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Let & be the category of all non-empty sets with mappings as morphisms,
% the category of all non-empty (partially) ordered sets with isotone
maps as morphisms.

Let Exp be the endofunctor & > with

ExpX ={Y: Yc X,Y #0}
and

[ExpfI(Y) =f(X) = {f(y): y e ¥}

for all sets X %@, ¥ = X and all maps f. Defining 7y (z) = {2} for r e X
and px(%) = \J Y for & eExpExpX, we get a monad (Exp, 7, u) (see

YeZ
[3], p- 138). We look now for such functors T': # — % for which the diagram
oy >q
(a) g
g =,

(U is the forgetful functor) is commutative (so T(4, o) = (Bxp 4, T (o)),
where T'(p) is a partial order on ExpA for each (4, g) e %).

(b) Y,ceY,cAd=>Y,T(0)Y,
as T is a functor, we get for any isotone mapping f: (4, o) — (B, a)
Y, T(e) Yz = f(¥1) T(0) f(¥2)-

‘We shall call such T a functor lifting Exp and extending inclusion.
A description of these liftings was considered in [4]. The system of all
considered functors 7 will be denoted by 7. Having two elements T,
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I €T, we say that
T it T'(o)cI"(e)
for all (4, o).

Now T, will be the subsystem of T formed by these functors T e T
for which (T, n, u) is a monad (denoted simply by T'). Having (4, o) e %,
74 and g, are now considered as morphisms in %, i.e. they must be isotone.
This is in fact the only condition on T e T to yield such a monad as needed
commutativity of involved diagrams follows obviously from the fact that 7'
lifts Exp. Ty has the smallest element T; and the greatest element T,
(see [5], Theorem 2) defined as follows: )

Let (4, ¢) e%. T, (o) is the transitive hull of set-inclusion on ExpAd
and therelation {({a}, {8}): @ ¢b,a,bcA}. X Ty(o) Yilt X<« Y or X— ¥
= {g}, = =supX in (4, o) and there exists y e ¥, for which # oy (here
X,Y e ExpA). The present paper should contribute to the study of T,
especially with respect to T',. Next lemma picts up one special situation
for T €Ty, which will repeatedly occur in the sequel.

Lewva 1. Let (T, 9, u) €Ty, and A be a set, (BxpA,o)ew, &, &
eExpExpd, ZT(0)% and uu(%)=|JXnonc JT¥ = (¥). Then
XeZ Ye¥

X —% = {X}, there ewists X, € ¥ with X, ¢ Y, Xy =sup & in (Bxp A, o)
and X,non < Y,.

?

Proof. p,(%)non c u (%) implies Fnon < ¥. The assertion of the
lemma follows immediately from the fact that 7 < T, and from the defi-
nition of T,.

In Propositions 1-4 some construetions are described which applied
to subsystems of T' (T, resp.) or to an element of T (T'y resp.) yield again
an element of T (T', Tesp.).

PROPOSINON 1. Lot T' < T (I < Ty resp.). Put op(A, g) = () T'(o).
el

Let F(4,q) = (EX-PAa or(4, 9))7 F(f)y = Expf. Then FeT (FeTyy
résp.).

Proof. For example, let us consider the case T' < Ty,. Tt iy clear
that oq.(4, ) is an order on Bxpd and that F: ¢ - % is a functor.

74 18 an isotone mapping from (4, ¢) to F(4, o) as it is isotone map from
(4,0) to (Expd,T(g)) for all T eT",

Tsotonicity of u,. Let %, ¥ e ExpExp4, & o (Bxp A, op (4
g T 0)¥.
Then, for ZT(T(o)]¥, TeT’, we have U X T() L’J Y. Henco
Xe¥ Y

Ye
(Ba(%) =) }ijx or(4, Q)ILJyY (= p4(¥)). 8o p, is isotone mapping

from (BxpExp4, or(BxpA, or-(4, o)) to (Exp4, or (4, g)).
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PROPOSITION 2. Let m be an infinite cardinal, TeT (T ey resp.),
(4,0) €. Put for X, Y eBxpA

Xo(4,00Y=XcYor XT() ¥, cardX<m,
Xod, 0 Y=XcYo XT(0)Y, cardX<m.

Let Fi(4,¢) = (Expd, o(4, o)), Fi(f) =Expf, i =1,2. Then F,eT
(P, €Ty resp.).

Proof. We shall prove Proposition 2 for T €T, and F,.

(2) 0:(4,0) is an order on ExpA. Reflexivity and antisymmetry
are clear. Transitivity (put g, instead of g,(4, p)): Let X 0, ¥, ¥ o, 2.
So XT(0)Y, YT(0)Z. X XY, Y= Z, then XcZ, so X9, 2. If
X g Y,Xnonc Y, then cardX<<m and X g, 2. & Xc ¥, Yo,2,
Y non < Z, then card ¥ < m, 50 eard X < m and X g,Z.

(b) It is evident that F, is an endofunctor in .

(¢) m4 is an isotone mapping from (A4, o) into Fy(4, o). This is clear
a1 0 6y = {a,} T(p) {a,}, and card{a,} < m.

(d) Isotonicity of u, for F,. Let ¥,% cFxpExpd, % o,(ExpA4,
0:(4, 0)) #. The only case, which needs a consideration, is 14(%) non.
< ug(¥). As ZT(oy(4,0)) ¥, it is Z—~F = {X,}, there exists ¥,c¥
such that X, 05(4, ¢) ¥y, X, = supZ in (Expd, (4, o)), Xonon = ¥,
(see Lemma 1). Then card X, << m. As X, = sup®% in (BxpA, g.(4, o)),
it is X = X, or card(X —X,) =1 for all X e &. Therefore, for all these
X’s we have card X < card X,. As & non c % we have card % < m. Hence
cardy & < card £. card X, << m. It is ET(QE(A, g)) %. As T is a functor
and identity mapping of (ExpA, o,(4, o)) to (ExpA,T(o)) is isotone,
we have ZT(T(0))¥. So u,(%)T(0)ps(¥) (notice that T eT, and
44 is isotone for T'). By this the proof of isotonicity of u, for F, is ac-
complished.

DEFINITION 1. Let m, T, F;, F, be as in Proposition 2. We put
rMT) =Fy,  MT) =F,.

DrrINITION 2. Let (4,¢)c%. Put 1(4,p) (briefly i(4)) =
supfeardX: X c A, X is an antichain in (4, g)} (one-point set is taken
as an antichain).

PROPOSITION 3. Let m be an infinite cardinal, T €T (T €Ty resp.),
(4,0 = %. Put for X, Y eExpA

XpY=XcY o XTY, HX)<nm,
X, Y=XcYo XTY, iX)<m.
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Let Fy(4, o) = (Bxp A, ;(4, o)), Fi(f) =Bxpf for i =3, 4. Then FyeT
(F; €Ty resp.). .

Proof. Take again the case T €Ty and prove F,eT,. The proof
runs along the same lines as the proof of Proposition 2. We can concentrate
ourselves to the proof of the isotonicity of u, for Fy.

Let %,% cBxpExpA, % Fjou(4,0)¥. Suppose p,(%) non
< py(¥). Then & —@ = {X}, there exists ¥, € % such that Xo0u(4, 0) X,
X, =sup% in (BxpA, o4, ) and X,non c ¥,. Therefore #(X,)<m
(t{X,) calculated in (4, 0)). As Znonc ¥, it is Y&)<m in (BExp4,
o4, ) Take X e Z. Ttis X = Xy or XX, = {#}. Take an antichain
Z c py(%) in (4, ¢) and suppose Z infinite, cardZ > t(%), cardZ > t(X,).
We can take Z so that ZnX, = @. For every «; € Z we can choose X; e &
with X, —X, = {#;}, #, =supX, in (4, ¢). For 7 s j we have &;nonp y,,
therefore X;nong,(4, o) X;. The system of all X;'s forms an antichain
in (ExpA, o4, @) of cardinality of Z so greater than (%), a contra-
diction. So {4 (%)) < (%) +H(Xo) < m. As Z T(T(0)} ¥, we have p,(%)
T(0) ps(¥), henee py (%) eald, 0) pa(¥) and py is isotone for F,.

DEFINITION 3. Let m, T, Fy, Fy be as in Proposition 3. We putb

L) =Fyy, 13(T) =F,.

DeFINTTION 4. Let (4,0)e%. Put s(4,0) (briefly s(4))
= min{cardI: there exist chains K; in (4, o), ¢ € I, such that A = L%K,-}.

PRrOPOSITION 4. Let m be am infinite cardinal, T €T (T €Ty resp.),
(4, o) e%. Put for X, Y cExpA

Xod,0)Y=XcYor XT(0) ¥,
Xod,o) Y=XcYor XT(0) Y, sX)<m.

Let Fy(4, o) = (BxpA, ¢;(4, o)), F;(f) = Bxpf for i =5, 6. Then F; eT
(F; €Ty resp.).

s(X) < m,

Proof. Take again the case T eTy and prove F;eT,,. The facts
that ¥y is an endofunctor in % and that 7, is isotone are easy to prove.
Isotonicity of 4, for F;. Let &, ¥ e ExpExpd, .%"QB(Ex:pA, 0:(4,
0))%. Suppose uy(Z)nonc pu,(¥). As Fnonc ¥, it is s(Z)<m in
(BExpA, g5(4, 0)- There exists {%;: iel, cardl <m, %; a chain in
(Exp 4, o5(4, o))} such that g %, = . The further data are following:

Z—¥ = {X,}, there exists ¥, e ¥ such that X, o5(4, 0) ¥y, X, =supZ
in (ExpA, gs(4,0)) and X,non < ¥,. Put f(X)=X—X, for XeZ.
So f(X) =@ or f(X) = {g} forx =supXin (4, o). Let 2" = {X e &: f(X)
#0}. Let Xy, X, e %", f(X) = {wg}, f(X,) = {za}, Xy05(4, @) X,. Then

©
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Xy < Xy (80 0y 0 @) 0r Xy — X, = {o,} and again 2, g 2,. Put "N %, = £,
Then {#: {#} =f(X),Xe2;} is a chain in (4,0). As cardI< m,
$(Xy) <m and py(%) :XOUXL%]“(X), it s s{uy (&))< m. Zo(BxpA4,
0(4, 0)) ¥ ‘implies Z T(T(0)) ¥, we get uy(%)T() pa(¥). So py(%)
os(4, 0) n4(%) and pu, is isotone for Fy.

DEFINITION 5. Let m, Fy, F; be as in Proposition 4. Then we pub
e (T) =F;, 1(T) =TF,.
' 77, ©=1,2,...,6 defined in Definitions 1, 3,5 are mappings of T'
in T carrying Ty, into T',. Taking all infinite cardinals m and T, (T,
= maxTy), we get a class of liftings of the type »*(T,) as there holds
LemmA 2. Let (m, 4, n,j)non € {(m, 6, m, 4), (m,4,m, 6)}. Then
1Ty =1 (Ty) =m =mn, i=j.

Proof. Clearly, m  n implies #7*(T,) 5 r?(T,) for all 4. Also for m #=n
we get evidently

PP (Ty) # 9P (Ty)
5 (Ty) #77(Ty)
73 (Ty) # 15(Ts),
75 (Ty) # 75 (Te)-
It remains to prove

(a) 73(Ty) # (L),

(b) 15 (Ty) # 75" (L),

(e) 1 {(Ty) #15(To)-

The proof of agsertions (a), (b) consists in constructing a set (4, o)
such that #(4, o) <m < s(4, ), where m is a given infinite cardinal.
This construction is a generalization of an example due to D. Kurepa
([2], 3.1). We shall proceed as follows. Take the smallest number m, with
the property 2™ > m. We have m; < m. Let B be a set with card B = my
and let us order the set B by a well-order of the corresponding initial type.
This type will be denoted by f. We can put B = f§ and consider 4 = 27,
where 2° is the system of all maps of p in the set {0,1} (0<<1) ordered
lexicographically (this ordering is denoted as <(;). Let y < f, » an ordinal.
Then 2°% < m. As y = §, we can suppose that 27 is a subset of 2 (e.g. the
maps from 92 are extended to those of 2° by assigning 0 to the elements
of f—y). The set D = | J2” is dense in 4, i.e. for a,be A, a<,b there

r<p
exists ¢ € D such that a <, ¢<; b As card2” < m for y < f, we get card.D
< m.

7.
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Now, order 4 by a well-order <,. Put ¢ =<0 <. Let Z < (4, g)
be a chain. This chain must be well-ordered, say Z = {&, %1, %, ...}, and
this chain is also a chain in (4, <,;). As D is a dense set in (4, <,) and card D
< m, the cardinality of Z is < m. As card 4 > m, it follows that s (4, ¢) > m.

Let Zbean antichainin (4, ), Z = {Zoy 215 Zay -+ o}y 0 <o 81 <282y ...
For 7 < j we must have 2; <, #;. For the same reason as before, cardZ < m.
So (4, o) < m.

Proof of (a). Let (4, ¢) be the set just constructed and take a, b non € 4.
Put (B, 0) = (4, 0)D{e}®{b} (® means the ordinal sum). Put ¢, = AU
U{a}, Gy = AU {b}. Tt is Gy 75" (T,)(e) G4, Gy nonri(T,) (¢) G». The proof of
(b) is similar.

Proof of (c). Let M be an antichain of the cardinality m, &, b non e M.
Put (4, ¢) = M@{a}®{b}. Put Gy = My {a}, G, = MU {b}. It is Gy 7(T,)
() Gsy Grnon 73 (T5) (0) G-

Remark. Result of Dilworth [1] implies »§0(Ty) = #§0(T).

One of the needed information on T or T'y, is the answer to the question
whether they are classes or hyperclasses. Proposition 5 relates to this
question.

PROPOSTITION 5. Let %* be the full subcategory of U consisting of all
ordered finite non-empty sets, T*, T, be the system defined for %™ in the same
way as T and Ty for %. Then cardT* = 2%, cardT%, = 2.

Proof. cardT}, = 2 can be proved along the same lines as Proposition 3
in [6]. Let us prove that cardT™ = 2%. Exp is now considered as an
endofunctor in 4*. Let

1) Mgy Moy oeey Myy oony
)] S5y 8ay ey Sy vnn

be sequences of positive integers with

B m<sa< (:;)< My < 85 << (f;ﬂ)< < (;’:k)< Mgy < Spppy < oo
— (%

Put ¢, = (‘mk)

Let Cp be a set with 245,41, elements by, ay, bl, ..., bik, ai, ..
<+« 63%. For this set o, is a mapping from the system D, of all subsets
with . elements from the set {a}, ..., af¥} onto {B}, ..., bi}. Let o} be
the ordering of Oy generated by pairs (af, b%), where o} € D e D, a,(D)
= Ui, (0], @) for all j, (ay,B,) (see Pig. 1). Put A, = {ay, at, ..., ai¥},
By, = C;,~{a}. By the same symbol (and by €, as well) also the

corresponding ordered sets with the restrictions of o, to these sets will
be denoted.
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Let P be a non-empty subset of the set {s;, $s, ..., 81, ...}. Let (M, o)
be any finite ordered set. We shall define the order op(M, o) on BExp M
in the following way.

b

ak

Fig. 1

For X, Yc M, X #0 # XY we put Xpp(M,0) Y iff X< X or
there exist numbers $;,...,s; €P and isotone maps Jy: 01.!~>(M , O)y
j=1,...,r such that
(4) X <ch(dy), MmiB;)c h(dy),

R hr—l (B

Tp—1

hy(By,) = «ot

) < hr(Air)’ h’r(Bi,.) < Y‘

It is easy to prove that gp(M, o) is an order on Exp M and that
Fp(M, o) = (ExpM, gp(H, o)), Fp(f) = Bxpf is an endofunctor in %*.
In proving these facts it iy sufficient to observe, in which case the cardi-
nality of hj(Aij) and h;_,(B;_)) or of hj(Aij) and hy(B;;) resp. are the
same and to use this observation for proving antisymmetry for gp(M, o).
Anyway, one can use [4], Theorem 1 as e.g. gp(M, o) c a*(M, o).

Let us now prove one auxiliary statement.

LeMMA 3. Let s, ¢ P. Then A nonep(Cy) By-

Proof. Suppose 4, < hy(4,), ..
First of all we prove

- h(B;) = B is a sequence of type (4).

(5) Ak < h’r(B'[,.)‘
It is
(6) B (ay) # {8} -

Suppose (6) does not hold. So A (a) = {a;}. We bave Iy(a;) = a
and
] Iy (B},) o35

hy(B)) # @, for all ¢.
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We have k<4, and m; > {,. For any choice of afi e b (af), =1,
(such choice clearly exists) there exists b} so that afio, bl . Thercfore
a};crkhl(b{fl), which gives hy (b{l) = a;, or b,. This is a contradiction to (7).
Therefore (6) is valid and hence 4, < &y (B;). By induction we get (5).
(5) together with 2,(B;) = By implies 4, = B, which is a contradiction
to the definitions of 4, and B,.

From Lemma 3 we can deduce

LEMMA 4. Py # Py = Fp + Fp,.

The proof is immediate, as by Lemma 3 s, eP,—P, (s; P, —P,)
implies gp,(Cy, 0%) # op, (Crs 0)- cardT* = 2% follows obviously from
Lemma 4, the definition of P and from the evident upper bound cardT™
< 2%,
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Introduction

Homomorphisms of group rings with the ring of integers as the coefficient
ring and torsion-free group were first investigated by Higman [1]. These
investigations were continued among others, by Smirnov [13]. Parmenter
and Sehgal considered automorphisms of the group ring A[@] for infinite
eyelic group @ and arbitrary ring of coefficients 4 ([7], [8]). Lantz [4]
described automorphisms of group rings of free abelian groups of finite
rank with commuting coefficients.

The aim of this paper is to present a new method of investigation
of a group of units and homomorphisms of group rings. For this purpose
we shall investigate in § 1 properties of some subgroups of a group U(C[G])
of units of a group ring C[G], where C is a commutative ring. In §2 a
structure of the group U(C[@]) is deseribed in the case where @ is a u.p.
group. In §3 we introduce 4 classes of homomorphisms of group rings
related to subgroups defined in § 1. They are called G;-homomorphisms
(¢ = 0,1, 2, 3)and it is shown that in the case of u,p.-groups every homo-
morphism is a Gs;-homomorphism. In §4 structure of G- and G-homo-
morphisms is described. In §5 we investigate properties of Gy and Gy-
homomorphisms using in the essential way results concerning Gy-homo-
morphisms. In §4 and §5 some criteria for a homomorphisms to be an
injection, a surjection or an automorphism are given. In § 6 our results are
applied to the description of the structure of group of automorphisms
and hopficity and cohopficity of group rings of u.p.-groups.

The paper is written in such a way that it is possible to extend all
the results on u.p.-groups to the arbitrary torsion-free group after showing
the triviality of the group of units of group algebras of such groups over
fields.
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