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In all parts of analysis, functions are very important. In algebra, howewer,
functions have for a long time been rather a tool than an independent
subject. But in the last years there has grown up a theory of functions
on algebraic structures which is steadily expanding. Within this theory,
the problem of interpolation of functions by polynomial functions or by
term functions is a recent question which has been investigated by several
authors. By means of the concept of a local polynomial funetion or of
a local term function one can describe to what extent a function ean be
interpolated by polynomial functions or by term functions. This paper
gives a survey of results and open questions of local polynomial functions
and local term functions.

Let A be a universal algebra and % a matural number. Let Fy(4)
be the algebra which is obtained if on the set of all k-place functions
@: A¥ -~ A those operations are induced, which arise from pointwise
definition of the operations of A. Thus Fy(A4) is an algebra of the same
type as 4, and if 4 belongs to a certain variety, then Fy(4) also belongs
to this variety. Moreover, in Fy(4) one introduces, in a natural way,
an additional (k-+1)-place operation, namely composition of functions.

Tf one wants to know a function of Fy(A), then in general one has
to know its graph, that means its values at all “arguments” (@, s, ...
«.., &) = a € A%, There are functions, however, which can be deseribed
in a much simpler way, namely the term funections and the polynomial
functions. The k-place term functions on A are the elements of the sub-
algebra T, (4) of ', (4), which is generated by the projections Eiy by ey &g
and the k-place polynomial functions on A are the elements of the sub-
algebra P,(4) of F,(A) which is generated by the projections and the
constant functions. Hence the term functions are those functions, which
can be represented by words in the projections, and the polynomial fune-

[197]


GUEST


198 W. NUBAUER

tions are those functions, which can be represented by words in the pro-
jections and the constant functions. Thus a graph is not required to deter-
mine a term function or a polynomial function. Clearly, T}(4) < P,(4),
and T,(4) and P,(4) are also subalgebras with respect to composition
of functions.

There exist algebras A4 such that T (4) = F,(4) — these algebras
are called k-primal — and algebras A such that P, (4) = F,(4) — these
algebras are called k-polynomially complete. In important classes of algebras
such as groups, rings, ete., the primal and polynomially complete algebrasg
are well known (see [6]). If A is not k-primal or k-polynomially complete,
T.(4) = F(4) or Pp(A) = I, (4), respectively. In order to investigate
the gap between T)(4) and F,(4) or the gap between P, (4) and F,(4)
we introduce the concepts of a local term function and a local polynomial
function:

Let s be a natural number. A function ¢ e F(4) is called an s-local
term function (s-local polynomial function) if, for any s elements o, € A,
i =1,2,...,8 (not necessarily distinct), there exists a term function ¢
of T,(4) (a polynomial function g of P,(4)) such that

ole) =gla), 1=1,2,...,8.

A function @, which is an s-local term funetion (s-local polynomial function)
for every s, is called a local term fumction (local polynomial function).

Let us denote the set of all s-local term functions by I, T, (4), the set
of all s-local polynomial functions by L,P,(4), the set of all local term
functions by LT (4), the set of all local polynomial functions by LP,(4).
Clearly, L,T,(4)< L/P,(4), LT, (A) < LPy(A), and all these sets are
subalgebras of F,(4), which are also closed with respect to composition
of functions. Clearly, L,P,(4) = Fy(4).

Related to the local term funetions and the local polynomial functions
are the conservative and the compatible functions. A function ¢ € 7, (4)
is called conservative if it maps the kth power of any subalgebra of 4 into 4,
and ¢ is called compatible if, for any congruence § on .4, a; = b, mod 6,
i=1,2,...,k implies ¢(ay, ay, ..., @) = @(by, by, ..., b)mod 6. The set
of all conservative functions is a subalgebra K (4) of F,(4), also with
respect to composition of functions, and the set of all compatible functions
is a subalgebra 0, (4) of F;,(4), also with respect to composition of functions
As one can easily see, K;(4) = L, Ty (4) and C,(4) 2 LP,(4).

The subalgebras of F,(A) which we have just defined can be arranged
in the following chains:

Fi(4) 2 Ey(4) 2 LT(4) 2 ... 2 LT, (A) = T (4),
F(A)2 Oy(4) 2 LP(A) 2 ... 2 LP,(4) 2 P,(4).
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In most of the algebras A4, for which these chaing have been investigated,
a fair number of members of the chains coincide. Thus, in general, there
arises the problem to find conditions for equality or inequality of given
members of the chains.

Qertain classes of algebras are defined by the property that a given
pair of members of one of these chains coincides. Thus, for example,
an algebra A is called

k-(locally) primal if Fp(4d) = Th(4) (= LT,(4)),
k-(locally) polynomially complete if F,(A) = P(4) (=LPk(A)),
k-(locally) semiprimal if K (4) =T,(4) (= LT,,(A)),
o-(

k-(locally) affine complete it 0(4) = Pi(4) (= LP,(4)).

Especially, locally polynomially complete algebras have been studied
by various authors (see [5]).

Most of the results on equality of the members of the chains are on
the chain of local polynomial functions. One can arrange these results
into two classes:

The one type of results are statements on. the initial members of the
chains. Clearly, Fy(4) = K,(A)if and only if 4 has no proper subalgebras,
and F,(4) = 0,(4) if and only if 4 is simple. By results of Werner [8]
and Hule-Nobauer [2], for any algebra A of a congruence permutable
variety, O (4) = L,Py(4). There exist, howewer, lattices 4 such that
0,(4) > L,P,(4) (see Dorninger-Nobauer [1]). Istinger, Kaiser and
Pixley [4]have proved: If,in a simple algebra 4 of a congruence permut-
able variety, L,P,(4) > LP,(4), then L,P,(4) > L, (4) or L,P,(A)
> L,P,(4). That both cases can occur, can be observed for simple abelian
groups: If % > 1, then L, > I, = L for any abelian group of prime order
p>2, and L, = L, > I, = L for the abelian group of order 2 (see Hule—
Noébauer [2]). The result of Istinger-Kaiser—Pixley can be restated as
follows: If, for a simple algebra A of a congruence permutable class,
L,P.(A) = L,P,(4), then LP,(4) = LP;(4). Now the problem arises:
Given a class of algebras, does there exist a natural number ¢ such that
L,P(A) = L,P,(A) implies L,Py(4) = LP,(4) for all algebras of the
class? Some results in this direction can be found in [5].

The other type of results are statements on the last members and
on the length of the chains. Some results of this type are solutions of the
problem: Given a class C of algebras, single out all algebras A of ¢ such
that TP, (A) = P,(4) or all algebras such that LT, (4) =T, (A) (of course,
all finite algebras satisfy these equations). This problem, for example,
has been solved for the class of abelian groups: Either equation does not
hold if and only if 4 is periodic and not bounded (see Hule-Nobauer [2]).
Another problem of this type is as follows: Let O be a class of algebras.
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Does there exist an integer # such that LP,(4) = LP,(4) for all algebras
4 of C% This question has been answered in the affirmative for the class
of abelian groups since Hule-N&bauer [2] have proved that for all algebras
4 of this class LyP,(4) = LP,(4) and LP,(A) = LP,(4) for any & > 1.
A similar answer has been found for the class ¢ of lattices since L,P, (4)
= LP;(A) for any lattice 4 and any k >1 (see Dorninger-Nébauer [1]).
The answer is negative, however, if O is the class of commutative rings
with identity since in a recent paper Lausch-Nobauer [7] have proved:
Let A = Z|(p®) be the factor ring of the integers modulo & prime power
P° (6> 1), and let ¢ be the greatest positive integer such that i4e(t) < e,
where ¢(t) is the exponent of the greatest power of p dividing 1! (especially
t =¢ of p> e); then

LoPy(4) > LPy(4) > ... o LP(4) o L, P (4) =Py (4).

Furthermore the paper by Lausch-Nobauer shows that for the ring Z

of integers all members of the chain of local polynomial functions are
distinet, i.e.

LP(Z) 5 LyPy(Z) > LP(Z) > ... LP,(Z) > Py(2).

Another problem concerning the chain of local polynomial functions
refers to the cardinalities of the members of the chain: Let, as usual,
8] denote the cardinal number of the set 8, and let 4 be an infinite algebra.
Then |, (4)] > |4], but |P,(4)| = |4|. Therefore, in the chain of cardi-
nalities of the members of the chain of local polynomial functions, there
must occur at least one inequality. Where in the chain does this inequality
occur? As examples show, not all algebras A behave in the same way.
I, for example, 4 is an infinite commutative field, then, as it is well
known, Py(4) c LP,(4) = F(4), but if 4 is the additive group of the
rational numbers, then P, (4) = LP(A4) = LP,(A) c LP,(A) = Fr(4)
(see Hule—Nobauer [3]; it is not known where inequality occurs in the
chain of cardinalities).

As one could see from the just quoted results on the chains of local
polynomial functions and local term functions, the properties of these
chains heavily depend on the clags of algebras to which the considered
alg(.abr.a belongs. There are, however, some general results which are
valid in any class of algebras, and we now shall mention some of these
results and problem related to them.

‘ Thg first result (which can be proved quite easily) shows what connec-
tIOHS'BXIBt between the chains of local polynomial functions in I variables
and in & variables: If, in the chain of local polynomial functions in k
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variables, two members are equal, then the corresponding members are
also equal in the chain of local polynomial functions in I variables for any
1<k, and a similar result holds for the chain of local term functions.
Hence from an inequality in the chain in I variables one ean conclude that
inequality holds also in the chain in % > variables. In certain cases it
is also possible to derive from an equality in the chain in 7 variables the
corresponding equality in the chain in k> 1 variables. For example, by
a well-known theorem of Sierpitiski, if F,(4) = L/P,(4), then F,(4)
= I,P,(A) for any %, and also F,(4) = IL,T,(A) implies F,(4) = L, T, (4)
for any k. Furthermore, if 4 is an abelian group, then L,P,(4) = LP,(4)
implies LPy(4) = LP,(A) for any %, and if 4 is a distributive lattice,
then LP,(4) = P,(A) implies LP,(A) = P,(4) for any k. In all so far
known examples of chains of local polynomial functions all equalities,
which are valid in the chain of 2-place functions, are also valid in the
chain of %-place functions for any %, but there is no proof that this holds
in general.

In some classes of algebras one knows relations between the chain
of local term functions and the chain of local polynomial functions.
Clearly, T,(4) = P,(A4) (which bolds if the nullary operations of 4 gen-
erate A) implies that both chaing concide. If 4 is any abelian group, then
LT, (4) = Ty (4) implies L, Pi(4) =Py(4), and LP(4) = LP(4)
implies LT, (4) = LT, (4).

Sometimes it is possible to reduce the chain of local polynomial
functions or the chain of local term functions on a direct product of algebras
to the corresponding chains on the factors. The main result in this direction
is as follows: Suppose that 4 = A; X A4, Then there exists a mono-
morphism @: Oy (4, X4y) = Cy(4;) X C4(4y) (see [17). T now @Py(4; X 4;)
= P(4,) X Py(4,), then also ¢LPr(4, x4,;) = LPy(4;) X LPy(4;) and
@LP, (A X A,) = LP,(A,) XLP,(4,). Hence, if ¢ maps Py(4,x4,) onto
P.(4,) xP,(4,), then two members of the chain of local polynomial
functions for 4 = A, X4, coincide if and only if the corresponding mem-
bers of both the chains for A; and 4, coincide. A similar result holds for
local term functions. The just mentioned hypothesis on ¢ is, for example,
satisfied for all direct products of commutative rings with identity and for
direct products of groups of coprime orders. In these cases therefore,
the chain of local polynomial functions for a direct product can be reduced
to the chains of local polynomial functions for the factors.

There exist, so far, only a few results on the number of ¢-local poly-
nomial functions on a given finite algebra A and on the structure of the
semigroup of i-local polynomial functions (in one variable) with respect
to composition of functions. To investigate both problems seems to be
worthwile.
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An algebra of the form U =(X; +,,fi,fs)...), Where (X; 4, ) is
a lattice and all operations fy, fs, ... are unary, we shall call an algebra
having the lattice structure with unary operations. Obviously, there need
not exist the greatest element or the smallest element in X. However,
it can happen that there exists a congruence R in % such that any congru-
ence class [a]p is bounded by the greatest element 1([a]g) and the smallest
element 0([a]y) where 1([aly), 0([aly) € [al; and [a]p is a subalgebra in A.
Such a congruence R we shall call a bounding congruence in (. In this case we
can define two functions 0(z): X — X and 1(z): X - X as follows:

0(z) = 0([#]z), 1(2) =21([z]gr)-
‘We have:
(i) A aRb < 0(a) = 0(b).
a,beX

In this paper we study connections between bounding congruences and
couples of functions 0(») and 1(z) discussed above and we give some
descriptions of algebras having the lattice structure with unary operations
in which bounding congruences exist. Finally, we give some examples
of algebras beeing generalizations of Boolean algebras and examples in
the graph theory. In [2] the notion of double system of lattices was intro-
duced which we recall here. Let I = (I; A, v) be a lattice and {%}.;
a family of pairwise disjoint lattices such that U; = (4;; 4, =) for each

iel,and In| J A; = @. We assume that for any ¢,j eI, 1 < j the times-
tel 5
homomorphism gi: 9 — %; and plus-homomorphism k: U, ~%; are
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