- icm[©]
- [5] C. C. Elgot, Monadic computation and iterative algebraic theories, in Proc. Logic Colloquium, Bristol 1973, North Holland, Amsterdam 1975.
- [6] -, Matricial theories, Journal of Algebra 42 (2) (1976), 391-421.
- [7] C. C. Elgot, S. L. Bloom and R. Tindell, The algebraic structure of rooted trees, J. Computer and System Sci. 16 (1978), 362-399.
- [8] S. Eilenberg and J. B. Wright, Automata in general algebras, Information and Control 11 (1967), 52-70.

Presented to the Semester Universal Algebra and Applications (February 15-June 9, 1978) UNIVERSAL ALGEBRA AND APPLICATIONS BANACH CENTER PUBLICATIONS, VOLUME 9 PWN-POLISH SCIENTIFIC PUBLISHERS WARSAW 1982

ON SYSTEM OF SUBOBJECT FUNCTORS IN THE CATEGORY OF ORDERED SETS

MILAN SEKANINA

Department of Algebra and Geometry, Faculty of Science of JEP University, 66295 Brno, Czechoslovakia

Let $\mathcal S$ be the category of all non-empty sets with mappings as morphisms, $\mathcal U$ the category of all non-empty (partially) ordered sets with isotone maps as morphisms.

Let Exp be the endofunctor $\mathscr{S} \to \mathscr{S}$ with

$$\operatorname{Exp} X = \{Y \colon Y \subset X, Y \neq \emptyset\}$$

and

$$[\text{Exp} f](Y) = f(Y) = \{f(y) : y \in Y\}$$

for all sets $X \neq \emptyset$, $Y \subset X$ and all maps f. Defining $\eta_X(x) = \{x\}$ for $x \in X$ and $\mu_X(\mathcal{X}) = \bigcup_{Y \in \mathcal{X}} Y$ for $\mathcal{X} \in \operatorname{Exp} \operatorname{Exp} X$, we get a monad $(\operatorname{Exp}, \eta, \mu)$ (see [3], p. 138). We look now for such functors $T \colon \mathcal{U} \to \mathcal{U}$ for which the diagram

(*U* is the forgetful functor) is commutative (so $T(A, \varrho) = \{\text{Exp } A, T(\varrho)\}$, where $T(\varrho)$ is a partial order on Exp A for each $(A, \varrho) \in \mathcal{U}$).

$$(b) Y_1 \subset Y_2 \subset A \Rightarrow Y_1 T(\varrho) Y_2$$

as T is a functor, we get for any isotone mapping $f:(A,\varrho)\to(B,\sigma)$

$$Y_1 T(\varrho) Y_2 \Rightarrow f(Y_1) T(\sigma) f(Y_2)$$
.

We shall call such T a functor lifting Exp and extending inclusion. A description of these liftings was considered in [4]. The system of all considered functors T will be denoted by T. Having two elements T',

 $T'' \in T$, we say that

$$T' \leqslant T''$$
 iff $T'(\varrho) \subseteq T''(\varrho)$

for all (A, ϱ) .

Now T_M will be the subsystem of T formed by these functors $T \in T$ for which (T, η, μ) is a monad (denoted simply by T). Having $(A, \varrho) \in \mathscr{U}$, η_A and μ_A are now considered as morphisms in \mathscr{U} , i.e. they must be isotone. This is in fact the only condition on $T \in T$ to yield such a monad as needed commutativity of involved diagrams follows obviously from the fact that T lifts Exp. T_M has the smallest element T_1 and the greatest element T_2 (see [5], Theorem 2) defined as follows:

Let $(A, \varrho) \in \mathscr{U}$. $T_1(\varrho)$ is the transitive hull of set-inclusion on Exp A and the relation $\{(\{a\}, \{b\}): a \varrho b, a, b \in A\}$. $X T_2(\varrho) Y$ iff $X \subset Y$ or $X - Y = \{x\}$, $x = \sup X$ in (A, ϱ) and there exists $y \in Y$, for which $x \varrho y$ (here $X, Y \in \operatorname{Exp} A$). The present paper should contribute to the study of T, especially with respect to T_M . Next lemma picts up one special situation for $T \in T_M$, which will repeatedly occur in the sequel.

 $\begin{array}{lll} \text{LEMMA 1. Let } (T,\eta,\mu) \in T_M, \text{ and } A \text{ be a set, } (\text{Exp}\,A,\sigma) \in \mathcal{U}, \ \mathcal{Y}, \ \mathcal{X} \\ \in \text{Exp}\,\text{Exp}\,A, \ \mathcal{X}\,T(\sigma) \ \mathcal{Y} & \text{and} & \mu_A(\mathcal{X}) = \bigcup_{X \in \mathcal{X}} X \text{ non } \subset \bigcup_{Y \in \mathcal{Y}} Y = \mu_A(\mathcal{Y}). \ Then \\ \mathcal{X}-\mathcal{Y} = \{X_0\}, \text{ there exists } Y_0 \in \mathcal{Y} \text{ with } X_0 \ \sigma \ Y_0, \ X_0 = \sup \mathcal{X} \text{ in } (\text{Exp}\,A,\sigma), \\ \text{and } X_0 \text{ non } \subset Y_0. \end{array}$

Proof. $\mu_A(\mathscr{X})$ non $\subset \mu_A(\mathscr{Y})$ implies \mathscr{X} non $\subset \mathscr{Y}$. The assertion of the lemma follows immediately from the fact that $T \leqslant T_2$ and from the definition of T_2 .

In Propositions 1–4 some constructions are described which applied to subsystems of T (T_M resp.) or to an element of T (T_M resp.) yield again an element of T (T_M resp.).

PROPOSITION 1. Let $T' \subset T$ ($T' \subset T_M$ resp.). Put $\varrho_{T'}(A, \varrho) = \bigcap_{T \in T'} T(\varrho)$. Let $F(A, \varrho) = (\operatorname{Exp} A, \varrho_{T'}(A, \varrho))$, $F(f) = \operatorname{Exp} f$. Then $F \in T$ ($F \in T_M$ resp.).

Proof. For example, let us consider the case $T' \subset T_M$. It is clear that $\ell_{T'}(A, \varrho)$ is an order on $\operatorname{Exp} A$ and that $F \colon \mathscr{U} \to \mathscr{U}$ is a functor. η_A is an isotone mapping from (A, ϱ) to $F(A, \varrho)$ as it is isotone map from (A, ϱ) to $(\operatorname{Exp} A, T(\varrho))$ for all $T \in T'$.

Isotonicity of μ_A . Let $\mathscr{X}, \mathscr{Y} \in \operatorname{Exp}\operatorname{Exp} A$, $\mathscr{X} \in \operatorname{er}(\operatorname{Exp} A, \varrho_{T'}(A, \varrho)) \mathscr{Y}$. Then, for $\mathscr{X} T(T(\varrho)) \mathscr{Y}$, $T \in T'$, we have $\bigcup_{X \in \mathscr{X}} X T(\varrho) \bigcup_{Y \in \mathscr{Y}} Y$. Hence $(\mu_A(\mathscr{X}) =) \bigcup_{X \in \mathscr{X}} X \in \mathcal{Y}(A, \varrho) \bigcup_{Y \in \mathscr{Y}} Y \ (= \mu_A(\mathscr{Y}))$. So μ_A is isotone mapping

from $(\operatorname{Exp}\operatorname{Exp} A, \varrho_{T'}(\operatorname{Exp} A, \varrho_{T'}(A, \varrho)))$ to $(\operatorname{Exp} A, \varrho_{T'}(A, \varrho))$.

PROPOSITION 2. Let m be an infinite cardinal, $T \in T$ $(T \in T_M \text{ resp.})$, $(A, \varrho) \in \mathcal{U}$. Put for $X, Y \in \text{Exp} A$

$$X \varrho_1(A, \varrho) Y \equiv X \subset Y \text{ or } X T(\varrho) Y, \quad \text{card} X \leqslant m,$$

$$X \varrho_2(A, \varrho) Y \equiv X \subset Y \text{ or } X T(\varrho) Y, \quad \text{card} X < m.$$

Let $F_i(A, \varrho) = (\operatorname{Exp} A, \varrho_i(A, \varrho)), \ F_i(f) = \operatorname{Exp} f, \ i = 1, 2.$ Then $F_i \in T$ $(F_i \in T_M \ resp.).$

Proof. We shall prove Proposition 2 for $T \in T_M$ and F_2 .

- (a) $\varrho_2(A,\varrho)$ is an order on ExpA. Reflexivity and antisymmetry are clear. Transitivity (put ϱ_2 instead of $\varrho_2(A,\varrho)$): Let $X \varrho_2 Y, Y \varrho_2 Z$. So $X T(\varrho) Y$, $Y T(\varrho) Z$. If $X \subset Y$, $Y \subset Z$, then $X \subset Z$, so $X \varrho_2 Z$. If $X \varrho_2 Y, X \text{ non } \subset Y$, then $\operatorname{card} X < m$ and $X \varrho_2 Z$. If $X \subset Y$, $Y \varrho_2 Z$, $Y \text{ non } \subset Z$, then $\operatorname{card} Y < m$, so $\operatorname{card} X < m$ and $X \varrho_2 Z$.
 - (b) It is evident that F_2 is an endofunctor in \mathcal{U} .
- (c) η_A is an isotone mapping from (A, ϱ) into $F_2(A, \varrho)$. This is clear $a_1 \varrho a_2 \Rightarrow \{a_1\} T(\varrho) \{a_2\}$, and card $\{a_1\} < m$.
- (d) Isotonicity of μ_A for F_2 . Let $\mathcal{X}, \mathcal{Y} \in \operatorname{Exp}\operatorname{Exp} A$, $\mathcal{Z} \varrho_2(\operatorname{Exp} A, \varrho_2(A, \varrho)) \mathcal{Y}$. The only case, which needs a consideration, is $\mu_A(\mathcal{X})$ non $\subset \mu_A(\mathcal{Y})$. As $\mathcal{X}T(\varrho_2(A, \varrho)) \mathcal{Y}$, it is $\mathcal{X}-\mathcal{Y}=\{X_0\}$, there exists $Y_0\in \mathcal{Y}$ such that $X_0\,\varrho_2(A, \varrho)\,Y_0,\,X_0=\sup \mathcal{X}$ in $(\operatorname{Exp} A,\,\varrho_2(A, \varrho)),\,X_0$ non $\subset Y_0$ (see Lemma 1). Then $\operatorname{card} X_0 < m$. As $X_0=\sup \mathcal{X}$ in $(\operatorname{Exp} A,\,\varrho_2(A,\,\varrho))$, it is $X\subset X_0$ or $\operatorname{card}(X-X_0)=1$ for all $X\in \mathcal{X}$. Therefore, for all these X's we have $\operatorname{card} X\leqslant \operatorname{card} X_0$. As \mathcal{X} non $\subset \mathcal{Y}$ we have $\operatorname{card} \mathcal{X}< m$. Hence $\operatorname{card} \mu_A \mathcal{X}\leqslant \operatorname{card} \mathcal{X}$. $\operatorname{card} X_0< m$. It is $\mathcal{X}T(\varrho_2(A,\,\varrho))$ \mathcal{Y} . As T is a functor and identity mapping of $(\operatorname{Exp} A,\,\varrho_2(A,\,\varrho))$ to $(\operatorname{Exp} A,\,T(\varrho))$ is isotone, we have $\mathcal{X}T(T(\varrho))\,\mathcal{Y}$. So $\mu_A(\mathcal{X})T(\varrho)\,\mu_A(\mathcal{Y})$ (notice that $T\in T_M$ and μ_A is isotone for T). By this the proof of isotonicity of μ_A for F_2 is accomplished.

DEFINITION 1. Let m, T, F_1, F_2 be as in Proposition 2. We put

$$r_1^m(T) = F_1, \quad r_2^m(T) = F_2.$$

DEFINITION 2. Let $(A, \varrho) \subset \mathcal{U}$. Put $t(A, \varrho)$ (briefly t(A)) = $\sup\{\operatorname{card} X\colon X\subset A, X \text{ is an antichain in } (A, \varrho)\}$ (one-point set is taken as an antichain).

PROPOSITION 3. Let m be an infinite cardinal, $T \in T$ $(T \in T_M \text{ resp.})$, $(A, \varrho) \subset \mathcal{U}$. Put for $X, Y \in \text{Exp}A$

$$X \varrho_3 Y \equiv X \subset Y \text{ or } X T(\varrho) Y, \quad t(X) \leqslant m,$$

$$X \varrho_4 Y \equiv X \subset Y \text{ or } X T(\varrho) Y, \quad t(X) < m.$$

Let $F_i(A, \varrho) = (\text{Exp} A, \varrho_i(A, \varrho)), F_i(f) = \text{Exp} f \text{ for } i = 3, 4.$ Then $F_i \in T$ $(F_i \in T_M \text{ resp.}).$

Proof. Take again the case $T \in T_M$ and prove $F_4 \in T_M$. The proof runs along the same lines as the proof of Proposition 2. We can concentrate ourselves to the proof of the isotonicity of μ_A for F_4 .

Let $\mathscr{X}, \mathscr{Y} \in \operatorname{Exp} \operatorname{Exp} A$, $\mathscr{X} F_4[\varrho_4(A,\varrho)] \mathscr{Y}$. Suppose $\mu_A(\mathscr{X})$ non $\subset \mu_A(\mathscr{Y})$. Then $\mathscr{X} - \mathscr{Y} = \{X_0\}$, there exists $Y_0 \in \mathscr{Y}$ such that $X_0 \varrho_4(A,\varrho) Y_0$, $X_0 = \sup \mathscr{X}$ in $(\operatorname{Exp} A, \varrho_4(A,\varrho))$ and X_0 non $\subset Y_0$. Therefore $t(X_0) < m$ $(t(X_0)$ calculated in (A,ϱ)). As \mathscr{X} non $\subset \mathscr{Y}$, it is $t(\mathscr{X}) < m$ in $(\operatorname{Exp} A, \varrho_4(A,\varrho))$. Take $X \in \mathscr{X}$. It is $X \subset X_0$ or $X - X_0 = \{x\}$. Take an antichain $Z \subset \mu_A(\mathscr{X})$ in (A,ϱ) and suppose Z infinite, $\operatorname{card} Z > t(\mathscr{X})$, $\operatorname{card} Z > t(X_0)$. We can take Z so that $Z \cap X_0 = \emptyset$. For every $x_i \in Z$ we can choose $X_i \in \mathscr{X}$ with $X_i - X_0 = \{x_i\}$, $x_i = \sup X_i$ in (A,ϱ) . For $i \neq j$ we have x_i non ϱy_i , therefore X_i non $\varrho_4(A,\varrho) X_j$. The system of all X_i 's forms an antichain in $(\operatorname{Exp} A, \varrho_4(A,\varrho))$ of cardinality of Z so greater than $t(\mathscr{X})$, a contradiction. So $t(\mu_A(\mathscr{X})) \leqslant t(\mathscr{X}) + t(X_0) < m$. As $\mathscr{X} T(T(\varrho)) \mathscr{Y}$, we have $\mu_A(\mathscr{X}) T(\varrho) \mu_A(\mathscr{Y})$, hence $\mu_A(\mathscr{X}) \varrho_4(A,\varrho) \mu_A(\mathscr{Y})$ and μ_A is isotone for F_4 .

DEFINITION 3. Let m, T, F_3, F_4 be as in Proposition 3. We put

$$r_3^m(T) = F_3, \quad r_4^m(T) = F_4.$$

DEFINITION 4. Let $(A, \varrho) \in \mathcal{U}$. Put $s(A, \varrho)$ (briefly s(A)) = min {card I: there exist chains K_i in (A, ϱ) , $i \in I$, such that $A = \bigcup_{i \in I} K_i$ }.

PROPOSITION 4. Let m be an infinite cardinal, $T \in T$ $(T \in T_M \text{ resp.})$, $(A, \varrho) \in \mathcal{U}$. Put for $X, Y \in \text{Exp}A$

$$X \rho_r(A, \rho) Y \equiv X \subset Y \text{ or } X T(\rho) Y, \quad s(X) \leq m,$$

$$X \rho_{\delta}(A, \rho) Y \equiv X \subset Y \text{ or } X T(\rho) Y, \quad s(X) < m.$$

Let $F_i(A, \varrho) = (\text{Exp}A, \varrho_i(A, \varrho)), \ F_i(f) = \text{Exp}f \ for \ i = 5, 6.$ Then $F_i \in T_i(F_i \in T_M \ resp.).$

Proof. Take again the case $T \in T_M$ and prove $F_6 \in T_M$. The facts that F_6 is an endofunctor in $\mathscr U$ and that η_A is isotone are easy to prove.

Isotonicity of μ_A for F_6 . Let \mathscr{X} , $\mathscr{Y} \in \operatorname{Exp} \operatorname{Exp} A$, $\mathscr{X} \varrho_6(\operatorname{Exp} A, \varrho_6(A, \varrho)) \mathscr{Y}$. Suppose $\mu_A(\mathscr{X}) \operatorname{non} \subset \mu_A(\mathscr{Y})$. As $\mathscr{X} \operatorname{non} \subset \mathscr{Y}$, it is $s(\mathscr{X}) < m$ in $(\operatorname{Exp} A, \varrho_6(A, \varrho))$. There exists $\{\mathscr{X}_i \colon i \in I$, $\operatorname{card} I < m$, \mathscr{X}_i a chain in $(\operatorname{Exp} A, \varrho_6(A, \varrho))\}$ such that $\bigcup_{i \in I} \mathscr{X}_i = \mathscr{X}$. The further data are following: $\mathscr{X} - \mathscr{Y} = \{X_0\}$, there exists $Y_0 \in \mathscr{Y}$ such that $X_0 \varrho_6(A, \varrho) Y_0$, $X_0 = \sup \mathscr{X}$ in $(\operatorname{Exp} A, \varrho_6(A, \varrho))$ and $X_0 \operatorname{non} \subset Y_0$. Put $f(X) = X - X_0$ for $X \in \mathscr{X}$. So $f(X) = \emptyset$ or $f(X) = \{x\}$ for $x = \sup X$ in (A, ϱ) . Let $\mathscr{X}' = \{X \in \mathscr{X} \colon f(X) \neq \emptyset\}$. Let $X_1, X_2 \in \mathscr{X}'$, $f(X_1) = \{x_1\}$, $f(X_2) = \{x_2\}$, $X_1 \varrho_6(A, \varrho) X_2$. Then

DEFINITION 5. Let m, F_5, F_6 be as in Proposition 4. Then we put

$$r_5^m(T) = F_5, \quad r_6^m(T) = F_6.$$

 r_i^m , i = 1, 2, ..., 6 defined in Definitions 1, 3, 5 are mappings of T in T carrying T_M into T_M . Taking all infinite cardinals m and T_2 ($T_2 = \max T_M$), we get a class of liftings of the type $r_i^m(T_2)$ as there holds

LEMMA 2. Let (m, i, n, j) non $\in \{(m, 6, m, 4), (m, 4, m, 6)\}$. Then

$$r_i^m(T_2) = r_i^n(T_2) \equiv m = n, \quad i = j.$$

Proof. Clearly, $m \neq n$ implies $r_i^m(T_2) \neq r_i^n(T_2)$ for all i. Also for $m \neq n$ we get evidently

$$r_1^m(T_2) \neq r_i^m(T_2)$$
 for $i = 2, ..., 6$,

$$r_2^m(T_2) \neq r_i^n(T_2)$$
 for $i = 3, ..., 6$,

$$r_3^m(T_2) \neq r_4^n(T_2)$$
,

$$r_5^m(T_2) \neq r_6^n(T_2)$$
.

It remains to prove

(a) $r_3^m(T_2) \neq r_5^m(T_2)$,

(b)
$$r_3^m(T_2) \neq r_6^m(T_2)$$
,

(c)
$$r_4^m(T_2) \neq r_5^m(T_2)$$
.

The proof of assertions (a), (b) consists in constructing a set (A, ϱ) such that $t(A, \varrho) \leq m < s(A, \varrho)$, where m is a given infinite cardinal. This construction is a generalization of an example due to D. Kurepa ([2], 3.1). We shall proceed as follows. Take the smallest number m_1 with the property $2^{m_1} > m$. We have $m_1 \leq m$. Let B be a set with card $B = m_1$ and let us order the set B by a well-order of the corresponding initial type. This type will be denoted by β . We can put $B = \beta$ and consider $A = 2^{\beta}$, where 2^{β} is the system of all maps of β in the set $\{0,1\}$ $\{0<1\}$ ordered lexicographically (this ordering is denoted as \leq_1). Let $\gamma < \beta$, γ an ordinal. Then $2^{\operatorname{card}\gamma} \leq m$. As $\gamma \subset \beta$, we can suppose that 2^{γ} is a subset of 2^{β} (e.g. the maps from 2^{γ} are extended to those of 2^{β} by assigning 0 to the elements of $\beta - \gamma$). The set $D = \bigcup_{\gamma < \beta} 2^{\gamma}$ is dense in A, i.e. for $a, b \in A$, $a <_1 b$ there exists $c \in D$ such that $a \leq_1 c \leq_1 b$. As $\operatorname{card} 2^{\gamma} \leq m$ for $\gamma < \beta$, we get $\operatorname{card} D \leq m$.

Now, order A by a well-order \leq_2 . Put $\varrho = \leq_1 \cap \leq_2$. Let $Z \subset (A, \varrho)$ be a chain. This chain must be well-ordered, say $Z = \{z_0, z_1, z_2, \ldots\}$, and this chain is also a chain in (A, \leq_1) . As D is a dense set in (A, \leq_1) and card D $\leq m$, the cardinality of Z is $\leq m$. As card A > m, it follows that $s(A, \varrho) > m$.

Let Z be an antichain in $(A, \rho), Z = \{z_0, z_1, z_2, \ldots\}, z_0 < z_1 < z_2 < z_2 < \ldots$ For i < j we must have $z_i \leqslant_1 z_i$. For the same reason as before, card $Z \leqslant m$. So $t(A, \rho) \leq m$.

Proof of (a). Let (A, ρ) be the set just constructed and take a, b non $\in A$. Put $(E, \rho) = (A, \rho) \oplus \{a\} \oplus \{b\}$ (\oplus means the ordinal sum). Put $G_1 = A \cup A$ $\cup \{a\}, G_2 = A \cup \{b\}.$ It is $G_1 r_3^m(T_2)(\rho) G_2$, $G_1 \operatorname{non} r_5^m(T_2)(\rho) G_2$. The proof of (b) is similar.

Proof of (c). Let M be an antichain of the cardinality $m, a, b \text{ non } \in M$. Put $(A, \rho) = M \oplus \{a\} \oplus \{b\}$. Put $G_1 = M \cup \{a\}, G_2 = M \cup \{b\}$. It is $G_1 r_i^m(T_2)$ $(\rho) G_2, G_1 \text{ non } r_A^m(T_2)(\rho) G_2.$

Remark. Result of Dilworth [1] implies $r_4^{\aleph_0}(T_2) = r_6^{\aleph_0}(T_2)$.

One of the needed information on T or T_M is the answer to the question whether they are classes or hyperclasses. Proposition 5 relates to this question.

Proposition 5. Let U* be the full subcategory of U consisting of all ordered finite non-empty sets, T*, T*, be the system defined for U* in the same way as T and T_M for \mathscr{U} . Then $\operatorname{card} T^* = 2^{\aleph_0}$, $\operatorname{card} T_M^* = 2$.

Proof. card $T_M^* = 2$ can be proved along the same lines as Proposition 3 in [5]. Let us prove that card $T^* = 2^{\aleph_0}$. Exp is now considered as an endofunctor in \mathcal{U}^* . Let

$$(1) m_1, m_2, \ldots, m_k, \ldots,$$

$$(2) s_1, s_2, \ldots, s_k, \ldots$$

be sequences of positive integers with

$$(3) \quad m_1 < s_1 < \binom{s_1}{m_1} < m_2 < s_2 < \binom{s_2}{m_2} < \ldots < \binom{s_k}{m_k} < m_{k+1} < s_{k+1} < \ldots$$
Put $t_k = \binom{s_k}{m_k}$.

Let C_k be a set with $2+s_k+t_k$ elements $b_k, a_k, b_k^1, \ldots, b_k^{t_k}, a_k^1, \ldots$..., $a_k^{s_k}$. For this set a_k is a mapping from the system D_k of all subsets with m_k elements from the set $\{a_k^1, \ldots, a_k^{s_k}\}$ onto $\{b_k^1, \ldots, b_k^{t_k}\}$. Let σ_k be the ordering of C_k generated by pairs (a_k^i, b_k^i) , where $a_k^i \in D \in D_k$, $a_k(D)$ $=b_k^i, (b_k^j, a_k)$ for all $j, (a_k, b_k)$ (see Fig. 1). Put $A_k = \{a_k, a_k^1, \ldots, a_k^{s_k}\},$ $B_k = C_k - \{a_k\}$. By the same symbol (and by C_k , as well) also the corresponding ordered sets with the restrictions of σ_k to these sets will be denoted.

Let P be a non-empty subset of the set $\{s_1, s_2, ..., s_k, ...\}$. Let (M, σ) be any finite ordered set. We shall define the order $\rho_{\mathcal{P}}(M,\sigma)$ on Exp M in the following way.

Fig. 1

For $X, Y \subset M$, $X \neq \emptyset \neq Y$ we put $X \varrho_P(M, \sigma) Y$ iff $X \subset Y$ or there exist numbers $s_{i_1}, \ldots, s_{i_r} \in P$ and isotone maps $h_i: C_{i_i} \to (M, \sigma)$, $j=1,\ldots,r$ such that

It is easy to prove that $\varrho_{\mathcal{P}}(M,\sigma)$ is an order on Exp M and that $F_{\mathcal{P}}(M,\sigma) = (\text{Exp}M, \varrho_{\mathcal{P}}(M,\sigma)), F_{\mathcal{P}}(f) = \text{Exp}f \text{ is an endofunctor in } \mathscr{U}^*.$ In proving these facts it is sufficient to observe, in which case the cardinality of $h_j(A_{i_j})$ and $h_{j-1}(B_{i_{j-1}})$ or of $h_j(A_{i_j})$ and $h_j(B_{i_j})$ resp. are the same and to use this observation for proving antisymmetry for $\varrho_P(M,\sigma)$. Anyway, one can use [4], Theorem 1 as e.g. $\varrho_P(M,\sigma) \subset \pi^1(M,\sigma)$.

Let us now prove one auxiliary statement.

LEMMA 3. Let $s_k \notin P$. Then $A_k \operatorname{non} \varrho_P(C_k) B_k$.

Proof. Suppose $A_k \subset h_1(A_{i_1}), \ldots, h_r(B_{i_r}) \subset B_k$ is a sequence of type (4). First of all we prove

$$(5) A_k \subset h_r(B_{i_*}).$$

It is

(6)
$$h_1^{-1}(a_k) \neq \{a_{i_1}\}.$$

Suppose (6) does not hold. So $h_1^{-1}(a_k) = \{a_{i_1}\}$. We have $h_1(a_{i_1}) = a_k$ and

(7)
$$h_1(b_{i_1}^i) \sigma_k a_k, \quad h_1(b_{i_1}^i) \neq a_k \quad \text{for all } i.$$

We have $k < i_1$ and $m_{i_1} > t_k$. For any choice of $a_{i_1}^{j_i} \in h_1^{-1}(a_k^i)$, $i = 1, \ldots, s_k$ (such choice clearly exists) there exists $b_{i_1}^j$ so that $a_{i_1}^{j_i} \sigma_{i_1} b_{i_1}^j$. Therefore $a_k^i \sigma_k h_1(b_{i_1}^j)$, which gives $h_1(b_{i_1}^j) = a_k$ or b_k . This is a contradiction to (7). Therefore (6) is valid and hence $A_k \subset h_1(B_{i_1})$. By induction we get (5). (5) together with $h_r(B_{i_r}) \subset B_k$ implies $A_k \subset B_k$ which is a contradiction to the definitions of A_k and B_k .

From Lemma 3 we can deduce

Lemma 4.
$$P_1 \neq P_2 \Rightarrow F_{P_1} \neq F_{P_2}$$
.

The proof is immediate, as by Lemma 3 $s_k \in P_2 - P_1$ ($s_k \in P_1 - P_2$) implies $\varrho_{P_2}(C_k, \sigma_k) \neq \varrho_{P_1}(C_k, \sigma_k)$. card $T^* = 2^{\aleph_0}$ follows obviously from Lemma 4, the definition of P and from the evident upper bound card $T^* \leq 2^{\aleph_0}$.

References

- P. P. Dilworth, A decomposition theorem for partially ordered sets, Ann. of Math. 51 (1950), 161-166.
- [2] D. Kurepa, Star number and antistar number of ordered sets and graphs, Glasnik mat. fiz. i ast. 18 (1963), 27-37.
- [3] S. MacLane, Categories for the working mathematician, Springer Verlag, New York-Heidelberg-Berlin, 1971.
- [4] M. Sekanina, On orderings of the system of subsets of ordered sets, Fund. Math. 70 (1971), 231-243.
- [5] -, Subobjet monads in the category of ordered sets, Coll. Math. Soc. J. Bolyai 29. Universal Algebra, Esztergom, 1977, 727-733.

Presented to the Semester Universal Algebra and Applications (February 15-June 9, 1978)

HOMOMORPHISMS OF GROUP RINGS

JAN KREMPA

Institute of Mathematics, Warsaw University, Warsaw, Poland

Introduction

Homomorphisms of group rings with the ring of integers as the coefficient ring and torsion-free group were first investigated by Higman [1]. These investigations were continued among others, by Smirnov [13]. Parmenter and Sehgal considered automorphisms of the group ring A[G] for infinite cyclic group G and arbitrary ring of coefficients A ([7], [8]). Lantz [4] described automorphisms of group rings of free abelian groups of finite rank with commuting coefficients.

The aim of this paper is to present a new method of investigation of a group of units and homomorphisms of group rings. For this purpose we shall investigate in § 1 properties of some subgroups of a group U(C[G]) of units of a group ring C[G], where C is a commutative ring. In § 2 a structure of the group U(C[G]) is described in the case where G is a u.p. group. In § 3 we introduce 4 classes of homomorphisms of group rings related to subgroups defined in § 1. They are called G_i -homomorphisms (i = 0, 1, 2, 3) and it is shown that in the case of u.p.-groups every homomorphism is a G_3 -homomorphism. In § 4 structure of G_0 - and G_1 -homomorphisms is described. In § 5 we investigate properties of G_2 - and G_3 -homomorphisms using in the essential way results concerning G_1 -homomorphisms. In § 4 and § 5 some criteria for a homomorphisms to be an injection, a surjection or an automorphism are given. In § 6 our results are applied to the description of the structure of group of automorphisms and hopficity and cohopficity of group rings of u.p.-groups.

The paper is written in such a way that it is possible to extend all the results on u.p.-groups to the arbitrary torsion-free group after showing the triviality of the group of units of group algebras of such groups over fields.