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We have k<4, and m; > {,. For any choice of afi e b (af), =1,
(such choice clearly exists) there exists b} so that afio, bl . Thercfore
a};crkhl(b{fl), which gives hy (b{l) = a;, or b,. This is a contradiction to (7).
Therefore (6) is valid and hence 4, < &y (B;). By induction we get (5).
(5) together with 2,(B;) = By implies 4, = B, which is a contradiction
to the definitions of 4, and B,.

From Lemma 3 we can deduce

LEMMA 4. Py # Py = Fp + Fp,.

The proof is immediate, as by Lemma 3 s, eP,—P, (s; P, —P,)
implies gp,(Cy, 0%) # op, (Crs 0)- cardT* = 2% follows obviously from
Lemma 4, the definition of P and from the evident upper bound cardT™
< 2%,
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Introduction

Homomorphisms of group rings with the ring of integers as the coefficient
ring and torsion-free group were first investigated by Higman [1]. These
investigations were continued among others, by Smirnov [13]. Parmenter
and Sehgal considered automorphisms of the group ring A[@] for infinite
eyelic group @ and arbitrary ring of coefficients 4 ([7], [8]). Lantz [4]
described automorphisms of group rings of free abelian groups of finite
rank with commuting coefficients.

The aim of this paper is to present a new method of investigation
of a group of units and homomorphisms of group rings. For this purpose
we shall investigate in § 1 properties of some subgroups of a group U(C[G])
of units of a group ring C[G], where C is a commutative ring. In §2 a
structure of the group U(C[@]) is deseribed in the case where @ is a u.p.
group. In §3 we introduce 4 classes of homomorphisms of group rings
related to subgroups defined in § 1. They are called G;-homomorphisms
(¢ = 0,1, 2, 3)and it is shown that in the case of u,p.-groups every homo-
morphism is a Gs;-homomorphism. In §4 structure of G- and G-homo-
morphisms is described. In §5 we investigate properties of Gy and Gy-
homomorphisms using in the essential way results concerning Gy-homo-
morphisms. In §4 and §5 some criteria for a homomorphisms to be an
injection, a surjection or an automorphism are given. In § 6 our results are
applied to the description of the structure of group of automorphisms
and hopficity and cohopficity of group rings of u.p.-groups.

The paper is written in such a way that it is possible to extend all
the results on u.p.-groups to the arbitrary torsion-free group after showing
the triviality of the group of units of group algebras of such groups over
fields.

[233]
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In the paper, standard notation of the theory of group rings is used
([97, [141). ALl the necessary information on Boolean algebras and cate-
gories can be found in [11] and [4].

1. Subgroups of umits

In the sequel, O will denote a commutative ring with unity, N its nil-
radical and X will denote a group.

Let D(C) denote the set of decompositions of the unity element
of ¢ into finite sets of orthogonal idempotents. For any # e D(C) let
Xy ={) ex,: w, e X}.

ecE
‘We shall define

G(O[X]) =X and G(0[X]) = |J Xp.
EeD(O)

Let Go(C[X]) be a set of products ww, where u e U(0), v e @, (C[X]).
Moreover, let G;(C[X]) be a set of elements of the form %%, where
ue@y(C[X]), te N[X].

THEOREM 1.1. In the foregoing notations, the sets G,(C[X]) (: =1, 2,
3) are subgroups of U(C[X]) and

X £ &,(0[X]) € Go(0[X]) < Go(0[X)).

Proof. Since ( ¥ ex,)( > en;') =1, Xy is a group for any H e D(C).
eck ecl

If B,F eD(0), then we shall say that B< F whenever for any feF
there exists an ¢ e B such that ¢f =f. The set D(C) is ordered by the
relation “<” and for B, F € D(0) a set of all non-zero elements of the
form ¢-f where ¢ e B, f ¢ F i their upper bound. Therefore the set D (C)
ig directed. If B, ¥ e D(C) and E<F, then Xz< X,. By the above
arguments it easily follows that &,(C[X]) is a group. Now it is apparent
that G4(C[X]) is also a group. Taking into consideration this and the
fact that N[X]is a nil-ideal of C[X], one can eagily check that G5(C[X])
is a group. The inclusions

X = 6(C[X]) € G,(C[X]) < G(C[X))
are obvious. '

Henceforth if I is an ideal of a (not necessarily commutative) ring,
then oy will denote a natural homomorphism of 4 onto 4 /1. Moreover,
;1®1 will denote a homomorphism of & ring 4 [X] onto (4/I)[X] induced.

Y ar.

The following result describes the behaviour of just introduced

groups under the change of coefficients.
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THEOREM 1.2. Let I be an ideal of a ring C. Then

(1) (a;®1)(G(C[X]) < G (C/DX] for & =0,1,2,3;

(2) if I < N, then a;®@1 is a homomorphism of &, (C[X]) onto G, (C/I)[ X ]
for k =0,1,2,3;

(8) if I contains no mon-zero idempotents, then o;®1 is an injection
of G,(C[X]) into G(O/I}[X];

(4) if I =2 N, then (a;Q1)G,(C[X]) < G4(C/I)[X].

Proof. (1) Since homomorphisms preserve invertibility, idempotence
and nilpotence of elements and orthogonality of idempotents, (1) is directly
verified.

(2) The statement is obvious for k¥ = 0. Assume that I = N. Let

v = > e €6, (C/I[X], where 1 =)'

i=1 =1
be a decomposition of the unity element of the ring C/I into a sum of
7
orthogonal idempotents. Sinee I is a nil-ideal, the decomposition 1 = ) &

7 i=1

can be lifted, as it is known [9], to the decomposition 1 = } 6; such

that g, = a;(e;). " i=1

It is clear that ¥ = (¢;®1)( > ea;). Now it is easy to complete the
proof of (2) for k =2, 3. i=1

n
(3) Let I conbains no non-zero idempotents and suppose thatv = ) ez,
i==1

€@ (0[X]) is such that (o,Q1)(v) =1. We may assume that e: #0
for any 1<i<n and that &; ¢#; for ¢ 5. Then 1 = (a;®1)(v)

n
= 3 a;(e)»;. Hence it follows that » =1 and v = 1.
1=1

Proof of (4) follows directly from the definitions.
The following result characterizes elements of the investigated sub-

groups:
THEOREM 1.3. Let p € O[X]. Then
(1) p eG(CIX]) ¥ff Zz,’{pz =1 and p,p, =0 for v #y;
Z€.

(2) p eG,(0[XT) iff Z;Z’m € U(0) and p,p, =0 for z #y;

(3) the following statements are equivalent:
(8) p €6;(C[X]),

(b) (ay®1)(p) € G, (C/N)X],

(e) Z;_pze U(C) and p.p, €N for = #1y.
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Proof. (1) T p G, (C[X]), then there exists B e D(C) such that p e X,
thus the coefficients of p satisfy our conditions. On the contrary, if p € 0[X]
satisties the conditions > p, = a and p,p, = 0 for » ¥, then it is easy

ze X

to see that non-zero clements p, give an orthogonal decomposition of
the unity element into idempotents and thus p € G4(C[X]).

(2) It p eG,(C[X]), then from the definition we get p = wv, where
we U(0), ve@(C[X]). It follows immediately that the required condi-
tions are satisfied. On the contrary, if u = Y p, e U(C) and p,p, = 0

for z = ¥, then an element %~ 'p fulfils the cond‘itions of (1) and therefore
it belongs to G(C[X]). This implies that p e @, (C[X]).

(8) Assume that p eG4(C[X]). By Theorem 1.2 it follows that
(ay®1)(p) €G,(C/N)[X]. Now suppose that (ay®1)(p)e@,(0/N)[X].
Applying (2), we get that 3 ay(p,) e U(C/N) and ay(p,)ay(p,) =0

zeX
for o #y. Thus } p,e U(0) and p,p, e for & 4. On the other
2eX
hand, if Y p, € U(0) and DDy €N for @ #y, then by (2) we obtain that
zeX

(oxy®1)(p) € G, (C/N)[X]. By Theorem 1.2 it follows that there exists
we@,x(C[X]) such that (ay®1)(%) = (ay®1)(p). Hence ¢t =p—u e
ker(ay®1) = N[X] and p = u+1eG(C[X]).

If p € ¢4(C[X]), then it has a unique presentation by means of ideni-
potents e, and a support of p. If p e G,(C[X]), then it has a unique present-
ation of a form p = wv where u € U(0), v e G,(0[X]). On the contrary,
if pe@y(C[X]), then the presentation p = wv--t, where we U(C),
ve@,(C[X]), te N[X], is not unique in general. T p e Gy(C[X]) and
» =uv+1 where % € U(0), v e @ (C[X]), t e N[X], and 0,8, = 0 for any
« e X, then we shall say that p is presented in a canonical form.

Levwia 14. Let p = wo+1 e Gy([X]). Then an element v Gy ([X])
is uniquely determined. Moreover, there is exactly one presentation of p
n a canonical form.

Proof. Let p = wvo+1t = uyw, +17,. Then (ay®1) (1) = (ay®L) (u) (ay®
®1)(v) = (ax®1) (1) (ax®1){0,) € G (C/N)[X]. By the foregoing remuarks
it follows that (ay®1)(») = (ay®1)(v,). Theorem 1.2 (3) yields that
v =y, and the first part of the lemma is proved.

Now let ¢ = > (1 —v,)t,x. Since ¢ e N[X], we have that ' e N[X].
zeX

Put w =w-+ Y ot,. Then w' e U(C), as t,eN. Since for any 2eX
X

ZE.
holds an equality (vw'v+1'), = p,, we have P =u'v+1t and vd, = v, (1 —
—)l, = 0. Thus we have shown that there exists a presentation
» =uv+1% of p in 2 canonical form. Now let 4'"v--1" be the second
canonical presentation of an element 2 and let # € X. Then multiplying
the equality u'n,+7, = u"'v,+#, by v, and applying the hypothesis we
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get w'v, = w''v,. Since .Z;'”x =1, ' =«" and consequently ¢' — ",
xe.
which ends the proof.

If p eG3(C[X]) and p = uv+-£ is a presentation of » in a canonical
form, then v will also be denoted by (p).

By Lemma 1.4 it follows that § is a well defined mapping of G;(0[X])
into @4(C[X]). Similarly if I = € is an ideal, then we have a mapping
0r: G3(0/I)[X] - G,(C/I)[X]. Obviously, Oy = 0.

TEEOREM 1.5. Let I be an ideal of C. Then the above defined mapping
07 is @ homomorphism of a group G,(C[I)[X] onto group G (C[I)[X] such
that Op = &7. Moreover, the following diagram is commutative:

6,(C[X]) > G4(0[X])

ar®l a1

G40/ DX ] —— G/ X]

Proof. A routine verification shows that 8; is a homomorphism of
groups. Now if » € G,(C/I)[X] < G;(0/I)[X], then §,(v) = v which implies
that &; = 6% and &;(G4(C/D[X]) = G (C/T)[X].

Theorem 1.2 and Lemmsa 1.4 yield the rest of the proof.

In the sequel we shall need ideals of ¢ generated by idempotents.
Let B(0) denote a set of idempotents of the ring C. Then B(0), together
with operations v and A defined by:

evf=e+f—ef, enf=cef,

is a Boolean algebra [12]. If ¢, ..., ¢, € B(0), then the ideal ¢,C+ ...
... +6,0 is generated by e, v ... ve,.

This implies the following:

Levura 1.6. Let I be an ideal of the Boolean algebra B(C). Then

(1) if 8 is a finite subset of IO, then there ewists an element ¢ € I such
that es = s for any s € 8;

(2) ICnB(0) = 1I.

Let P(C) be the Stone space of the Boolean algebra B(0), i.e. the set
of maximal ideals of B(C) [12].
Lmayva 1.7. (M) IC = 0.
IeP(C)
Proof. Let J = (") IC and let a J. Suppose & # 0. Moreover, let

JeP(C,
K ={ecB(0): ea = 0(}) It is easily seen that K is an ideal in B((C) and
1 ¢ K. Let I eP(C) be such that K = I. Therefore ¢ € IC. By Lemma 1.6
there exists ¢ € I such that a = ea, i.e. 1—¢c K < I. Hence 1, =evl—e
which is impossible.
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TaEoREM 1.8. Let p € U(C[X]). Then

(1) p e G(C[X)) iff (a70®1)(p) € X for every I eP(0).

(2) p €Gy(C[XY) iff the support of (are®1)(p) ts a singleton for every
IeP(0).

(3) p e G5 (C[X]) 4ff (aze®1)(p) has, for every I € P(0), exactly ome
coefficient which is not nilpotent.

Proof. (1) Let p = ) pwe@(C[X]) and let I eP(C). Since non-
zeX

zero elements p, form a decomposition of the unity element into ortho-
gonal idempotents, there exists exactly one element y € X such that
py ¢I. Hence 1 —py eI and therefore .

(a70®1)(p) = (470@1) (DY) = a0(y) =y e X.

Now assume that (a;,®1)(p) € X for any I € P(C). Then Lemma 1.7
yields immediately that } p» =1and p,p, = 0fora #y, i.e.p e @ (C[X])
by Theorem 1.3. ze¥

(2) I p €G3(C[X]), then (1) implies that a support of an element
(a7o®1)(p) is a singleton for any I e P(0). If we assume that, for any
I eP(0), a support of (a;,®@1)(p) is a singleton, then for any =,y € X we
obtain that p,p, €I, and thus, by Lemma 1.7, p,p, = 0. Obviously,

> 9, € U(C), hence applying Theorem 1.3 we get p € G,(C[X]).
zeX

(3) If pe@(C[X]), then by (2), (e;x®1)(p) has exactly one non-
nilpotent coefficient, for every I e P(C).

Now assume that, for any I € P(C), (¢;0®1)(p) has exactly one non-
nilpotent coefficient. Of course, > p, € U(0). Let @, y € Supp(p), 2 # ¥,
a =p,p, and let zeX

I =1{eeB(0): \ dfe = 0}.
k=1

It is easily seen that I is an ideal in B(0). Let us suppose that I = B(C)
and let M De the maximal ideal in B(C) containing I. By hypothesis,
the image of a in ¢/ MC is nilpotent, i.e. there exists an integer n such that
a" € MC. Therefore, by Lemma 1.6, there exists an e e M such that a® = ea®,
i.e.1—e el c M. Hence 1l e M, which is impossible. Thus we have shown
that 1 e, Le. & = p,p, is a nilpotent element. By Theorem 1.3 we get
that p e G5(C[X]).

2. u.p.-groups

We shall prove that if X is an u.p.-group, then U(0[X]) = ¢, (C[X]),
k =1, 2,3, and the result depends only on properties of the ring C.
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Let us recall that if R is a ring, then a group U(R[X]) is said to be
trivial if U(RB[X]) = U(R)X ([15])

Leania 2.1, U(C[X]) = G,(CLXT) iff C s the subdirect sum of rings C;,
i €1, such that groups U(C,[X]) are trivial for all i el

Proof. Let ¢ be a subdirect sum of rings C;,% eI, such that all the
groups U(C;[X]) are trivial and let o, i €I, be homomorphisms of the
ring ¢ onto the rings C;. By hypothesis, if % & U(C[X]), then & s y implies
that for every i eI either o(u) =0 or a(w,) =0, ie., for every 4 el,
o {tu,) = 0. Since (" kera; = 0, Uty = 0. Therefore, by Theorem 1.3,
% e @, (C[X]). vel

Let us now suppose that U(C[X]) = G5 (C[X]). Let M eP(C) and
let J = M(0. We will show that the group U(C/J)[X] is trivial. Let
» € U(C[J)[X]. There are elements g,, ¢, € C[X] such that (e;1)(q1) = p,
(a,@1)(gp) =p~'. Therefore (a,®1)(q,0,—1) =0, ie. gg,—1 eJ[X].
Now, by Lemma 1.6, there exists an ¢ € M such that ¢(¢19:—1) = qug, 1,
Le. (L—e€)g1g» =1—e. Let ¢ = (1 —e)g;+e. Then ge U(R[X]). Since
¢ e M, (¢;®1)(q) = (¢;®1)(g;) = p. By hypothesis, ¢ € G,(C[X]). By The-
orem 1.8, the support of (a;®1)(¢g) =p is a singleton, i.e. U(C/J)[X]
is trivial. From Lemma 1.7 it now follows that C is a subdirect product
of rings C; such that the groups U(R,[X]) are trivial,

THEOREM 2.2. Let X 5= {1} be a w.p.-group. Then U(C[X]) = G(C[X])
iff N =0.

Proof. It is known that any commutative ring without non-trivial
nilpotent elements is a subdirect sum of rings without zero divisors.
It is also known ([15], [8]) that if R is a ring without zero divisors and z
is a t.u.p.-group, then the group U(R[X]) is trivial.

Now, applying the equality of classes of t.u.p.-groups and 1.p.-groups,
proved by Strojnowski in [14], and Lemma 2.1, we obtain that if ¥ = 0,
then U(C[X]) = @,(C[X]). The converse implication is clear.

Theorem 2.2 and Theorem 1.2 immediately imply the following
results:

TEpoREM 2.3. If X # {1} is @ w.p.-group, then the group U(C[X].
18 trivial iff the ring C has neither non-trivial idempotent nor nilpotent elements)
TeEEOREM 2.4. If X is a u.p.-group, then U(C[X]) = G5(C[X]).

I p eG,(0[X]) is an element of a finite order, then one may verify
directly that p e U(0). Providing some additional assumptions on O
and X, we get a more general result:

Levwma 2.5. Let us suppose that the additive group of the nilradical N
of the ring C is torsion-free and let p € Gy(C[X1). Moreover, suppose that
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there ewists an n > 1 such that p™ € Gy(C[X]). Then p € G5(0[X]) if any of
the following conditions holds: i

(1) X s lnearly ordered group;

(2) the element p and §(p) commute.

Proof. Let p = wv-+t be the canonical form of an element p. Tt is
enough to show that ¢ = 0. Suppose for 2 moment that v e X. Moreover,
let I be an ideal of O generated by the coefficients of ¢. Clearly, I is a nil-
potent ideal. Let I* =0, I*' 52 0. If %k =1, then % =0, obviously.
I k>1, consider J ={ceN: meel*" for some m>1}. Additive
group of a ring N = N/J is torsion-free. Now, an element (a 7®1)(p) has
@ canonical form (a;®1) (%) (¢;®1)(v) = (a,;Q1)(¢) and ideal of C/J generated
by the coefficients of (a;®1)(t) is of nilpotency index < % —1.

By induction hypothesis we get that (a;QL)(f) =0, i.e. ted [X1.
Since the additive group of the ring N is torsion-free, from the definition
it follows that J* = 0; hence I? = 0. Then

n—1
Pt = %n,vn_l_z Wit lgn—i-1,
1=0

As v ¢ Supp(t) and p" € G,(C[X]), then

_ gt n—i-lg—i—1 _ ,mn—1 gp—i—1
0-2uvtu v = Z'vw ,

2 " = 0,

Now let » e Supp(f). Then there exists a o e Supp (¢) such that

ie.

2"l =g vl for o certain ¢ %£m —1.

Now it is easy to show that every element of a support of i commutes
with a certain power of the element v of a natural exponent. By imposed
assumptions every element of Supp () commutes with v and thus equality
O vt implies 0 = 2 0T = 1, Ag the additive group of ¥
is torsion-free and » is invertible, we have ¢ = 0, which ends the proof
in this case.

Now if 9 € ¢, (C[X]), then there exists an F e D(0) such that v e X.
Let ¢ e E. Then op = euv+t-el = eue-m,+-et is, as it is easy to verify,
a canonical form of an element ep e @, (60 [X]). The first part of the proof
applied to the ring e0 [ X yields that et — 0. Since ¢ is an arbitrary element
of B, we have ¢ = 0, which ends the proof.

S
THEOREM 2.6. Let an additive group of the ring N be torsion-free and

let X be a w.p.-group. Then if p e U(O[X]) is an element of a finite order,
then p e T(0).

©
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Proof. By Theorem 2.4 we obtain that p e G3(C[X]). Applying The-
orem 1.5, we get that 6(p) is an element of a finite order in G (C[X]),
and hence §(p) = 1. Let p = wv--t be the presentation of 2 in a canonical
form. Since » = 6(p) and ¢ commute, Lemma 2.5 yield that ¢ =0 and
p =ueU(0).

Romark. Let B be a ring in which every idempotent is central and
the set of all nilpotent elements is a locally nilpotent ideal of R. It is
Enown that there exist non-commutative rings possessing such properties [3].
If X is a semigroup, then, similarly as in § 1, we may define a sequence
of subgroups &, (R[X]) and, replacing W.p.-property with t.u.p.-property,
we may prove counterparts of all the results we have obtained hitherto.
The results of this kind have been announced in [21.

3. Categories of group rings

Now we shall study homomorphisms of group rings with not necessarily
commutative coefficients. We shall use simple notions of a category theory
in order to make formulations more convenient.

If B is a ring, then R[-] will denote a category whose the objects
are group rings with coefficients in R, and whose class of morphisms is
a class of all homomorphisms of such rings constant on R.

Henceforth we shall assume that A is a ring whose centre is ¢. First
we shall show that it is possible to reduce the study of categorical proper-
ties of A[-] to the study of analogical properties of ¢ [-]

THEOREM 3.1. There exists a natural isomorphism & between the cate-
gories A[-] and C[-1.

Proof. Put Z(A[X]) = O[X]. If y e Hom(A[X], A[Y]), then define
Z(p) = ¢|C[X]. To show that % is a functor it suffices to prove that
P(X) = U(O[X]).

Let us observe first that U(A[Y)NC[Y] = U(C[Y]), as C[Y¥] is
a centralizer of 4 in A[Y].

Now, let # € X. Then it is clear that ¢(z) € U(A[Y]), and, for any
a €4, the elements o = p(a) and ¢() commute. Therefore ¢ () € C[¥],
ie. () e UA[Y)NCO[Y] = U(C[X]).

From the definition of A[-]it follows that £ is an injection of mor-
phisms. Now, let y e Hom (0[X], C[Y]), and let

‘P(Z“@'wﬂ)=zaﬂl)(%): a; €A, weX.

It is easy to verify that ¢ e Hom(4[X], A[Y]) and %(p) = . Hence &
is an isomorphism.

16 — Banach Center Publ. t. 9
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Now, let p e Hom(A[X], A[Y]). If ¢ is an injection, then so is Z(p).
Moreover, if % (g) is a surjection, so is ¢. Answers to the following questions
remain unknown to the author: are the following statements true?

(1) if Z#(p) is an injection, so is ¢;

(2) if ¢ is a surjection, so is Z(g);

(8) if ¢ is & monomorphism, then ¢ iz an injection;

(4) if @ is an epimorphism, then ¢ is a surjection.

Tf the answer to (3) is positive, so is the answer to (1). Positive answers
to the first two questions would simplify further considerations, which
would help, among others things, to find criteria for a given homomorphism
of group rings to be an injection or a surjection.

Let I beanideal of aring 4, let X, ¥ be groups, and let 9 e Hom (4[X],
A[Y]). Now, put F(A[X]) = (4/I)[X] and put F;(p) to be the only
morphism from (4 /I)[X] into (A/I)[¥] such that the diagram

> A[Y]

A[X]
ar®l ar®1

(4D [X] 222, (A1) [T]

commutes.

Immediately, from the definition it follows that #; is a functor from
the category 4 [-]into the category (4/I)[-]. Itis also clear that functor #;
preserves surjections and isomorphisms.

LemMmA 3.2. Let I be an ideal of A. If I is left or right T-nilpotent,
then F; reflects surjections.

Proof. Let p e Hom(A[X], A[Y]) and let #;(p) be a surjection.
Assume that I is left T-nilpotent. Since #;(g) is a surjection, we have

ALY] = o(A[X)+I[Y] = p(A[X])+I-A[Y].
If Mis a quotient lefs A-module A [X]/p(A[X]), then by the above equality
M = IM. The left T-nilpotency of M implies now that M = (0) ([11]).
Therefore A[Y] = @(A[X]). I I is right Z-nilpotent, the proof is anal-
ogous.

Eemark. The following result may be proved in the same way as
Lemma 1.6 and Lemma 1.7.
Lemva 3.3. Let I be an ideal of the Boolean algebra B(C). Then

(1) if 8 is a finite subset of IA, then there emists an ¢ € I such that
€8 =g for any se§;

(2) I(A)nB(0) =TI and IANC = IC.

HOMOMORPHISMS OF GROUP RINGS 243

Moreover,
(3) () I4 = (0).
IeB(C)

THEOREM 3.4. Let ¢ e Hom(A[X], A[YX]). Then

(1) @ s an injection iff F1,(p) is an injection for any I eP(0);
(2) @ is a surjection iff F1,(¢) is a surjection for any I e P(0);

(3) @ is am isomorphism iff F1,(p) is an isomorphism for any I € P(C).

Proof. (1) Let ¢ be an injection and let IeP(C). If p+IA[X]
eker #1,(¢), then @(p)eIA[Y]. Hence, by Lemma 3.3, there exists
an idempotent ¢ € I such that ¢(p) = ep(p) = ¢(ep). Therefore o(p —ep)
= 0. Since ¢ is an injection, p = ¢p and this means that p e JA[X].
Hence #7,(p) is an injection. Now, if #,,(¢) is an injection for every
I eP(0), then it is easily verified that

kerp = () TA[X] =( (N IA)[X].
IeP(0) IeP(C)

But, by Lemma 3.3, () IA =0 and therefore ¢ is an injection.
IeP(0)

(2) I ¢ is a surjection, then, of course, &, (¢) is a surjection for
every I eP(C).

Let us now suppose that %, (¢) is a surjection for every I e P(0).
Let g A[Y] and let J, = {¢ € B((): eg e p(A[X])}. Of course, 0 &J,.
If 6ed, and f<e, then fed,. Moreover, if e,e6,eJ, are such that
619 = ¢(P1); €24 = @(Ps), then

(1V €2)q = erg+ €20 — 1620 = P(D1) + 9 (D) —@(61P2) = @P(P1+D2—6:D0)-

Thus, we have shown that J, is an ideal of B(C). Let us suppose J, 5= B(0).
Let M be a maximal ideal of B(C) containing J,. By hypothesis, #,,,(p)
is a surjection, i.e. there exists a p € A[X] such that ¢(p) eq+MA[Y].
Therefore ¢—¢(p) € MA[Y]. By Lemma 3.3 there exists an ¢ € M such
that g—¢(p) = e{g—¢(p)), ie.

(1—e)qg = g—eq = p(p)—ep(p) = (1 —6)p).

Therefore 1—eed, = M, ie. 1 =(1L—¢)vee M which is impossible.
Therefore J, = B(C) and 5o ¢ € ¢(4 [X]). This shows that ¢ is a surjection.
(3) follows directly from (1) and (2).

ProroSITION 3.5. Let ¢, p e Hom(A[X], A[Y]). Then if Fr.()
= Fr,(p) for every I eP(C), then ¢ = y.

Proof. It is easily seen that for every p € A[X] the element ¢(p)—
—y(p) belongs to () IA[Y¥] = (0).
IeP(C)
If g e Hom(A[X], A[Y]), then ¢ will be called a Gy-homomorphism
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(k = 0,1, 2, 3) whenever ¢(X) € G (O[Y]). The set of & -homomorphisms
will be denoted by Hom,(A[X], A[Y]).
THEOREM 3.6. Lei ¥ be an w.p.-group and let X be any group. Then
(1) Hom(A{X], A[Y]) = Hom,(4[X], A[Y]),
(2) if ¥ =0, then Hom(4A[X], A[Y]) = Hom,(A[X], A[Y]).
The proof follows directly from Theorem 2.2 and Theorem 2.4,

THEOREM 3.7. For every k = 0,1,2,3, group rings with coefficients
in A together with G4-homomorphisms as morphisms form a category. Moreover,
if p e Hom,(A[X], A[Y]) and ¢ is an isomorphism in A[-], then ¢~*
€ Hom, (A [X], A[Y]).

Proof. For k = 0, the theorem is obvious. Now, let ¢ and y be G-
homomorphisms such that ¢y is defined. If I eP(C), then F.,(py)
= Fr4(@)F 14 (p). Now, Theorem 1.8 yields the rest of the proof.

Further on, 4,[-] will denote categories referred to in Theorem 3.7.
Immediately from the definition it follows that # can be considered as
an isomorphism of categories A,[-] and COy[-], for any %k =0,1, 2, 3.

Moreover, by Theorem 1.2, it follows that, for every ideal I if 4,
the functor #; can be considered as a functor of the category A4, [-] into
the category (4/I),[-].

4. @;-homomorphisms and @,-homomorphisms

Let : X — Y be a homomorphism of groups. Let 1® § denote the homo-
morphism of a ring A[X] into A[Y] defined by the rule:

1®ﬁ(2 ai'mi) = Zaiﬁ(mi) .

Obviously, every morphism from Hom, (4 [X], A[Y]) is of the form 1®8
for some homomorphism f: X — ¥ of groups. Moreover, § is determined
uniquely. The following result is inserted exclusively for the completeness.

THEOREM 4.1. Let ¢ = 1@ e Hom,(A[X], A[Y]). Then

(1) @ ds an injection iff B is an injection;

(2) @ is a surjection iff § is o surjection;

(3) @ is an disomorphism iff B is an isomorphism.

N_ow we shall turn to the investigation of G-homomorphism. The
following is an immediate consequence of Theorem 1.8.

P.B,OPOSITT.ON 4.2. If g e Hom, (A [ X1, A[Y]), then for every I e P(A)
there is a umique homomorphism f; = f,(¢): X — Y such that F 14(9®)
=1®8;. E

Proposition 8.5 implies that, if ¢ and y are Gh-homomorphisms, then
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¢ =y iff, for any T e P(C), B;(®) = B;(w). Therefore, we shall often write
¢ ={(I, B:(9)): T eP(O)}.

However, not every family of homomorphisms from the group X
into the group Y determines 2 homomorphism from the ring 4 [X] into
the ring A{Y].

For every ee B(C) let us put P,(C) = {I eP(0): e¢I}. We then
have

TeroREM 4.3. Let {(I,y): I€P(C)} be a set of pairs such that
yr: X — Y. Then this set determines a Gr-homomorphism ¢: A[X] — A[Y]
iff for any © € X there exists an E € D(C) such that y (%) = y,(z) for any
echl and I,Jd eP,(C).

The mapping @ is then given by:

(@) = Doy, (2),
ecE

where B e D(C) is a decomposition of unity chosen for x and I, e P,(C).

Proof. Suppose that ¢ is a homomorphism such that f;(p) = y;
for I e P(0). Let x € X. Then ¢(x) € G,(C[Y]), i.e. there is an ¥ e D(C)
and there are elements y,, ¢ € E, such that e(z) = ) ey,.

eel
Let ¢, e B and let IeP, (0). Then

(Frelg))(@) = D) ey, +IC[T]
cel
= 6Yeq +I0[Y] = 30y50+(1_30)ye0 +I0[Y] = (L/¢0+IO'[Y],
ie.
vr(®) = (B1(@)) (@) = Yo,

Now, if J € P(C), then, as before, we have y;(x) = y,, = y;(#). Therefore
the family {y;}rpe, 0f homomorphisms satisfies the conditions of the
theorem.

Suppose now that the family {yj};pc, satisties the condition of
the theorem. If x e X, then, by hypothesis, there exists an # e D(C)
and there arc ideals I,, ¢ € B, such that the element ggz(z) = 3 e yr, (@)

ecE

does not depend upon the choice of theideals I, e P,(0). EF e D(0), E< F,
then it is easily verified that the element gz (2) is well defined and gz(x)
= gp(x). Since the set D(0) is direet, we can put p(z) = pgz(x). Since the
definition of the element ¢(z) does not depend upon the choice of a suffi-
ciently large decomposition of the unity, a simple verifieation shows that ¢
is 2 homomorphism from the group X into G4(C[Y]), i.e. ¢ i3 a homo-
morphism from A [X]into A [Y]. It is easy to see that f;(p) = y; for every
I e P(C), which ends the proof.
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In a topological language, Theorem 4.3 can be stated as follows:
If we introduce a disorete topology in X, and a standard topology in P(0) [12],
then continuous functions from P(C) into X form a group with respect to
the action on values. Now a set of pairs {(I,y;): IeP(0), y;: A[X]
— A[Y]} determines a G,-homomorphisms iff the homomorphism of X
into Y, induced by this family, is 8 homomorphism of X into the group
of continuous functions on P(C).

THEOREM 4.4. Let. ¢ be a Gy-homomorphism from the ring A[X]
into the ring A[Y]. Then

(1) ¢ is an injection iff {fy(p): I e P(C)} is a set of imjections,

(2) ¢ is a surjection iff {f;(p): I e P(C)} is a set of surjections,

(3) @ is an isomorphism iff {B;(p): IeP(C)} is a set of isomorphisms.

The proof follows directly from Theorems 3.4, 4.2 and 4.1.

THEOREM 4.5. Let I be an ideal of the ring A and let ¢ be a Gy-homo-
morphism from the ring A[X] into the ring A[X]. Then

(1) if @ is an injection, so is F1(p).

Moreover, if InB(C) =0, then

(2) if F1(p) is an injection, so is p;

(8) if F1(p) is a surjection, so is p;

4) of F1(p) i8 an isomorphism, so is g.

Proof. If a: A —~ A’ is a homomorphism of rings, then o determines
homomorphism from B(0) into B(C’), where (' = Z(4') and so also a

continuous transformation of spaces o*: P(C') - P(0). By Theorem 4.4,
it is sufficient to prove the following

Lmvma 4.6. Let I be an ideal of the ring A, let o — a and let o:
A[X] — A[Y] be a Gy-homomorphism. Let O’ denote the centre of the ring
A’ = A|I. Then

(1) i J eP(0"), then ;(F1(p)) = Bus)(9),

(2) if InB(C) =0, then a* s a surjection.

Proof. (1) Let J e P(C"). Then o~(J) 2 o*(J) e P(0). Hence A'JA'T
o Afa"(J) A is an image of the ring Afa*(J) A. Since pis a G-homomor-
Phism, Faweara (@) =1®(5a'(.7)(?’)) and similarly, 9'-.7‘1(?1(9’)) = 1®13J(-971(‘P))'
Since o*(J) € &™)y Br(F1(9)) = Buri(@)-

If X and Y are groups, then the set Hom, (A[X], A[Y]) is described
by Theorem 4.3. But this description is rather uncomfortable in application.
With some additional hypotheses the description of the set Hom, (4 [X],
A[Y]) becomes more readable.

Let ¢: A[X]—>A[Y] De a G;-homomorphism and let F e D(0).

©

icm
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We admit ¢ € Homg (A [X], A[Y])if there are homomorphisms ay: X — ¥,
ec B, such that ¢(z) =} eq,(x) for every zeX, ie. p(z)e ¥Z.

eeE

Therefore the set Homg(A[X], A[Y]) can be identified in a natural way
with the set (Hom (X, ¥))%. Moreover, if £ < ¥, then Homg(A[X], A[Y])
S Hompy (A[X], A[Y]) and, respectively, (Hom (X, ¥))® < (Hom(X, ¥))*.

We shall say that a @,-homomorphism ¢ from the ring 4 [X] into the
ring A[Y] is bounded if there exists B e D(C) such that ¢ e Homy(d [xJ,
A[Y]). Therefore, a Gy-homomorphism g is bounded iff p € | Homg(4 [X],

Ee(C)

ATY]).

‘We shall now show that if we introduce the discrete topology to A [X]

and A4 [Y], then the set of bounded homomorphisms from A [X] to A[Y]
is dense in the set Hom,(A[X], A[¥]) with the compact-open topology.

TeworeM 4.7. If ¢: A[X] — A[YX] is a Gy-homomorphism and if X,
8 a finitely generated subgroup in X, them there ewists a bounded homo-
morphism p: A[X] ~ A[Y] such that Plaxy = Plaxy-

Proof. Let ,, ..., ®, be generators of the group X,. By Theorem 4.3
there exists an # e D(C) and, for every a ¢ B, there exists a homomorphism
a,: X - Y such that

(@) = D e, (w),

ecE

t=1,...,m.

Let p(2) = D ea,(#) for # = X. It is easily seen that Plarxg = ¥laxy-
eclE

THEOREM 4.8. Let X and Y be groups. Then any of the following condi-
tions implies that

Hom, (4[X], A[Y]) =E$)J(G)HODJE(A [X], ALX]).

(1) D(C) contains @& mazimal element;
(2) X s a finilely generated group;
(3) X is am abelian group of a finite rank and Y can be linearly ordered.

Proof. (1) and (2) follow directly from the definition.

Let @ e Hom,(4A[X], A[Y]) and let X, = be a finitely generated
subgroup of X such that X /X, is a torsion group. Then, by Theorem 4.7,
there exists an K eD(0) such that ¢l,x,eHomg(A[X,], A[Y]), ie.
for some a,, ¢ € H, we have ¢(y) = Z’Ee'ag(y) for y e Y. Now, if z e X,

(=]
then from Theorem 4.2 it follows that there exists an F e D(0) and a
homomorphisms 8 for f € F such that ¢(z) =f§ f-By. We can assume that
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ELF. X a"eX,, then
pla”) = (D8] = D5 Bylar.

feF feIr
On the other hand, ¢(z") = > e-6,(a™). Now, if f = ¢f, then we get

(%(m))" = a,(2") = B;(a") = (ﬂ:?;:))" and therefore e,(z) = f,(x). Thus

we have shown that @) = 3, ¢-a,(2), i.e. p e Homg(A[X], A[Y]).
ecE
If we replace all Gy-homomorphism Dby injections, surjections or

isomorphisms, then we get a description analogous to the above using
only injections, surjections or isomorphisms of groups. This follows from
Theorem 4.4.

We will show that there exists a G,-homomorphism which is not
bounded.

Exavpie 4.9. Let X,, X,,...be a sequence of groups such that

?i > 2 and let X = X X; be the set of all elements almost everywhere
i=1

equal to 1. Then, for every ¢, X; = X in a natural way. Since X, > 2,
there exists a non-trivial automorphism o; of the group X;. Now, let .4
be a ring containing an infinite sequence of distinet central idempotent
elements ey, 6,, ... Let us pub ¢(x) = e+ (1 —¢)0;(2) for every z e X,.
Since the groups X; generate X and pairwise centralize each other, ¢ is
a homomorphism from the group X into the group G4 (4 [X]) and therefore
¢ is a Gy-endomorphism of the ring A[X]. It is easily seen that ¢ is a G4-
automorphism. If the orders of all the automorphisms o; have a common
upper bound, then ¢ is an automorphism of finite order. If, in particular,
we assume that the groups X; are abelian, then we can choose automor-
phisms of order 2 and ¢ will be a G;-automorphism of order 2 which is not
bounded.

5. @y- and G;-homomorphisms

In this section @,- and Gy-homomorphisms will be investigated. Theorem 1.5
enables us to relate a certain &,-homomorphism to every @y-homomorphism.
Let ¢: A[X] > A[Y] be a G;homomorphism and let (% (¢)) (@) = 8(p(a))
€@ (C[Y]). Then d¢(p): A[X] > A[Y] is a Gy-homomorphism. Since
8 = &, 9(8(p)) = d(¢). Moreover, if ¢ is a Gy-homomorphism, then
Blg) = ¢. Similarly, if I'is an ideal of 4 and y e Hom( (4 /1) [X], (4/I)[ Y1),
then let (41(9))(2) = Gyng, 4(v(@)). Obviously, ¢ = Dy -

TEEOREM 5.1. The mapping §; is a functor from the category (A[I)[-Ts
onto the category (A[I)[-),. If I = J A, where J eP(0), then F 9 is a functor
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onto the category (A]I)[-],. Moreover, the diagram
b3
ALYy —— AL
Fr 7

(4D ]~ (4[],
commutes.

Proof. Let ¢ e Homy(A[X], A[Y]), peHomy (4[Y], A[Y])). If J
€ P(0), then by Theorem 1.8 we get that for any z € X the equality
7.4 (@) (@) = (874 (%) d7.4(9))(#) holds. Therefore, for any » € X we have
6(1/)(]7(((1;))) = 0(y) 6(g) (). Thus &(yp) = H(y)P(p) and thereby & is a func-
tor. Similarly it can be proved that #; is a functor. Clearly, it is a functor
from the category (4 /I)[-];into the category (4 [I)[-];. Commutativity of
diagram follows directly from Theorem 1.5. The remaining part of the
proof follows by Theorem 1.8.

Now, let y be a homomorphism from the group X into U(C). This
homomorphism induces the automorphism »* of the ring A[X] given
by ¥*(#) = y(@)2 for w X ([9]). Of course, y* is a Gy-automorphism.
I ¢: A[X]—>A[Y] is a Gyhomomorphism then, as it follows from
Theorem 3.7, gp*: A[X]—~ A[Y] is a G,homomorphism and (py™) ()
= y(@)-p(x) for every x e X. Now, if y": X — U(0) is a group homo-
morphism and if ¢': A[X] - A[Y] is a ring homomorphism such that
" =¢'(»")", then y =3 and ¢ =¢'. This follows from Lemma 1.4.
Of course, in this situation #(gy*) = @. If v: A[X] - A[Y]is a Gy-homo-
morphism, then, putting y () = 3 (p(2)},, we obtain p = &(p)y*.

ye¥

The above considerations imply the following

THEOREM 5.2. Leét ¢: A[X]— A[Y] be a Gy-homomorphism. Then
there exists @ unique group homomorphism y: X — U(C) such that g = 9 (p)y*
and the set Hom,(A[X], A[Y]) can be identified in a natural way with
Hom (X, U(0)) xHom, (4 [X], A[Y]).

Since »* is an automorphism of the ring 4 [X], the following holds:

COROLLARY 5.3. Let ¢ be a Gy-homomorphism; then

(1) @ is an injection iff O(p) is an injection;

(2) ¢ is a surjection iff 4(p) is a surjection;

(3) @ is an tsomorphism iff 9(p) is an isomorphism.

It is easily verified that not all Gyhomomorphisms have decom-
position into automorphisms and G;-homemorphisms.

Let ¢: A[X]— A[Y] be a Gy-homomorphism. By Lemma 1.4 we
then have the canonical presentation ¢(z) = uz'(ﬁ(m))(w)—{-f)(tp)(w) for
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every # € X, where 0(p)(z) e N[Y]. Let () be an ideal in A generated
Dy all the coefficients of elements 6 (¢ ()} for # € X. Of course, T'(¢) = NA.
It can be verified that T(g) is the smallest ideal among those for which
F(p) is a Gyhomomorphism.

THEEOREM 5.4. Let ¢: A[X] — A[X] be a Gs-homomorphism. Then

(1) @ is an injection iff D(¢) is an injection;

(2) if @ is a surjection, so is D (p);

(3) if O(g) is a surjection and T(p) is a left or right T-nilpotent ideal,
then @ 18 @ surjection;

(4) if ¥(p) is an isomorphism and T(p) is a left or right T-wilpotent
ideal, then @ is an isomorphism.

Proof. For a moment, let T(p) = 0. Then ¢ is a Gy,-homomorphism
and the theorem follows from Corollary 5.3. Now, let T'(¢) = I. Then,
of course, T(#(p)) =0. Moreover, by Theorem 5.1, #{F(p))
=7 1(‘9(1}’))-

(2) I ¢ is a surjection, then #(p) is a surjection, therefore F;(H(p))
= fl(Fl(q:)) is a surjection. Since INP(C) = 0, it follows from Theorem 4.5
that &(p) is a surjection.

(3) Let 4(p) be a surjection and let I be & left or right T-nilpotent
ideal. Then, #;(#(p)) = 9(F;(p)) is a surjection. Since F;(p) is a Gy
homomorphism, &;(p) is a surjection as follows from Corollary 5.3. The
ideal I is left or right T-nilpotent and therefore ¢ is a surjection (see
Lemma 3.2).

(1) Suppose for a moment that ¥(p) =1Qp for a certain g. If §
is not an injection, then there is 1= 2 ¢ X such that f(z) =1, i.e. ¢(»)
= U+ > &y, for some a, € N and ¥, € Y. Let S be the subring without
unity generated by the elements a,. Since § is a nilpotent ring, there are
0#acA such that aS =0. Then ¢(ax) = ap(®) = a(u,+ Y o)
= au, = p(au,), i.e. p(ax —au,) = 0 and ¢ is not an injection. Now, if
Bis aninjection, then it can be verified [8] that the elements ¢ (2,), ..., @ (%,)
are independent over A whenever @, ..., z, are distinet elements of the
group X, i.e. ¢ is an injection which ends proof of (1) in this case. Now,
if @ is arbitrary, then from Lemma 3.2 it follows that for any J e P(C),
HF ;4(9)) = 1®B;, where f; e Hom(X, ¥). Now, (L) follows from the
first part of the proof and from Theorems 3.4 and 4.1.

The proof of (4) follows from (3) and (1).

ProPOSITION 5.5. If @ e Homg(A[X], A[Y]), then T(p) is a T-nil-
polent ideal in each of the following cases:

(1) N is ¢ T-nilpotent ring;

(2) the group X is finitely gemerated;
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(3) Y can be linearly ordered, X is abelian of a finite rank and the
additive growp of N is torsion-free.

Proof. From the characterization of T-nilpotent ideals it easily follows
that the T-nilpotency of N implies the T-nilpotency of the ring N4 ([10]).
Therefore it is enough to prove our Proposition in the case of 4 = C.

(1) is obvious since T'(p) = N.

(2) Let a,, ..., s, be the generators of X. Let I be an ideal in C
generated by coefficients of the elements 6(g(x;)) for i =1, ..., n. From
the definition of the canonical presentation it easily follows that 6(p(2))
€ I[Y] and therefore T'(p) = I is even a nilpotent ideal.

(3) Let W = X be a finitely generated subgroup of X such that X/W
is torsion-free. If ¢ = @loyyy, then by (2) it follows that T(y) is a nil-
potent ideal. Let I = {¢ € N: k = T(y) for some % > 1}. Since an additive
group of N is torsion-free, I is a nilpotent ideal and the additive group
of N/I is torsion-free. Considering homomorphism %;(¢), we get that ¢
and #7(¢) are Gy-homomorphisms, as ¥ is an ordered group. Then for
every @ € W we obtain that #;(¢)(s) € @5(C/I)[Y]. Since X [W is a torsion
group, it follows, by Lemma 2.5, that #;(p) (%) € G,(C/I)[ Y] for any z € X.
Hence T'(p) = I, and therefore T{p) is a nilpotent ideal which ends the
proof.

We give below an example concerning our results connected with
T-nilpotency.

ExaMPLE 5.6. Let A be a ring such that N is not a T-nilpotent ring
and let ay, a,, ... be elements of N such that a,-...-a, 7 0 for every k> 1.
Moreover, let X be either a free group or a free abelian group with the
get of free generators ,,#,,... Then the mapping ¢: X — @(4A[X])
given by ¢(#) = ;+ a2, is a homomorphism of groups. Therefore,
¢ determines a Gy-endomorphism of the ring 4 [X]. By the choice of the
elements a; € N, 9(p) = 1. Therefore ¢ is an injection. But it is not a sur-
jection, as @, ¢ p(4A[X]).

If for the same ring A4 and for the same group X we put ¢(z,) = @y,
v(®;) = o;+am,;_, for ¢ > 1, then v determines an automorphism of the
ring A[X] for which T'(y) is not a T-nilpotent ideal.

Now as a result of Theorem 5.4 we obtain the following

THEOREM 5.7. For any w.p.-group Y and for an arbitrary group X
the following statements hold:

(1) if there ewists an injection A[X] — A[X], then there is an injection
X +Y;

(2) if there ewists a surjection A[X] — A[Y], then there is a surjection
X >7Y;
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(3) if there is an isomorphism A[X]-> A[Y], then there is an iso-
morphism X — Y.

Proof. (1) Let ¢: A[X] - A[Y] be an injection; so ¢ is a Gy-homo-
morphism. Then, as it follows from Theorem 5.4, 9(p): A[X] - A[Y]
is also an injection. Therefore, by Theorem 4.4, for any I € P(0), Br((w)):
X — Y is an injection. The proof of (2) and (3) is analogous.

The category A[-] is concrete. Therefore every injection in Al-]
is a monomorphism.

TEHEOREM 5.8. Let Y be a u.p.-group and let X be any group. Let
¢: A[X] — A[Y] be & monomorphism in the category A{-]. Then ¢ is an
injection.

Proof. Sinee ¢ is a Gy-homomorphism, the proof casily follows from
the following :

LEMMA 5.9. Let p: A[X] > A[Y] be a Gy-homomorphism. If ¢ is not
an injection, then there evists 1 = w e U(C[X]) such that p(u) = 1.

Proof. By Theorem 5.4, #(p) is not an injection. Therefore there
exists J € P(0) such that g, = 8 7 (9(9)) is not an embedding of a group,
ie. there exists 1 s« € X such that §,(z) = 1. By the definition of a
@Gg-homomorphism, there exists ¢ e U(0), BEeD(C), te N[Y] and there
are elements y, €Y, ¢ €, such that ¢(r) = ¢ > ey, +1. There exists

3

feE such that f¢dJ, ie. y, = B,(x) = 1. Therefore o(f(2)) = of +ft.

If ft 55 0, then the subring without unity generated by all the coeffi-
cients of f¢ is nilpotent, i.e. there exists b e ¢ such that b is nilpotent,
bf = b and bft = 0. Therefore ¢(bz) = P(bfz) = b(of+ft) = bef = be = 0.
Put 4 =1—be+ba. Of course, u =1, p(u) =1 and 4 =1—b(c—un)
is a unit, as b is nilpotent.

6. Endomorphisms and automorphisms

AIn this seetion we shall assume that X is a W.p.-group. Apparently if A[X]
Is either hopfian or cohopfian object of A[-], then X is either hopfian or
cohopfian group, respectively.

TEEOREM 6.1 (cf. [6]). Lot X be a hopfian group. Then the ring A[X]
s hopfian in A[-].

Proof. Let ¢: A[X] ~A[X] be a surjection. Then @ is a G4-homo-
morphism. Therefore 9(g): A[X] - A[X] is also a surjection (Theorem
5.4). From Theorem 4.4 and from the fact that the group X is hopfian it
follows that, for any I e P(C), B;(p) is an automorphism of the group X,
which means that §(p) is an injection. By Theorem 5.4, 50 is ¢.
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TEEOREM 6.2. Let X be a cohopfian group. Then the ring A[X] is
cohopfian in each of the following cases:

(1) ¥ is o T-nilpoient ring;
(2) X is a finitely generated group;

(3) X is an abelian group of o finile rank and an additive group of N
s torsion-free.

Proof. As in the proof of the preceding theorem, it can be shown that
if ¢: A[X] - A[X]is an injection, then the mapping #(p) is defined and
it i3 an automorphism of A[X]. Let yp = q)(ﬁ(qp))_l. By Theorem 5.1
it then follows that #(y) is an identity on 4[X]. From Theorem 5.7,
it then follows in three cases that T'(y) is a T-nilpotent ideal. Theorem 5.4
now implies that yis a surjection and therefore an automorphism. Therefore,
also @ is an automorphism.

Now we shall give an example related to the assumptions of Theorem
6.2 and the assumption on the T-nilpotency in our other results.

ExamPLE 6.3. Let & be a field of prime characteristic p and let ¢
be the factor algebra of k[i,?,, ...] by the ideal I generated by the ele-
ments 7, —1,, ¥ —t,, ... Let a, =1t,+1eC for any n>1. Let X be
@ group isomorphic with the additive group of rationals and let 1 % z € X.
Then every element of X can be represented uniquely in the form 2",
where r is a rational number. Let X; = {#*®: (a,b) =1, p+b}. Let X,
= {#'?: (@,8) =1Aa(@n>1) b = p"}. Of course, X, and X, are sub-
groups of X such that X,-X, =X and X,nX, = {z)>. Let us take a
sequence of gemerators of X,: z, = 2", Now, let a,: X, — U(C[X])
be a homomorphism such that o, (@) = @y, a(,) =2, + a2, If
a: X, - X « U(C[X]) is a natural embedding, then alx, = &kxy,
whence there exists a homomorphism a: X - U(C[X]) which extends
a; and a,. Therefore, a can be regarded as an homomorphism of the ring
O[X]. Of course, a is an injective G;-homomorphism such that 4(a) = idx.
If we had X, € «(C[X]) we would have g, ...a, = 0, for some 7, which
is impossible. Therefore, although X is a hopfian and cohopfian group,
a is not a surjection.

Studying the structure of a semigroup of endomorphisms and a group
of automorphisms, we can use Lemma 3.2 and restrict ourselves to the
case of 4 = (. Since X is an u.p.-group, it follows by Theorem 5.1 that
functor ¢ induces a homomorphism of a semigroup End(C[X]) onto
End,(C[X]). Moreover, a function which maps every y € Hom (X , U(0))
onto an automorphism y* of a ring ¢[X] is an injection of groups.

THEOREM 6.4 (cf. [4]). If N =0, then groups Aut,(C[X]) and

Aut{X] are isomorphic.
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Proof. By Theorem 5.2 and Corollary 5.3 it follows that Aut(C[X])
is the semidirect product of Hom(X, U(G’)) and Aut,(C[{X]). Now if
B(C) = {0, 1}, then from the definition follows that &, (C[X]) = X and
therefore Aut,(C[X]) ~ AutX.

In the case where N 0 the group Aut(C[X]) is the semidirect
product of a subgroup Aut,(C[X]) and a normal subgroup ker#.

Under some additional assumptions on the group X and the ring ¢
we can describe the set ker® more precisely. Let X be a torsion-free abelian
group, ¥ = {u+1: ue U(0), te N[X]}. Under this notation we have
the following

Levma 6.5. Let p € Aut(X) be such that &(y) = 1. Then there exists
exactly one homomorphism @: X — ¥ such that p(x) = (x)x for every
zeX. :

Proof. It is enough to set p(z) = o™y (w) for every = e X.

Lieanra 6.6. Lot 9 e Hom (X, ¥) and let ¢* be an endomorphism of
O[X] such that ¢* (%) = @(#)w for any = € X. Then ¢* satisfies the equality
#(g*) = 1. Moreover, any of the following conditions implies that ¢ is an
automorphism:

(1) N is T-nilpotent;

(2) X is a finitely generated group;

(3) additive group of N is torsion-free and X is of a finite rank.
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