\infty_1}^2 = g_{\infty_2}^2 = 1 \\ g_2^2 = 1 \\ g_{\infty_1} \cdot g_{\infty_2} \cdot g_2^3 = 1 \end{array}$	2	$(Z/2Z)^{2}$
6'.	$d \equiv 3 (8)$ $d \equiv 2 (4)$	2	$\infty_1 \\ \infty_2 \\ 2$	2 2 2	_ _ 2	$g_{\infty_1}^2 = g_{\infty_2}^2 = 1$ $g_2^2 = 1$ $g_{\infty_1} \cdot g_{\infty_2} \cdot g_2 = 1$	2	$(Z/2Z)^{2}$
7′.	$d \equiv 7 (8)$	2	∞_1 ∞_2 2	2 2 4	_ _ 2	$g_{\infty_1}^2 = g_{\infty_2}^2 = 1$ $g_2^4 = 1$ $g_{\infty_1}^4 \cdot g_{\infty_2} \cdot g_2^2 = 1$	2	$(Z/2Z) \oplus \oplus (Z/4Z)$
8.	$Q(\zeta_p) \ p \ ext{odd} \ ext{prime}$	2p	$\frac{2}{2_1}$	$2(2^f-1)$ $2(2^f-1)$	$\frac{2^f}{2^f}$	$\begin{array}{c} g_{2_{i}}^{2} = 1 \\ g_{p}^{2} = 1 \\ g_{p}^{p} = 1 \\ & \prod_{i=1}^{r} \frac{g_{p}^{1}(2^{f-1})}{2^{i}} \times \\ & \times g_{p}^{2}(p-1) = 1 \end{array}$	r-1	$(Z/2Z)^{r-1}$

If $d \equiv -3 \pmod 9$, then in the lines 4.-7. and 4'.-7'. of the table one should add the following line

3	6	3	$g_3^3=1$	

and in the last column one should add the direct summand Z/3Z.

References

- H. Bass, K₂ des corps globaux, Sém. Bourbaki, 23 année, 1970/1971, nº 394, Lecture Notes 244.
- [2] S. Chaładus, Lower bounds for the order of K₂(ZG) for a cyclic group G, Bull. Acad. Polon. Sci. 27 (1979), 665-669.
- [3] R. K. Dennis, M. E. Keating, M. R. Stein, Lower bounds for the order of K₂(ZG) and Wh (G), Math. Ann. 223 (1976), 97-103.
- [4] H. Garland, A finiteness theorem for K₂ of number field, Ann. of Math. (2) 94 (1971), 534-548.
- [5] J. Milnor, Introduction to algebraic K-theory, Annals of Math. Studies No 72, Princeton 1971.

- [6] C. Moore, Group extensions of p-adic and adelic linear groups, Publ. Math. IHES 35 (1969), 5-74.
- [7] D. Quillen, Higher K-theory for categories with exact sequences, Proc. of the Symp. "New developments in topology", Oxford 1972, 95-103.
- [8] J. Tate, Appendix, Lecture Notes 342, 1973, 429-446.
- [9] -, Relations between K₂ and Galois cohomology, Inventiones Math. 36 (1976), 257-274.

Institute of Mathematics Warsaw University Pałac Kultury i Nauki 00-901 Warszawa, Poland

> Presented to the Semester Universal Algebra and Applications (February 15 – June 9, 1978)