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Abstract

Three known classes of iterative theories related to the theory of compu-

tation are shown to be metrizable in a natural way. In the induced topology

the theory operations of composition, source-tupling and iteration are

continuous. Furthermore for any ideal morphism f: n —>p in these the-

ories the function & — fo & iy a contraction. It follows that for every ideal

f:m—>p+m, and any a:n->p, f1 =limffo(I,, o). We introduce a
koo

definition of the class of metric theories with these properties and show
that not every iterative theory belongs to this class.

0. Introduction

In this paper the classes of iterative theories known until now (either
implicitly or explicitly from [B], [6] and [7]) are briefly reviewed. These
‘theories may be grouped into three classes: tree theories [7], theories of
sequacious functions [5] and matrix and matricial theories [5], [6]. Each
of these classes is related to the theory of computation and in fact these
examples clearly suggest the definition of “iterative theory”.

The defining property of iterative theories (see below) is that for any
ideal morphism f: n — p--n, there is a unique solution f: n —>p to the
equation in the variable £: n —p

{0.1) & =fO(IJH 5)’

the “iteration equation” for f.
For example if f: X — X+ x[2]JuX®™ is the “sequacious function”
(see § 4) which records the “track” of the computations of a “machine” M

[209]
14 — Banach Center Publ t. 9


GUEST


210 8. L. BLOOM

with two exists, then fT records the track of the computations of the machine
M obtained from M by identifying exit 2 with the begin state (see [5]
for more details). Thus the solution of the iteration equation (0.1) expresses
the meaning of “do-while” in a compact algebraic form.

In this paper it is shown that each of these known iterative theories
is metrizable in a natural way so that the theory operations are continuous
and more importantly, the ideal morphisms induce contraction mappings
so that the unique solution of the iteration equation (0.1) for ideal f is
a metric limit of (roughly) the powers of f.

Sinee in examples related to computation, the limits of the powers
of f correspond to one’s intuition of the meaning of f1, the notion of metric
limit in algebraic theories may be a useful one.

We propose a definition of a metric algebraic theory in § 6 and obtain
a few elementary properties of these theories. In § 7 an example is given
to show that not every iterative theory is a (“ideal power complete™)
metric theory.

We assume the reader has some familiarity with algebraic and iterative
theories, although we will provide all the necessary definitions to keep
the paper self-contained.

1. Definitions and preliminary results

An algebraic theory T is a category whose objects are the nonnegative
integers having, for each n > 0, n distinguished morphisms

it 1l—>n
i € [n] (where [#] = {1, 2, ..., n}; [0] = @). Furthermore, for each family

of morphisms f;: 1 -, ¢ €[n], n> 0 there is a unique morphism f: n
->p such that for each 1 e [n], f; is the composition

(1.1) fri1ianlyp,

The morphism f in (1.1) is called the source-tupling of the morphisms f;,
and is denoted (f;, fs, ..., f,). In case n = 0, this condition amounts to
requiring the existence of a unique morphism 0,: 0 — p. All morphisms
# —p formed by source tupling the distinguished morphisms are called
base morphisms. In the case that the distinguished morphisms 1: 1 —2
and 2: 1 — 2 are distinet, the base morphisms # —p may be identified
with the collection of functions [n] — [p]. For example the function [2]
— [3], defined by 1 - 3, 2 1, is identified with (3, 1). (See [8] or [5] for
more details.) The base morphism # —# corresponding to the identity
function is denoted I,,.

We will denote the composition of f: n —p with g: p — ¢ by cither
fog,or nLp —‘Qq (note that one arrowhead is missing).

icm
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. It is convenient to extend source tupling to pairs of morphisms with
arbitrary sources. If f;: m; —p, ¢ =1, 2, then the source pairing (f,,f,)
of f, and f, is the unique morphism n, +n, - p satisfying

. iofy it de[n]
ol f) = {on L

VLT oSy i i =m+j,jen].

The base morphisms corresponding to the injections »: [p] — [+ %]
and A: [n] — [p+=n] (where ix = 4, il = p+1) are denoted 1,00, and
0,81, respectively.

The powers g" of a morphism g: » — p+n are defined inductively.

9" = 0,®1,; gt =g (Lp@0,,9)-
Two useful facts connected with g" are
(1'2) (Ip@onn g)r = (Ip@onv gr)’
(1.3) If & =go(I,, &), then & = g'o(I,, &)
all > 0, where &: n—p.

all r>0.

A scalar morphism ¢g: 1. —n in an algebraic theory I' is ¢deal if gof
is not distinguished for any f: n —p in T. T itself is ideal if every scalar
morphism is either distinguished or ideal. A vector morphism g: n —p
in T is ideal if each component dog is ideal, ¢ e [n].

An dterative theory is an ideal theory T with the property that for
each ideal morphism g: n —p-+n in T, there is a unique morphism
g': m > p such that g' = go(Z,, ¢").

2. Metrics on words and sets of words

The reader will recall that a metric d on 2 set X is a funetion from X x X
into the nonnegative real numbers such that for all 4, 9,2 in X

(2.1) d(z,9) = d(y,2);
(2.2) d(m,y) =0 il @=y;
(2.3) d(z,2) < d(z,y)+d(y,2) (triangle inequality).

We will define two metrics: on X* U X*, the set of finite and infinite
sequences of elements of X, and on X*A, the powerset of X*.

To begin with, we consider an element of X* to be & certain kind of
fonction ¥ —> X, , where N is the set of nonnegative integers and X | is X
augmented by a new element “ | *. fu e X* and ku = |, thennu = 1,
all n > k; also, ku = |_for some k. The length of u € X* is the least k
such that ku = | . X* is just the set of functions ¥ — X. Thus we may
consider X* and X*™ to be subsets of (X, )™

gt


GUEST


212 8. L. BLOOM

(2.4) DErINITION. For f ¢ e X*UX®, d(f,g) =1[2*, where & is
the least integer such that kf # kg. When f = g, d(f, g) = 0. It is easy
to show that

(2.8) X*UX> equipped with the function d of (2.4) is a complete
metric space; i.e. every Cauchy sequence converges.

Now suppose V = X*. We define the set (V,) to be the set of words
in ¥ of length <. Note that ¥V = {J (V),.

320
(2.6) DEFINITION. For U, V = X*, let
0 it U="V;
U, v) = {1/2’3 otherwise

where k is least such that (U), # (V).

(2.7) PROPOSITION. X* equipped with the function d of (2.6) is a
complete metric space.

'The straightforward proof is omitted.
Later we will need to use the following well-known fact.

(2.8) If (X, d) is a complete metric space (where d is bounded) so
is X¥, the set of all functions ¥ — X with the metric d(f, g) = sup {d(yf,
y9): ye X}

If X and Y are metric spaces, a function F: X — ¥ is a contraction
mapping it there is a real number ¢, 0 < ¢ << 1, such that for all z, 2’ € X,

d@l, s F)< c d(z,s').

A sufficient condition for a contraction mapping X - X to have
2 unique fixed point iy given by the well-known

(2.9) BaNAcE FrxeD Pomnt THEOREM. If X is a complete metric
space and F: X — X i3 a contraction, then there is a unique % c X with
ZF =7%; in fact, for any y e X, & = limyF*.

koo

It is useful to observe that any contraction map X — X has at most

one fixed point; completeness of the space guarantees the existence of at
least one.

3. Tree theories

Let I' be a ranked set, i.e. I'is the disjoint union U I, of the sets I},

n
n>=0.By a .I'-trea f: 1 —p we mean a rooted tree f such that every vertex
of f has a finite number of successors. The suceessors of a vertex are ordered,
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80 that one may speak of the first, or second, ... successor. Every vertex
having » suceessors, n > 0, is labeled by an element of I},. Every leaf is
labeled by either an element of Iy or an element of [p] = {1,2, ..., p}.
The number of vertices of a I-tree may be infinite.

A TItree n —p is an n-tuple of I“trees 1 —p.

If f: n—p and g = (g1, ..., gp): P — ¢ are Itrees, the composition
fog: m —q of f and g is the I'tree obtained by attaching to every leaf
of f labeled ¢ e [p] a copy of the tree g;.

The distinguished: tree i: 1 -, ¢ e[n] has one vertex, which is
simultaneously a root and & leaf; the label on the leaf is 3.

The collection I'Tr of all I-trees is an iterative algebraic theory.
(See [7] for a detailed study of I“trees.)

By a “tree theory”, we mean a subtheory of I'Tr for some I".

Two tree theories deserve special mention. The finite Ttrees, I'S,
form an ideal subtheory of I'Ir. I'S is not iterative, but as shown in [8]
I'3 is the algebraic theory freely generated by I'.

The subtheory I'tr of I'Tr consisting of those trees of “finite index”,
i.e. having (up to isomorphism) a finite number of descendency trees,
is the iterative theory freely generated by I'. In detail,

(3.1) [7] For any iterative theory J and any function F: I' > J
taking y e I, to an ideal morphism yF: 1 —+n in J, there is a unique
theory morphism F’': I'tr —J such that the diagram

I'*»Ttr

: \w
J

commutes, where y: is* the tree

We will introduce a metric on the set of I“trees n — p.

(3.2) DﬁFINITION. Let g: 1 — p be a I-tree. For any natural number
d = 0, the profile of g at depth d, in symbols P,(g), is the sequence of el-
ements in I'U[p] '
L(wa), L(wa)y -y Taeg)

where wq, Wy, ...y Wy, k>‘0,‘ is the sequence (from left to right) of the
vertices of depth d and where l{a,) e I'VU[p] is the label of w;, ¢ € [p].
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Two trees have the same profile at every depth iff they are isomorphie.
We will identify isomorphic trees so that

(3.3) PROPOSITION. g= g’ iff P5(g) = P3(g’), all d = 0. More generally, g
and g’ are identical up to vertices of length < kiff Pylg) = Py(g’) for all d < &.

(8.4) DEFINITION. If g 5 ¢’ are I-trees 1 —p,
a(g,g’) =1/2"

where n is the least integer such that Pi(g) 5= Pr(d'). If ¢ = g', we let
d(g, g") = 0. For vector trees g,¢": n —p we define

(g, 9') = max{d(iog, iog’), ¢ € [nl}.

(3.5) PROPOSITION [2]. For each m,p =0 the function d is & meiric
on the set I'Tr,, , of Itrees n —>p in I'Tr. I'Tx, , is complete in this metric.

In [2] the following properties of this metric were proved.
(3.6) ProPOSITION. Let g;: w —p, by p — q be I-trees. Then
(3:6.1) @{g:0hy, g:0h1) < d(g1, 93),
(3.6.2) a(g:0hy, grohy) < d(hy, hy),
(36.3) ifg,h:m—>p+m, dg,M)< d(g; h), for any r=0.

From (8.6.1) and (3.6.2) it follows that composition is continuous:
ie. if g —> g and h;, — h, then g,0h; — goh, whenever these morphisms are
composable (i.e. the sources and targets match). Indeed,

d(g:0hy, goh) < d(gohy, groh)+d(gok, goh) )

by the triangle inequality. Bub by (3.6.1) and (3.6.2) the right-hand side
is less than d(hy, k)+d(gy, g), which goes to zero.
From Definition (3.4) it follows that source tupling is also continuous.
Ideal Itrees have an important property.

(8.7) PROPOSITION. If f: n —p is an ideal I-tres, then for amy g,
the function taking &: p >qio fol: n >qisa contraction; in fact

d(foé, fo&) < 3d(&, &).

(3.8) COROLLARY. Let f: n —p+n be an ideal tree in I'Tr. For any
a: % —p the melric limit

(3.8.1) h'mf"o(Ip, a)

M -
ewists and, is the unique solution to the iteration equation
(3.8.2) : §=fo(ly, &)

e ©
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for fs i.6.
ff =lim f*o(I,, a).
koo

Proof. By (3.7) the function & — fo(I,, &) is a contraction mapping
on the complete metric space I'Tr, . By the Banach fixed point theorem,
this map has a unique fixed point, which is given by (3.8.1) for any a: #
- .
Of course, from (3.8) it follows that for any iterative tree theory T
(i.e. any iterative subtheory of I'Tr, for some I') the iterate f' of an ideal
tree n —p—+n is given by (3.8.1). Indeed, the limit (3.8.1) exists in I"Tr
and is the unique solution of (3.8.2); but since 7' is iterative, this limib
belongs to 7.

From (3.8) and (3.6.3) it follows that the operation of iteration
(f>f") is also continuous. This is proved in a general setting in § 6.

4. Theories of sequacions functions

The algebraic theory of sequacious functions was introduced and studied
in [5]. We repeat the definition here. Let X be a non-empty set.
A sequacious fumction f: n —p iz a function (1) f: Xt xM]JVX® -
X+ x [p]uX™ with the properties that

(i) if v eX®, uf =u (le. X is kept pointwise fixed);

() if xeX, 4en] and @if =a, @,... in X x[pluX*®, then

%y = @3
(i) if v e X*, ve X, ie[n)],

(uai)f = u(aif)
(i.e. f is determined by its values on X x[n]).

The composition fog of sequacious functions is function composition.
The source-tupling of the sequacious functions f;: XtTUX*® - X+ X [p]u
UX® i eln] is the funetion f: X+ X [n]JUX® - X+ X[p]uX™ defined
by:

wif =uf;, wuweXt .
The distinguished morphism #: 1 —n is the sequacious function
XTtUX® > Xt x[n]uX®,

determined by z +» i, v € X.
(As usual, we have identified X* with X* x [1].)

() X+ is X*-{null word}.
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A sequacious function f: n — p is positive if for each @i e X x [n],
if 2if = oy ... #,j € X X [p], then ?>2. The least subtheory of all
sequacious functions containing the positive sequacious functions is
denoted Seq (X). In [5] it was shown that Seq(X) is an iterative algebraic
theory.

 We will introduce a metric on Seq(X) in a natural way. Fivst note
that the value of a sequacious function f: n —p on zie X X [n] is an
element of ¥*UY®, where ¥ = Xu[n]. Y*U Y has a metric (say dy)
on it, defined in (2.1). Thus, we may define, for f, g: n —p in Seq(X),
the function d by

(4.1) DEFINITION.

a(f, g) = sup {dy(uf, ug): w e X X [R]JUX™}.

Thus the set of sequacious functions n — p forms a metric space.
Note that as a result of Definitions (2.3) and (4.1), if f,g: n —p ave
sequacious functions and d(f, ¢) <1 /2%, then for all we X, ie[n] the
values of zif and 2ig are sequences (finite or infinite) which agree at least
up to the kth position. (Recall that we are regarding a finite sequence
as a special kind of infinite one, see §2.)

Tt follows that the function which is the limit of a Cauchy sequence
of sequacious functions (which exists by (2.5) and (2.8)) is also a sequacious
function.

(4.2) PROPOSITION. Let g;: % —D, byt p ~>g, © = 1,2, be morphisms
in Seq(X). Then

(4.2.1) a(g10hy, g20h) < A(gyy gs)s
(4.2.2) a(g10h1, g10hs) < d(hyy by),
(4.2.3) for g,h: n—>p+n, d(g",1")<d(g,h), all 7= 0.

Proof. We prove only the first statement, But the first statement
follows £r0m the fact that if #ig, = #.%,, ..., @, j then wi(g,0h,) =2, 2y,
voey T2 (@) By, and thus d,(wigy, zig;h) < 1/2.

Thus, as in the case of tree theories, it follows that composition is
continuous, as is source tupling.

Thfa i?;er@te of an ideal (= positive) se(iuacious function is again
a metrie limit, for the same reason as for the tree theories, as we now
show. .

A “Theory of sequacious functions” is & subtheory of Seq(X), for
some X. Thus in any iterative theory of sequacious funetions, the iterate f
of an ideal morphism f satisfies: : : :

f' =1lim féo(I,, a)
koo

for any a: m —>p, by (4.4) below.
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(4.3) PrOPOSITION. Let f: n—p be an ideal morphism in Seq(X).
Then for each q>= 0, the function taking &: p —q to foé: n — qis a con-
traction.

(4.4) COROLLARY. If f: m —p-+n is an ideal morphism in Seq(X),
ft =k1in1f"o(1p, a), for any a: n—p in Seq(X).

The proof of (4.4) is identical to the proof of (3.8) (using (4.3) instead
of (3.7)).

5. Matrix and matricial theories

The collection X*A of subsets of X* forms a semiring in two different ways.
We let XR, denote the semiring whose elements are subsets of X* +
is union, and where multiplication is given by

(5.1) (in XRg) U-V={w| ueU,veV}.

The additive identity 0 is the empty set and the multiplicative identity 1
is the unit set consisting of the empty word.

We let XRy denote the semiring with the same elements and - as
XRg, but with multiplication defined by

(5.2) (in XRg) UV = {uzw| uv U, av eV}

where w, v e X*, »eX. This multiplication was called fusion in [6].
The subseripts C and F suggest the words “concatenation” and “fusion”.
The multiplicative identity in XRy is X, the set of all words of length
one.

We will mention two kinds of algebraic theories based on the semi-
ring XR. There are similar theories based on XRy. ’

Let M (X) be the algebraic theory having the set of all n X p matrices
with entries in XRy as morphisms n — p. Matrix multiplication (using
the -+ and - in XRg) is the theory operation of composition; the source
tupling of the row matrices f;: I >p,7€ [n] is the m X p matrix whose
ith row is f;. The distingunished morphism ©: 1 —n is the rew matrix

[0,0,...,1,0,...,0]
whose only nonzero entry is a 1 in the ¢th position.
We extend the metric on X*A defined in (2.6) to the morphisms
n—>p in M(X) by:
for (Uy), (Vy): n—p in M(X)
d((Ty), (Vi) = max{d(Ty, V)2 i € [nl; jlp]}-

By (2.8), the set of morphisms # —p in M(X) is a complete metric space.
Moreover, as in the previous theory we can prove
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(5.8) PROPOSTTION. For g;: n =, byt p ¢, ¢ =1,2, in M(X),

(6.3.1) d(g:0hy, ga0hy) < A(g1 925
(5:3.2) A(g:0hy, g10hy) < d(hyy ho);
(8.3.3)  for g, h:n—>p+n, d(g, W) <d(g,h), any r=0.

(5.4) COROLLARY. Composition and source tupling in M (X) are con-
tinuous.

The subtheory Mat(X) generated by the row matrices [Uy, ..., U,]
such that each set U; = X* consists of words of positive length is an
iterative theory. If f: 1 > is an ideal morphism in Mat(X), write
f=1[Ug, ..., U] ¥ (a;): » -1 is any column matrix over XRg, foa
=T, 0+ Ugagt+ ... +0, a,. I d(a, a’) =1/2%, then (q), = (g}), for
r<k (see Definition (2.6)). Thus (U;-a), = (U;*ay), for r< %k, since
each set U; is empty or consists of words of positive length. It follows that
d(foa,foa') < 4d(a, o), since (V+W), = (V),+ (W), forany V, W < X~
From this special case, one can easily prove

(5.5) PROPOSITION. If f: m —>p is an ideal morphism in Mat(X)
and g0, the function taking &: p —q to foé: n —gq is a contraction.

(5.6) CorOLLARY. Let f: n — p +n be an ideal morphism in Mat(X).
For any a: n —p in Mat(X),
It =1lim ffo(I,, a).
k>0
A closely related theory is M'(X).(?) A morphism # —p in M'(X)
is a pair (4; a) consisting of morphisms 4: # — p and a: #» —1 in M (X).
The composition of (4;a): n —p with (B;b): p >¢q is
(65.6.1) (4;a)0(B;b) = (AB; Ab+-a).
The “+” in (5.6.1) yields the column matrix (¢;) where ¢; = (4b);-+a;.
Source-tupling is as in M (X) (extended to matrix-vector pairs) and the
distinguished morphism 4: 1 —»n is the pair
([0...1...0]; [01).]

The metric on M (X) extends to M'(X) in the obvious way. Again, the
set of morphisms # - p in M'(X) form a complete metric gpace and we
have

(8.7) The statements (5.3) and (5.4) hold for M'(X).

() M'(X) and Mat'(X) are examples of matrioial theories studied in [6].
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The subtheory Mat’(X) of M'(X) generated by the pairs (4;a): 1 >n
where 4 is in Mat(X) is an iterative algebraic theory. Furthermore:

(5.8) The Propositions (5.5) and (5.6) hold for Mat'(X).
‘We end this section with two remarks.

Remork 1. Using the semiring XRy instead of XRy one obtains
“fusion-theories” analogous to M(X) and M’(X). The subtheories gener-
ated by the ideal elements, (in the case of M (X), the row matrices con-
taining sets of words of length at least 2 are the ideal morphisms) are
iterative, and the same metric has the properties (5.3)~(5.6).

Remark 2. Every tree theory is isomorphic to a subtheory of Mat'(X),
for some X (see [7]). Every theory of sequacious functions is isomorphic
to a subtheory of “fusion-Mat’(X)”. One has to modify slightly the argu-
ment of [6] to prove this.

6. Metric theories

We introduce the very general notion of a metric algebraic theory and
study some further properties that might be imposed on such theories.

(6.1) DEFINITION. An algebraic theory T is a meiric theory if, for
each m, p > 0 there is a metric ¢ on the set T, ,, of morphisms # — p such
that

(6.1.1) composition is continuous; i.e. if
lmf, =finT,, and lmg,=ginT,,
k~>00 k>0
then
lim fiog, = fog in T, 4;
k—o0
furthermore
(6.1.2) the metric on T, , is determined by that on T ,:

d(f,g) =max{d(iof,iog): i e[nl}, for f,geT,,.
Condition (6.1.2) implies source-tupling is also continuous.
Of course any algebraic theory may be made a metric theory in
a trivial way by defining d(f,g) =1 if f #g¢.
Consider some properties a metric theory T may possess.

(P1)  d(g.0hy, g10hs) < d(hy, hy), for all g2 m —p, h: p —>¢, i€[2].
(®2)  d(giohy, g:0h:) < d(gy, ga), for all gz m > p, hy: p >4, 1€[2].
(P3) d(g", k)< d(g,h), for all g, h: » ->p+n, and all r>0.
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(P4) T is an ideal theory and each ideal morphism f: n — p induces
a contraction mapping & - foé, for &: p —>q.

(P5) T is an ideal theory and for each ideal f: » — p+4-m, and each
a, f: n —p, both limits 1imf’”'o(1p, a), limf*o (I, B) exist and ave
equal. f—soo k—>co

(P6) THach set T,, is a complete metric space.

All of the theories discussed in §§3-56 had properties (P1)—(P5).
I'Tr, Seq(X), Mat(X) and Mat’(X) also had property (P6).

We will deduce some elementary consequences of these properties.
First we prove

(6.2) PROPOSITION. Let f: m —p-+n be a morphism in the metric
theory T. Whenever the limit limf*o (I, a) exists (for some a: n — p) it is
k>0

a solution of the steration equation for f and any solution of this equation
may be expressed as such a limit.

Proof. T g = fo(I,, g), then by (1.2), ¢ = f¥o(I,,, g). So when a = g¢,
the constant sequence ffo(I,, a) has limit g.
Conversely, suppose g = limf*o (I, a), for some a: n — p. Then
koo

follp, g) =1lim fo(I,, ffo(I,,a)), by continuity;
k—co
=1im fo(I,®0,, f*)o(L,, a)
k>0

=lim f**o(I,, a) =,

koo

50 ¢ i3 a solution of the iteration equation for f.

(6.3) COROLLARY. If T'is an ideal melric theory satisfying (P5) then T
8 an iterative theory.

(6.4) PROPOSITION. If T is an iferative theory with property (P4),
then T also has property (P5).

Proof. Let F be the function T, , ~T,, taking &:n'—p to £F
=fo(I,, £), where f: n —p-+n is ideal in T. F is a contraction map,
by (P4). Let ¢< 1 be a real number such that d(EF, EFy < e d(&, E).
It easily follows that d(ZF, £FF) < o*-d(£, &) for any k> 1 (where F*
is F' composed with itself % times). But an easy induction shows &F*
= f¥o(I,, &), for each £. Thus letting a: # ~ p be arbitrary, for any & > 1

d[ft, oIy, a)) = dlf*o (L, 1), ffo(T,, a)) < &-d(f', a).
Hence lim f*o(I,, @) =f', proving (P5).
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In order to state the next proposition we need some terminology.
Gall & metric theory with property (P6) a complete theory. A morphism
F: IT' —T" between metric theories is a theory morphism (i.e. F' preserves
composition and the distinguished morphisms) which is continuous (i.e. if
f=limf, in T, then limf, F exists in 7 and limf, F = f¥) and which
preserves Cauchy sequences.

Properties (P1) and (P2) seem to be natural ones, in view of the
following proposition. I do not see how to prove (6.5) without these assump-
tions.

(6.5) ProrosITION. Let T be a meiric theory satisfying (P1) and (P2).
There is a complete metric theory TC satisfying (P1) and (P2) and o metric
theory morphism T > T'C with the following universal property. If F: T — T
s any metyic theory morphism from T to a complete theory T, there is a
unique morphism F': TC —T' such that the diagram

T ——sTC
S I
1?\ v

R id

commutes. The morphism T —TC 1is injective and distance preserving,
so that T is isometrically isomorphic to a subtheory of TC.

This fact is proved by showing that the standard completion of a
metric space using equivalence classes of Cauchy sequences works for
theories. The reason it works, briefly, is that theories may be considered
as equationally defined many-sorted algebras (as in [1]). Such eclasses
are closed under products, subalgebras and homomorphic images.

The collection of Cauchy sequences (f) in T, , (each n, p > 0) forms
a subtheory of T, the countable product of T with itself. The usual
equivalence relation ~ on Cauchy sequences induces a theory congruence
on this subtheory. The quotient theory is TC. The morphism T — T'C takes
f: » — pin T to the eqnivalence class of the constant sequence (f,),f, =f-
Conditions (P1) and (P2) are used to show the Cauchy sequences are
a subtheory of 7™ and that ~ is a theory congruence. We omit the
details.

Note that it is possible that an iterative metric theory satisfies (P4)
but not (P6) —indeed the free iterative theory I'tr is not complete.

Although I do not have an example, it seems possible a priori that
there is an ideal theory T satisfying (P5) (and thus by {6.3), T is iterative)
but not (P4).

(6.6) PROPOSITION. If T is an iferative theory satisfying (P2)-(P3)

¥ (Added in proof: A. Arnold found such an example.)
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and (P5), the operation f — f1 is continuous, i.e. if f, fi: n — p +n ave ideal,
k>1, and Limf, = f, then limf] = f*.

Proof. Using the triangle inequality, for any %, » and a: n —p:

d(f};;ﬂ) < d(flt:fl@dm a)) +
+d[fio(Iy, a); fo(I,; a))+d{fo(l,, a), f1).

By (P2) and (P3), d(fjo(I,, a), fo(L,, @) < d(fy, ). First choose % such
that d(fy,f) is small. For that choice of %, we can find a large enough
value for r such that both d@(f}, fio (I,, o)) and d(f7o (I,, a), fT), are small,
by (P5) and (6.2).

By (6.6) iteration is continuous in all of the theories of §§ 3-5.

In [3] it was shown that if T is an iterative tree theory (so that T
has properties (P1)~(P5)).

(P7)  for every (not necessarily ideal) f: » —p-n and every {:1 —0

in T, limffo(I,, a) exists, where
ks

a2 1Ll ol .,
The argument given there in fact proves

(6.7) ProrosrrioN. If T is an dterative metric theory satisfying (P4)
and (P2), then (PT) holds as well.

From [3] it follows that the operation f — f& = lim f*o (Ip, &), defined
%

on all morphisms % —p-+# in iterative metric theories having property
(P4), will satisfy all equations that the iteration operation does.

We plan to investigate other properties of metric theories in another
paper. In particular we wish to use metric theories in the semantics of
recursive program schemes.

7. An example

‘We show by means of an example that not every iterative theory is
metrizable so that (P5) of §6 holds.

For any set X, the algebraic theory Pow (X) has as its set of morphisms
#% —>p all functions X? - X™. Composition is function composition (f: n
=P, g: P — g compose to give fog: XL ¥P L5 X" and the distingnished
morphism #: 1 - is the ith projection function X —> X.

Let X = NuU{a, b} where N is the set of natural numbers and a, b
are distinet points not in N. Let fs9: X > X be the functions defined as
follows:
nf =ng =n+41,
of =0 =a;

all neN;

(71) ag =bg =b.
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Let T' be the least subtheory of Pow(X) containing the morphisms f,g:1
—1 and all the constants #: 1 -0, n €N, a, b: 1 —0. (Note a morphism
1 -0 in Pow(X) is a function from the singleton set X° to X; we identify
such a function with its value.)

(7.2) PROPOSITION. T is an iterative theory.

This can be proved by showing that if A: 1 ->n is a nonconstant
morphism in T, either % is a projection function, or % is a projection
function X" —+ X composed with a function X ->X of the form
fhaghe ... frmginr1, where 3'kh,>1, 0<%, We omit the details.

i

(7.3) PROPOSITION. T' cannot be made into a meiric theory satisfying
(P5).

Proof. Clearly, the iterate of f: 11 is the morphism a: 1 -0,
and the iterate of g: 1 —1is b: 1 — 0. Suppose T is a metric theory satis-
fying (P5). Then for any morphism a: 1 -0, the limits limffoa and
limg¥o @ exist and Lol
koo
(7.4) ff =limffoa and ¢t =limgfoa.

k-0 k>0
Let a be the constant say 5: 1 — 0 (i.e. the function X — X with value 5).
Then

floa: X0 = x5 x

is the function with value 5+ (by (7.1)). Similarly, gfoa = ffoa. Thus
by (7.4)

a =f t= gT = b:
a contradiction.
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Let & be the category of all non-empty sets with mappings as morphisms,
% the category of all non-empty (partially) ordered sets with isotone
maps as morphisms.

Let Exp be the endofunctor & > with

ExpX ={Y: Yc X,Y #0}
and

[ExpfI(Y) =f(X) = {f(y): y e ¥}

for all sets X %@, ¥ = X and all maps f. Defining 7y (z) = {2} for r e X
and px(%) = \J Y for & eExpExpX, we get a monad (Exp, 7, u) (see

YeZ
[3], p- 138). We look now for such functors T': # — % for which the diagram
oy >q
(a) g
g =,

(U is the forgetful functor) is commutative (so T(4, o) = (Bxp 4, T (o)),
where T'(p) is a partial order on ExpA for each (4, g) e %).

(b) Y,ceY,cAd=>Y,T(0)Y,
as T is a functor, we get for any isotone mapping f: (4, o) — (B, a)
Y, T(e) Yz = f(¥1) T(0) f(¥2)-

‘We shall call such T a functor lifting Exp and extending inclusion.
A description of these liftings was considered in [4]. The system of all
considered functors 7 will be denoted by 7. Having two elements T,
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