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An algebra of the form U =(X; +,,fi,fs)...), Where (X; 4, ) is
a lattice and all operations fy, fs, ... are unary, we shall call an algebra
having the lattice structure with unary operations. Obviously, there need
not exist the greatest element or the smallest element in X. However,
it can happen that there exists a congruence R in % such that any congru-
ence class [a]p is bounded by the greatest element 1([a]g) and the smallest
element 0([a]y) where 1([aly), 0([aly) € [al; and [a]p is a subalgebra in A.
Such a congruence R we shall call a bounding congruence in (. In this case we
can define two functions 0(z): X — X and 1(z): X - X as follows:

0(z) = 0([#]z), 1(2) =21([z]gr)-
‘We have:
(i) A aRb < 0(a) = 0(b).
a,beX

In this paper we study connections between bounding congruences and
couples of functions 0(») and 1(z) discussed above and we give some
descriptions of algebras having the lattice structure with unary operations
in which bounding congruences exist. Finally, we give some examples
of algebras beeing generalizations of Boolean algebras and examples in
the graph theory. In [2] the notion of double system of lattices was intro-
duced which we recall here. Let I = (I; A, v) be a lattice and {%}.;
a family of pairwise disjoint lattices such that U; = (4;; 4, =) for each

iel,and In| J A; = @. We assume that for any ¢,j eI, 1 < j the times-
tel 5
homomorphism gi: 9 — %; and plus-homomorphism k: U, ~%; are
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given and the following conditions hold:
@) gi, B! are identity mappings for iel,
2) gig; = gf, Wl =1{

The system <I, {%}ir; 0], Plicjiser> Will be called a double sysiem
of lattices U;, 4 €I, and will be denoted by #/. For every such a double
system o/ we define an algebra DS(«) in the following way: DS(«)
= (|J4;; +, ) where plus and times are defined as follows:

1el

(3) zy = gi(®) gL (y), @ty = M(e) + b)),

where w e A;, yed;, k=1irj, L =ivj, i,jel.
The algebra DS(&) will be called the sum of double system 7.

for any 1 <j<k, i,j,kel.

1

Let A = (X; +, *, f1)foy ---) be an algebra having the lattice structure
with unary operations. Let 0(z): X — X and 1(z): X - X be functions.

TaEOREM 1. The following three conditions (a), (b), (¢} are equivalent:

(a) The relation defined by (i) is & bounding congruence in U such that
for amy congruence class [aly the element 0(a) is the smallest and the element
1(a) is the greatest element i [alg.

(b) The following equalities hold

(4) o+0(p) =2-1(x) =2,

(3) 0(0(2)) = 0(1(2)) = 0(a),

(6) 1{0(x) = 1{L(2)) =1(a),

(M O(z+y) = 0(x)+0(y),

(8) La-g) = 1(z)-1(y),

(9) O(fi(m)) =0(2), +=1,2,...,
(10) Yf@) =1(w), ©=1,2,...

(e) The lattice (X; +, +) 45 the sum of a double system of 4is sublattices
(X5 +, ), eI, with the greatest element 1, and the smallest element 0;
where 1; = 1(a) and 0; = 0(a) for some a € X; — such that any X, is a sub-
algebra of .

Proof. (a) = (b). Observe first that
A aRb < 1(a) =1(b).

a,beX

(11
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Equalities (4), (5), (6) are obvious; (9) and (10) are also obvious because
any congruence clags of R is a subalgebra. Since R is a congruence in o
and 2RO (2), yRO(y) (for x,y € X), we have 0(x)+0(y)Ra+y RO(z+y).
Thus

(12) 0(@+y) <0(z)+0(y)-

Further, write 0(2)-0(z+%) ==, 0(y)-0(z+7) =y* So
a*e[0(@)]g, ¥*el0(®)]g
and we have
0(a) = 0(a)@* = 0(a)-0(w+9),

0(y) =0(y)-

The last equalities give 0(»)< 0(z-+y), 0(y)<O0(z+y); hence 0(z)-+
+0(y) < 0(xz+y) which together with (12) gives (7). Analogously, using
(11), we can prove (8).

(b) = (¢). Define zo,94 =#-1(y), 20,y = x+0(y). Further pub
2y =Fy(z,9), v+y = Fa(e, ), T1 = {1}, T, = {2}. Now, using (4)-(10),
it is enough to check that o, and o, is a companied couple (see [4]) for
the lattice (X; +, +), and to use a theorem from [4] to obtain the first
statement of (c). In any sublattice X; defined by decomposition from [4]
we have

(13)

* =0(y) 0z +y).

z,yeX;, z+0(y) =2, y+0(2) =y =z 1y)=2, y-1l@)=y.

By (4), (5) we have 0(w), =, ¥y, 0(y)eX; and 0(2) = 0(:0)—!—0(0(1/))
= 0(z)+0(y), 0(y) = 0(y)+0(z). Hence 0(z) = 0(y) and, by (4), 0(»)
is the smallest element in X,. Analogously we can prove, by using (4),
(6) and (18), that L(z) is the greatest element in X,. By (9) and (4) we
have x-+0(f;(#) =2+0(@) =2, fi(2)+0(®) =f(@)+0(f; () =fi(2).
Thus @ € X; < f;(#) € X,.

(¢) = (a). The fact that R is a congruence in % follows from the defi-
nition of the sum of double system of lattices. Now the proof that (c)
= (a) is obvious.

Applications

1. Tet % = (X; +, -, 0(x),1(2)) be an algebra such that (X; +, -)
is a lattice and equalities (4)-(8) hold. Then by our theorem (X; 4+, )
is the sum of double system of bounded sublattices where in any sublattice
X, the elements 0(a) and 1(a) (a € X;) are the smallest and the greatest
element, respectively. :
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2. Let A =(X; +,,") be an algebra such that (Xj -,)is a
lattice and the following equalities hold:

(14) (@) =wa,

(15) (@+a) = o',

(16) (e+y)(z+y) =0’ +yy',
an (@y)+ (oy)" = (z+2" )y +y').

Then we can put 0(») = 2', 1(x) = +2' and use our theorem. In this
way we geb that (X; +, -)is the sum of a double system of sublattices X,
where the operation ' is an algebraic operation in X, assigning to every «
some complement.

The lattice in Figure 1, where 0' =1, 1’ = 0, a; =b;, b; = q; for
4 =1,2, is an example of the last algebra.

1

0
Fig. 1

3. An algebra A = (X; +, -,") we shall call a locally Boolean algebra
iff (X5 +,-) is a distributive lattice and there exists in 9% a congruence
such that any class [a] of this congruence is a Boolean algebra with respect
of +, -’. It is easy to see that this congruence must be identical with the
congrnence B from (i) where 0(x) = aa’.

Let us add o our theorem the assumption that (X; -+, +) is a distri-
butive lattice. Then from our theorem we deduce that locally Boolean
algebras form an equational class deseribed by equalities of distributive
lattices and equalities (14)—(17).

4. Let X be a non-empty set and denote by B the set of all pairs
{4, B) 2% x 2% such that B < A. Consider an algebra % = (B; +, )
where +, -, are defined as follows:

<4, B)+(0, Dy = {(AuC, BUD),
{4,B><0,Dy =<{An0,BnD>,
({4, B)) =<4, An(Z\B)>.

Then ¥% is & locally Boolean algebra where the class of the congruence R

%s of @e form {<4, YD}, ¥ = A. Such algebras were considered as models
in logic by K. Halkowska (see [3]).
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5. By a graph we mean (see [1]) a pair ¢ = (V ; R) where V is a non-
empty set and R is a binary relation in V. The set V is called the set of
vertices and R the set of arcs. V need not be finite but if we consider some
properties of G it is enough sometimes to check them locally, i.e. o consider
finite subgraphs of & or even partial subgraphs. By a subgraph we mean
a pair (Vo3 (VoxVo)NR) where @ % Vo< V. By a partial subgraph
‘we mean & pair (V,; §) where § = (¥, x Vy)nR. Denote by P, the family
of the finite partial subgraphs of a given graph @ and write P = Pgu
u{(@,9)}. In the family P we can consider three operations U, N, ’
defined as follows:

Vi3 81)U(Vy3 8s) = (ViU Vy5 8,U8,),
V15 8)0(Vy3 8s) = (Vin V5 810 8,),
(Vi3 8)) = (Viy (VX V)N (V43 8%)) where 8% = (Vyx V) n(B\Q).

Then the algebra (P, U, N, ) is an example of locally Boolean algebra
where any family of partial subgraphs (V,; 8) (¥, is fixed) is a congruence
class of the congruence R.

(
(
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