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1. Introduction

In the present paper Lie algebra varieties are considered as determined
over an arbitrary but fixed associative and commutative ring R with
unity 1. Given any such variety V, the number 7, = 7,(V) is called the
amiomatic rank of V if 7, is the least number for which ¥ can be determined
by a set of identical relations, each depending on at most 7, variables.
Number #, is referred to ag the basic rank of V if r, is the least possible
number for which ¥ is generated by its relatively free algebra L, (V)
(or, in other words, is determined by identical relations holding in all
its r,-generator algebras). These definitions in the general setting of al-
gebraic systems are given by A. L. Maleev in [7]. In a book by Hanna Neu-
mann [8], Chapter 3, one can find some rather straight-forward theorems.
on these ranks (in the group theory setting) stating in particular that in
the case of a group variety consisting of nilpotent groups of class ¢ one
has 7, 7, < ¢. In a geries of papers devoted to the basic rank of the variety
N, of all nilpotent groups of clags < ¢ it was shown that 7, (N,) =¢—1
(see, e.g., [5], [6, [10])-

Turning back to the varieties of Lie algebra, we remark that while
the first of the above-mentioned results almost auntomatically transfers.
from group theory, attempts to prove an analogue of the second one soon
lead to counter-cxamples. It turns out that the number 7,(c, R) (that is,
the basie rank of the variety N, of all Lie algebras over R whose nilpotency
class does not exceed ¢) essentially depends on the additive torsion in R.
Namely, the following theorem (the main theorem in this paper) holds:
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TEEOREM 1. Assume that ¢ is an even number such that o2 = pe,
the prime number p being the order of a monzero clement from R. Then
#5(¢, B) = c. For all the remaining ¢ >3 one has ry(c, R) = ¢ —1.

The main tool in the proof is the application of different bases of
free Lie algebras (M. Hall [4], A. I. Birfov [9]). We shall repeatedly use
the following

LeMmA 1. The elements of the form
(¥) [1, @, 0y, co @y LFEiy ey i, 62,3, .00, m)

constitute a froe basis of a free R-submodule M of o free Lie algebra
L = L{{wy, @3, ..., %,}) generated by monomials of degree evactly 1. in @q. (1)

The proof is carried out with the use of A. I. Sirfov’s basis of a free
Lie algebra consisting of so-called basic nonassociative monomials, that is,
nonassociative monomials obtained by the unique arrangement of brackets
on the basic associative words & satisfying the condition & = be > ¢b,
the words being ordered lexicographically. It is easily seen that the agsoci-
ative supports of the elements from the system () are basie, provided that
the ordering is such that the element &, is the greatest one.

According to what is proved in the quoted paper of A. I. Sirfov,
any monomial w having form (x) is representable ag a linear compbination
of basic nonassociative monomials, the basic nonassociative monomial
obtained by a unique arrangement of brackets in the asgociative support
of w meeting with coefficient 1. Restricting ourselves to some finitely
generated submodule of M (e.g. to its multihomogeneous components),
we immediately obtain the conclusion of the lemma since the finite subsets
of the set (*) may be derived from the finite subsets of a free set of basic
nonassociative monomials by using linear transformations with unitri-
angular matrices.

Of use in the sequel will also be the next lemma, evidently related
to the one just proved.

Lemma 2. The following identity holds for amy (n+1)-tuple of elements
of an arbitrary Lie algebra:

—_ 1
[@oy ayy agy ..., @,] = 2 (—1) [“m“el:-w“«;,’“o,% y e 0]
r+g=n ! ¢
> >,
1< e <Jg

The evident induction proof of the lemma is left to the reader.
]?"mz.n]ly, before coming to the main sections of the paper, it is worth
mentioning that the proof of the Particular cagse of Theorem 1 where

(1) The notation [a, b, ..., ¢] shortens that of the so-called left-normed commu-
tator [[ [a, 8], ...], c].
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the base ring R has no additive torsion may be done in a simpler fagshion
by using the correspondence between the torsion free nilpotent groups
and rational Lie algebras given by the Baker—Hausdorff formula, details
of which can be found in paper [1] due to K. K. Andreev.

2. Axiomatic rank

Remark firstly that just in the same manner as in the case of group varieties
(see [8], 34.12 and 34.13) one can show that the identities of any class ¢
nilpotent variety V of a Lie algebra over an arbitrary ring R follow from
its identities in < ¢ variables and the identity

(1) [B1y oy «eoy gy Bopn] = 0.

Having this in mind, let us prove that (1) follows from a gystem of ident-
ities in ¢ variables also valid in ¥ and having the form

(2) [wl’wm"-;“7"'7;*3"':woywc+1] =0.
i

We proceed by induction on ¢. If (2) with ¢ > 3 holdsin a Lie algebra 4,
then an analogous system of identities (with ¢ changed to ¢ —1) holds in
A[Z(A), Z(A) being the cenfre of 4. So it remains to apply the induction
hypothesis and the theorem holds. The case ¢ = 3, forming the base of
the induction, should be dealt with separately. Namely, the linearization
of identities in (2) by the variable % gives a skew symmetry of the left
normed commutator of weight ¢+1 by any pair of arguments. On the
other hand, the derivation rules (see also Lemma 2) imply the following
relation:

[y, @y @y B] = —[2y, B1y Byy B3]+ (D4, B2y 51, B3]+
+ [y @35 D1y Bp]— [, B3y @y 2],
Interchanging the variables on the right and using the above-mentioned

skew symmetry, one obtains [wy, #s, @, #,] = 0. Thus we have proved
the following

THEOREM 2. The axiomatic rank v,(V) of any variety V of nilpotent
Lie algebras of dlass < ¢ (¢ 3) over an arbitrary ring R satisfies the in-
equality r, (V)< e¢.

The examples which follow show that the bound of Theorem 2 is,
in a sense, the best possible.

Exavmpre 1. Let M be the variety of Lie algebras considered in
papers [2] and [3], the base ring being an arbitrary field of characteristic 2,
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and given by the laws

®) [wly Tay [, .604]] =0;
(i) [@1y @ay &3y %3] = 03
(iii) [@1y %oy @1, @] = 0.

Tt was shown in [2] and [3] that M is nonnilpotent. Let us show
that for any ¢ > 3 any (¢ —1)-generator algebra in M is nilpotent of class <c.
Just in the same way as in 34.52 from [8] one observes that it suffices to
consider the cases ¢ =3 and ¢ = 4. When ¢ =4 commutators of the
form [#y, @y, %, @, 25], where only three different generators occur,
ghould be taken into account. Using (il) and having in mind the meta-
belian law (i), enabling us to interchange the variables starting from the
third, we come to the commutator (2, #,, @1, s, #3] equal to zero by (iii).
This identity, just used, plainly proves the case ¢ = 3.

The preceding argument immediately shows that the identity of
nilpotency (1) for no ¢>> 3 follows frcm those depending on less than ¢
variables, since otherwise M would be nilpotent. So the first example
illustrating Theorem 2 is the variety N, ¢> 3, over an arbitrary ring of
characteristic 2. For this variety ome has r,(N,) = c.

ExAMPLE 2. Over an arbitrary ring R one has 7,(N3) = 3.
Tt is easily seen that the variety N, that is, the variety determined
by the 2-variable identities holding in Nj, is in fact given by the laws

[Zyy Bay %2, @] =0 and  [@y, @y, 2y, %] = 0.

By linearization, we find the 3-variable identities of degree 4 holding
in N®. Their multihomogeneous components of degree 1 in a,b and 2
in b have the form

(1) [a,b,b,cl+[a,b,c,b]+[a,c,b,b] =0;
2 [b,a,b,c]+[b,a,c,b]+[b,c,a,b] =0;
(3) [e,b,b,0al4[c, b, a,b]+[c,a,b,b] =0;
(4) [a,b,b,cl+[a,c,b,b]+[b,c,a,b] =0;
() [a,b,¢,b]+[c,b,a,b] =0;

(6) [b,a,b,c]+[b,c,b,a] =0;

(7) [e,b,b,a]l+][c,a,b,b]l+[b,a,c,b] =0.

Put ¢ = [a,b,b,¢],f = [a,b,¢,b),9 = [a, ¢, b, b]. These elements,
by Lemma 1, form a basis of a corresponding multihomogeneous compo-
nent, which (by using Lemma 2) enables us to rewrite identities (1)-(7)
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in the form

(1) e+f+g =0;  (2) —4f+20 =0; (3) —o+3f+3g =0;

(4) e—f+29 =0; (5) 2f—g =0; (6) —2f--g =03

(7) —e-+f—2¢9 =0.
Now one sees that the basis of the submodule of 3-variable identities of
the described multidegree has the form

6-+f+g =0 and 2f—g=0
or
[a,b,b,c]+{a,b;¢,b]+[a,0,b,0] =0, 2[a,d, c,b]—[a,c,b,b] =0.

This obviously gives N{® s N if the characteristic of the base ring is
different from 2. This case, however, has been considered in the previous
example.

3. Basic rank

PropPosITION 1. Let V be a nilpotent Lie algebra wariety all of whose
members have class < ¢ over an arbitrary ring R. Then its basic rank r,(V)
is mot greater tham c.

‘We omit the proof since it is obtained, without even minor changes,
from group variety theory (see [8], 35.11 and 35.12).

ProPosITION 2. Let S be the full symmetric growp of the set {2, 3, ..., c},
G, = L,(N,) a fres algebra of N, with free generators ay, 8s, «.., 6, and Gy
= L,_,(N,) the same with the free generators by, ..., b,_,. Denote by u the
element

(1) W = 2 lo| [, (1) s Xo(2)s ==+ Og(e)]

oeS
of the algebra G,, where |o| is the sign of o. Then there exists a system of epi-
morphisms 0, 8;, ¢ = 1,2, ..., ¢—1; j=1,2,...,0 0of G, onto G,_, the
intersection of kernels of which belongs to the B-submodule of G, spanned by 1.

Proof. Define the epimorphisms 0; and §; (see [5]) by putting
b; it §< 4
0,(as) = b’ s i =
1y AL J>4 i=1,2,...,¢e—1.
0, if ¢ =73;

b, iHi<j
by, iti>ji=1,2..,c
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-1

c
According to our notation, T' = (")
i=1

4
Ker 6,n () Ker ¢;.
j=1

Observe first that the elements from 7I' are multilinear. Indeed,
given an arbitrary element v €G,, one has

b= Zail...in”ﬁ‘..inv
where o; ; €R and v, is 2 linear combination of monomials each

depending on each of the variables a;, ..., &, . If, say, a; ... ;, # 0 and
n # ¢, there exists an ¢ ¢ {i,, ..., %,}. Apply J; to v. Then

1

o=5m=6 D
fip. it $e
But the sum in the brackets is an element of the subalgebra alg({a,, ...
veylyy .ovy ag}) and the vestriction of J; to this subalgebra is injective.
So far we have proved the multilinearity of v € T' (the reader should keep
in mind that @, is nilpotent of class ¢ (!)).
Now write the element » € T in the form

(2) v = Zaa[a’u Qo(z)s « o0y aa(c)]'
oeS

1...1',,"711...1'”) .

This is possible because of Lemma 1 from the introduction. Apply 0, to v.
By the definition of 0, one has ay > by, @y +>byy a5 1 by, oovy @ > by_q.
Again using Lemma 2 (or, more precisely, its evident variant for the free
nilpotent algebra), one sees that the images of all summands from (2)
are basic in @,_;, two different summands from (2) corresponding to
¢’ and ¢'’ € 8 mapping into the same basic monomial if and only if ¢’ and o'
coincide up to a multiple of the form (23)%, s = 0, 1. Therefore if ¢ =
o' (23) one has a, = —a,. Using the remaining 6;, ¢ =3, ..., ¢—1, and
the fact that any two permutations are linked by a chain of transpositions
of the form (j, j+1) one sees that a, = 4|¢|, where 1 is a fixed element
from R.

Before we formulate the next proposition, let us recall that by var(H)
we denote the variety of Lie algebras generated by a Lie algebra H, that is,
the least variety containing H.

ProrosirioN 3. Let k be an integer such that 1 <k <<c—1 and @,
a free algebra of rank r in Ny, 6> 8. Then var(Gy) # var(Gy.,).

Proof. Make use of an identity from a paper by F. Levin [6]:
(3) Yo = 2 lo| [, Do(2yy +o»

aeS”

? Bo(tra)s Pioqas »oey Dol

Substituting into this identity the set of free generators among which
at most % elements differ, one immediately obtains zero. But if we have

icm
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k-2 different generators, then after the substitution

Ti>Yuy Boab>Yay ooy Lppg = Ypgay wooy Lo 1 Yppn

we obtain a linear combination of different monomials which are basic
in the sense of Lemma 1, that is, we obtain a nonzero element of G-
From the above proposition and Proposition 1 one immediately
deduces
c—1<ry(N,) < e

Using Proposition 2, one can also deduce that 7,(c, B) = ¢ —1 if and only
if pu = 0 is not an identical relation in G,_; = I,_, (N,), where  is defined
by equality (1) and ¢ is an arbitrary nonzero clement from R.

PROPOSITION 4. If ¢ is odd then ou =0 is not an identical relation
n @,y for any 0 # ¢ € R.

Proof. Induction by the degree of « plainly gives the relation

p)

o) < olai )

Put on the right @, = by, @3 =by,...,9,_; = b,_,, #, =b,_; and order
the variables by, by, ..., b, 80 that b, >b,>... >b,_,. In order to
determine whether the value of % after this substitution equals zero we
use Hall’s usual basis. Having applied anticommutativity, we see that u
ig a linear combination of monomials depending on the free generators
of the derived subalgebra of a free Lie algebra, exactly one of these gen-
erators having the form [bup_;; Doz, 0:]- The monomials containing
different free generators of this form being evidently linearly independent,
it suffices to check up the nontriviality of a linear combination of mono-
mials depending on some fixed group of free generators of the derived
algebra, for example,

ty = [by, by byl oy =[5, b4,  oory Uy = [Byg,y byl

But the lineaxr combination ' of the monomials depending on these variab-
les has the form

U = 0] [21[@(0) Doy ]y [Ban)s Bogyds oo 3 [Bagerys Boe)]] -

% = [ty Uiy ooey U 15
(Egs e neig)
hence it is different from zero together with each its multiple gu’, 0 % ¢ € R.
This provey our proposition, for &,_; is a free R-submodule of a free Lie
algebra, in which all the calculations were carried out.
The case of even ¢ is more difficult. Let d be a number such that
¢ = 2d. Just as in the argument above, rewrite % in the form

(4) U = Z ia[[xu Tazys [Baizyr Boy]y + vy [Boo—ns w,,(c)]] .

oeS’
o(2i—1) < o(29)
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Obviously the equating of any two letters from the set ,,..., #, an-
nihilates %. Therefore, ou =0 is an identity in @,_, if and only if ou is
annihilated by any substitution equating @, and one of the variables
Lyy ouey &,y SAY,

B>y, By by, Xy by, ey Bey > b
As in Proposition 4, one sees that after this substitution the value of (4)
may be written through the free generating system. of the derived algebra.
Let us order these variables so that [b,, b,] is the largest element. We
consider the summands from (4) depending only on the variables

[91y 821y [Byy B3], [y b5, «-ny [Bomny bemsl,

which will be denoted by u,, #,, U, ..., 4g, respectively, while the sum
of all monomials from (4) depending on all of them will obtain the notation
%' a8 before. This sum is easily seen to have the form

B) % = 2 [th1y Wy s Uiy +- 5 Uuig)] —
#e8p,3,...,0)

- Z [%s, Un(1yy Un(ays += vy Upigy]«
ve8(1,3,...,d)

Using Lemma 1, consider the summands of the firgt sum as forming
a basis and try to express the second sum through this basis.

Leyma 3. Denote by e, the monomial of the form

6, = [U, U, Up(ays +- s u,,(d)]
and put r = /4_1(2). Then e, enters into w' with the coefficient
d—-1
(6) m =141y (7).
Proof. Consider an arbitrary summand
by, = [y, U1y Un(z)y +++3 Un(zy]
of the second sum in (5) and put ¢ = v_l(l). Using Lemma 2 from the
introduction, rewrite %, in the form
(7) b= — 2( —1)" [t Ua(iy) s Un(igyy « o vy Uty Yoy uv(jl)a e

s Ulig gy Yalgrnys oo s Uyl

Where 4> 4y > > 4y, i <ji< ... <Jgroms {1y <o, iy J1s "‘7jq—-1-—m}
= {1, 38, ..., ¢}. On the right-hand side of (7) each summand has form e,
for a certain u. It is easily seen that if ¢, oceurs in gome A, it occurs with
the coefficient (—1)"+'. Moreover, in the summand h, with ¢<r the
monomial e, evidently does not oceur. If ¢ > r then the number of h, whose
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basic expression (7) cssentially depends on e, equals (g:g) Hence the

sum of coefficients at all these summands depends only on » and is equal to
. r—2 r—1 -2
= (=17((125)+ (125) + - +(:=3)
r—1 r—1 r L [d—2
= (_l)r((r—l) + (7—2) + (r—-2)+ e (7—2))
’ ) d—1
ol )13 )

Taking into account that e, enters in the first sum with the coefficient 1,
we obtain the promised formula (6).
Now we are in & position to prove the main theorem.

Proof of Theorem 1. The case of odd ¢ being exhausted by Proposition 3,
Wwe suppose ¢ even. From the argument preceding Lemma 3 we immediately
observe that ou = 0 is an identity in @,_; if and only if pu’ = 0 for a
certain ¢ £ 0. But

a
(8) u':Zn, 2 e,

r=3  p~l@)=r

where ¢, form a part of a free basis of the R-module ¢,_;. Therefore, to
obtain the equality eu = 0, it is necessary and sufficient to find 0 % o e R
such that n,0 = 0 for all r =2, ..., d. To solve this problem note first
that

O m =1 () =1 () - (22))
- (—1)’+1(f)+n,.

(i) Assume ¢/2 = d = p®,p being a prime. Arguing by induction
on r, we prove that pln,. For = 2 one has n, = 1+(d"1_1)= d. Further,

f) = (f;") is always divisible by p, the relation (9) enables us to

malke the induction step for any » < d. Show now that the greatest common
divisor of all m,, » = 2, ..., d equals p. Its being a p-power follows from

since (

7y = d. On the other hand, for a certain r (f) is not divisible by p: if
& = p® it suffices to put r = p°~!, in which case

(d) _ (P°) )
e e e D)

It is well known that the power ¢ to which p enters into the eanonical
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decomposition of m! may be found by the formula

BHE A2

where [a] is the integer part of 4. Taking it into account, one sees that
for the numerator this number is (p®—1)/(p —1) and for the denominator
it is (P 1—1)/(p 1)+ (p*~1—1)(p —1)/(p —1). The difference of these
two numbers being equal to 1 proves that f = (pr) is not divisible
by p*. Now (9) shows that for some # also p2f#,. Therefore, in case (i), Go_y
satisfies the identity not holding in @, if and only if R contains some
element of the additive exponent p.

(i) Secondly, assume that d = ¢/2 is divisible by two different
primes p and ¢. In this case the greatest common divisor of numbers

Mgy ...y Mg 18 trivial. Indeed, n, = d is divisible by both p and ¢, and (f)

for suitable choices of 7 is not divisible by either (this can be proved exactly
ag in (i)). Hence to obtain the conclusion on the greatest common divisor
of 7y, ..., %z it remains to make use of (9). Applying formula (8), one
Sees that gu’ 5= 0 for any ¢ # 0 and therefore pu = 0 i5s not a law in G,_,
for any 0 % g e R.

This completes the proof of the main theorem.
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A COMPLETENESS THEOREM IN THE MODAL LOGIC
OF PROGRAMS*

KRISTER SEGERBERG

Abo Academy, Abo, Finland

As its name would seem to indicate, the modal logic of programs is, or
can be viewed a8, a generalization of clagsical modal logic. In spite of this
fact there has been little interaction so far between the two fields. One
wonders whether this is accidental, or whether there is 2 deeper explanation.
For it may be that modal logicians and computer scientists are interested
in rather different questions, or that already from the outset the modal
logie of programs is headed for goals that lie beyond the limited territories
of clagsical modallogic — the increased complexity of the former allows,
even invites, such development, and application will probably demand it.
However this may be, it seems to the author that, at least in its
present formative state, the modal logic of programs is truly a general-
ization of classical modal logic, and that the methods of the old discipline
can be brought to bear on at least some of the basic problems in the emerg-
ing one. To give some substance to this claim we shall prove in this
paper a completeness theorem of the kind of which there have been so
many in modal logic. The theorem is interesting in its own right, but the
main point ig perhaps that the proof is achieved by a method that has
been standard in modal logic for many years — the canomical models/
filtrations technique, due originally to Dana Scott and others.

* The contents of this paper were presented in three lectures that the author
delivered at the Stefan Banach International Mathematical Center in Warsaw on
March 7 and 10, 1978. The author wishes to thank Professor H. Rasiowa, Dr T. Traczyk,
and his other Polish hosts for a both pleasant and profitable visit to the Center, and
Professor 8. K. Thomason who was also there and discussed the lectures with him.
He also wishes o record his thanks to Professors Rohit Parikh and, especially, Vaughan
Pratt for valuable discussions and for the generous way in which they have shared
with him their ideas on the modal logic of programs. )

Part of the early work on the paper was supported by a grant (stipendium for
ldngre hunna vetenskapsidiare) from the Academy of Finland.

[31]


GUEST




