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Introduction

Languages accepted by finite sequential machines are characterized by
the well-known Kleene theorem: they are precisely rational languages,
ie. those obtained from finite languages by a finite succession of oper-
ations U (union), - (concatenation) and # (iteration). How far can this
beautiful result be extended? Thatcher and Wright [7] present a gener-
alization for tree machines: here not one concatenation and one iteration
are sufficient, but rather a system of concatenations and corresponding
iterations is considered. The internal reason for this is that in the case of
tree machines it is not sufficient (as for sequential ones) to study machines
with one initial state, but more initial states must be taken into account,
and each initial state plays an individual role: it is important which initial
states were used for a given tree to be accepted.

In the present paper we consider a very general situation: machines
in a category in the sense of Arbib and Manes [4]. We define acceptors
and finite acceptors on the one hand, and rational languages on the other
hand. The main result is that every language accepted by a finite acceptor
is rational. There is no hope for the converse (rational = acceptable)
to hold. In fact, even in the variety ¥ of groupoids, defined by the equa-
tion

T =YY,
the Kleene theorem fails to hold for #™-machines (i.e., binary tree machines
in #7), see [8]. It remains open even for varieties of tree machines under
which circumstances the Kleene theorem holds.
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The definition of languages and their concatenation which we present
might seem technical at first, but it is justified by the motivating example
of sequential machines with several initial states. This motivation is
exhibited in [2], where the present result was announced; therefore we
skip it here and start with the definitions needed. Let us remark that,
at least, it suffices to consider one concatenation and one iteration here,
not as in the case of tree machines (where, on the other hand, the definition
of these operations is very natural and not technical at all).

The present paper is a part of a broad program of investigating the
languages of (deterministic and non-deterministic) varietor machines,

see [2], [3], [8], [9], [10].

1. Accepted and rational languages

1.1. Throughout the paper we assume that a category £ is given
together with its factorization system (&, #) and a functor #: o — o
subject to conditions C1-C4 below. Let us recall (e.g. from [4]) that an
algebra of type F, shortly an F-algebra, is an arrow FQ 4 @ and a homo-
morphism from FQ A Q into FQ' 2z Q' is a morphism f: Q@ - Q' in X
for which the following diagram commutes:

O —2 59

A free F-algebra, generated by an objeet X, is an F-algebra FX# 2 X
together with an arrow X -> X¥ universal in the usual sense: for each
algebra FQ 5 @ and each morphism k: X - there exists a unique
“free extension” homomorphism &*: (X*, ) » (@, ) with & = n-&*.

The conditions we require throughout are as follows:

Cl. I is a varietor, i.e., every object generates a free algebra.

C2. F preserves &, i.e. e & implies Fo e &.

C3. o has finite limits and countable colimits.

C4. Pullback condition: opposite an &-epi in any pullback there is
an &-epi.
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1.2. Modifying the definition of machines of type F, due to Arbib
and Manes, we define an acceptor of type F. This is an F-algebra with two
subobjects (of initial and terminal states, respectively). Thus, an acceptor
is a 6-tuple

4 =(Q: 55I7i’T:t)7

where ¢ is an object (of states) in 7, 6: FQ -> @ is a morphism (“next-
state map”), and i: 1 - @, t: T — @ are morphisms in . We can extend
i freely to a homomeorphism *: (I¥, @) - (@, 0), called the run map of A:

1%
Y
The language accepted by A is defined as the preimage of the terminal-

state subobject under the run map, i.e., the subobjeet A: L —I¥ in the
following pullback:

L

J’

T

(since t € .# implies A e ., this is indeed a subobject of I¥).

-
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1 #
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1.3. In the present paper we shall make an extensive use of the cal-
culus of relations in a category, see [5]. A relation from 4 to B (4, B objects
of ') is any #-subobject of A X B. A relation is determined by a pair
of arrows T % A, T % B if the image of the induced arrow T —~ 4 X B
is this relation. We then write [f, g]: 4 — B. Every relation has a number
of determining pairs. For example, given ¢: T; — T in &, we have

[f, 9] =[ef, e-g]: 4 > B.
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The composition of relations [f, g]: 4 - B and [k, k]: B - C is defined
via the pullback of g and &,

VN
/N AN

[f,glo[h, k]l =[g"f, W'-k]: 4 -C.

The pullback condition (C4 in 1.1) guarantees that this definition is correct,
i.e. independent of the choice of the representatives f, g and &, %, see [5].
Evidently, it is associative.

as follows:

1.4. Given two objects I,J in X, an ewtended language (or just
language) from I to J is a relation [f, g]: I* —J. We denote it by

[f,9]: Twsd.
1.5. Let A =(Q,6,1I,%,T,t) and 4,5 be as in 1.2.

DErFINIIIoN. The extended language of an acceptor A is
L(4) =[4,5]: TusT.

1.6. For each morphism f: X — ¥ in & there exists a free extension
of fy: X > ¥* to a homomorphism, denoted by

FH#: (X#s ¢x) — (¥¥, Pr).

Thus, f* = (f-ny)*. Given an extended language [f, ¢1: I>d, we
define an extended language

[f, o7% =[f*7y#]: Lis %,

T T#
#* J I# J#
L L#

©
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1.7. Rational operations on extended languages

A) Uwion [ay, p1]V[ay, B,] i defined whenever these langnages have
a joint domain I and range J; this is the union of .#-subobjects of I# x J.
Since " has finite sums, it has finite unions of .#-subobjects; the
union of subobjects, represented by
my: U=V and my: U,—»V in A,
ig the image of the induced morphism U;+ U, — V.

B) Concatenation [ay, B,]® [ay, B,] is defined whenever the range of
[ay, 1] equals the domain of [a,, f,]. Thus, let

[ag, f]: T>J  and  [ap, fol: J > K

be languages; we then define

[a;, f1]® [as, Ba] = [ay, ﬂl]#o [azy B2]: I K,
[ay, 8,10 (o, By] = [@-af, By -B,].

R
N
T# s
7NN
# J# K

C) Iteration [a,f]* is defined whenever the domain and range of
[, B] are equal. Given [a, f]: I > 1, define [a, $1*: Iw—1I by

[a, BT = AU[a, f1V([a, 1@ (e, FYV(([e, B1@ e, B1)®[a, £]) ...

where A = [n;,1;]: I~ 1.
Again, since # has countable colimits, [a, f1* is well defined.

1.8. Let &# be a fixed class of objects of '; we call its elements
fimite objects. In the present context no hypothesis on # is needed.

An acceptor A = (@, 8, 1,4, T, 1) is called finite if its state object @
a8 well as objects I and T are finite. A language I i—J i finite if it is
determined by a pair

f: M —-I%, ¢: M—>J
with a finite M.
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1.9. DerINITION. An extended language is said to be rational if it
can be expressed by rational operations U, ®, * used finitely many times
on finite extended languages.

2. The main theorem

2.1. Algorithmic varietors. In & number of situations, free F-algebras
(X*, g) can be obtained by a natural construction, called the free-algebra
algorithm in [1]. First, define a sequence of objects W, and morphisms
k,: W, - W,,, by induction

() Wo =X, W; =X+FX and k,: X - X+ FX is canonical;

(b) Wy =X+FW, and k,,, =15+ Fk,

X2 x4 px B o p(xppx) O e
) 0 to
> FX*

FX — > PN FX) s

Denote by X* and w,: W, - X* (n =0,1,2,...) the colimit of this
sequence. Since we have a canonical injection FW, — W, ., = X +FW,,
we obtain a natural morphism ¢: FX#* — X# provided that also FX#
and Fw,: FW, ~FX*is a colimit of the sequence {FFk,}%_ . Put 5 = w,:
X — X*; then (X#, ¢) is a free F-algebra, see [1].

DErFINITION. A functor Fis called an algorithmic varietor if it preserves
the colimit of the above sequence {k,}_, for each object X.

Exawpres. Given a type 2 = {w},; of algebras, i.e. a collection

of cardinals, denote by ¥, the functor with FoX =[] X% (where X
iel
denotes the product of w; copies of X), defined naturally on morphisms,
Fof =[] . In sets, F,-algebras are precisely universal algebras of
el

U
type £, and homomorphisms also agree. Then F, is an algorithmic varietor
iff @ is & finitary type. o ‘ '

In contrast, (a) every endofunctor of the category of countable sets
and mappings is an algorithmic varietor [2]; (b) every functor F,, on the

category of w-complete posets and w-continuous maps iz an algorithmie
varietor [6].

2.2. Convention. Given morphisms f: 4 -C and g: B¢, we
denote by f+g: A4+B — € the obvious induced morphism.
- Let F be an algorithmic varietor. Given an P-algebra FQ 2 @ and
& morphism f: X — @), its free extension to a homomorphism ' (X%, )
—(Q, 9) can be deseribed as follows. Put

fo =f3 Wo ——)Q;
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given f,: W, — @, define
fosr =F+Ff 6(X+FW, = W\, > ).
Then the (unique) morphism f*: X¥* —@Q with
w ff=f @®=0,1,2,..)
is » homomorphism and, of course, n-f* (= w, f*) =f. See [1].

2.3. To formulate the main result of our paper, we shall introduce
the following languages for any acceptor 4 = (@,6,1,4,T,1):

Dy = (1,4} 1@,
M, =[Fnpg, 0: @@,
R, =[tng,17]: Q= T.

FQ T
Fn
7N\ AN

@ Mo

# T
¢ Ra

I
Y N
I# Q

Dy

# Q
2 My
Let us mention that if A is a finite acceptor, then D, B, are finite lan-
guages and M, is finite whenever F@Q is finite, which is so e.g. whenever F
preserves finite objects (i.e. @ €& implies FQ e #).

2.4. Theorem on analyses. Let F be an algorithmic varietor. Hor
any acceptor A =(Q,8,1,4,T,1), the language L(A) accepted by A
Sulfils

L(4) = D, ,o{(AVM ) @ R,).

2.5. COROLLARY. If F is an algorithmic varietor preserving finite

objects, then every language accepted by o finite acceptor s rational.
The rest of our paper is devoted to the proof of 2.4.

3. Auxiliary propositions

3.1. Analyses of iteration of any language [, f]: 11— 1I containing

4 = [ng, 1] . . wo
If a: P, -~ I¥ and §: P, —I are the representing morphisms,

define morphisms

a,: P,~PF, and f,: PP,
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using pullbacks:

Proof. (a) Morphisms a,-ay_, ... -af: P, - I* form a compatible
8 By= family for {e,}, because ¢,-a, = % implies
--Pa 3 _P2 By >-P:l 1=8 _Pﬂ — I y { n}’ n “n Y p
b bo ya=a e (o dp 1o dd) = et ca e cd = ra e d
. P;# . Pf’: _ _Pj# :I# ( n -1 1) /A -2 1 n—~1 “n—2 1
A3 24 A Hence, a is correctly defined.

First, put {b) Morphisms (B,°f, " ... *f;): P, - I*¥ form a compatible family

o =a and B =4p; for {e,} because e,-f; = B, 6,_, implies
n %" Pr %—1" 6k P.

then let a,, f, be the pullback of ff and ay; let ay, By be the pullback of €n (BaBrr v B) = ButOpsy s oeeBy
¥ and o, ete. Pub also f, = 1;; a, = ;. v e ' e _ T _ " .
Further, define a sequence e,: P, —P,,, with ¢, = 1, and =P bz lns buy e By

................

=Pn1 Bz oo Brtg

E =ﬁn—1’ﬂﬂ—2"" 'ﬁl'
/ \ = Hence, f is correctly defined.
- - - 0 i

6 =1p, , and e B, =8, 16, (n=1,2,3,..)

é @ (¢) [a, 81" = [a, B]. Indeed, we have
[a, 81" = [a, B1U([a, BlO®[a, BV (([a, BI®[a, f1)® [a, £l ..
e e e
e P P P S — T and
£ £ B L. [a, f] = [as, Ba],
~ ~
o e T e T 2. [a, flola, f] = [a,-al, fy-1]
-7 e _ as seen from [a, f10 [, §] = [af, Ao [, B,] and:
&~ Ve Vs
“as G el =J#
g T g o h ek P,
. . . 2 v
First, since [a, f] contains 4 = (775 171, there exists an ¢;: T - P with )/PULL\*
G =17 and  e-f =1; = fi-¢,. PF BACK Py

Now, p - = 51'?71 (by the definition of 4, see 1.6); therefore np, B B
= (f1-61)a; and, since S and a; have pullback s, fly, there exists a af #t o
unique e,: P, — P, with

I# # I

€:'0 =7p  and 6y f, = By -e,.

Analogously we obtain a3 645 1. 3. ([e, fl@[a, BN®[a, f] = [a3-a; -of, By Bs B,
Denote by B, and €.t P, > B, the colimit of thig sequence {,}>_,. which is equaly easy to see. Etc.

3.2. PROPOSITION. For any language [a Thus, we see that

2Bl Tu1T containing A,
we have

]

[a, .3]* = [ﬁyﬁ]g [a, BT = 4 (a-2,, B'én] = [&:B]'

n

where a: B —I% is defined by a-z, — o

. . Uy Oy cay and p: B 3.3. For an arbitrary F-algebra (@, 8) there exists a unique homo-
- I is defined by Be, =8, ... -B,.

morphism 7: (@¥, @) - (@, 6) with 5-r =1, (viz. r = (1p)*). This gives
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rise to a language

[]_Q#,r]: Q—Q.
0% Q+FQ
SN X
0 1]
1,1 [wi, 144]

The aim of the rest of this section is to show that this language is a result
of iteration of the language

fwy,1p461: @ 1—9Q.
More precisely: :

3.4. PropoSITION. If F is an algorithmic warietor, then for any F-

algebra FQ A Q we have
[wy, 1g+ 6" = [10#,')‘]: Qi=Q.

Proof. Apply 3.1 to [a, f] = [w,, 15+ &]. First, this language con-
tains A because for 6, =ko: @ >Q+FQ we have ky-w, =w =15
and k(194 d) =1,. Thus, by 3.2,

[wy, 1o+ 61" = [a, B1.
‘We shall prove that (a) a-r = g and (b) a € &. The latter implies [1gu, 7]

= [@+1gy, &-7]; therefore (g 71 =[a, B1-
(2) We shall verify that
{*) (@ e cd)r = (B e ByFer for m=1,2,3,..;
then for each n
g, (@) =a,;-df - .~a}‘-r (definition of &)
=nai-dp . f(an—na)
=1"(Bs" - ﬁl (by ()
=(Bn"- ) (-(=)* =(—)n)

=B, ... -ﬁ =28 (9'r =1; definition of 7).

There follows a'r = B.

(A) n =1. We have @, = w; = w,+Fw, p and, since r is a homo-
morphism extending 1o, also 797 =14 and ¢-r = Fr-5. Thus

a7 = (Wor) + (Fwy¢-7) = 1o+ (Flwg 1) 0) =1g4 8 = B;.
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Hence, o} -r and p¥-r are homomorphlsms from ((Q +FQ)¥*, ¢) which
agreeonQ+FQ for,nmm atr = a7 while 9o, yo 7 = Bromg r = By).
Hence o -r = 7.

(B) Let (%) be proved for 1,2,...,4—1. To prove it for », notice
that both sides of (+) are homomorphisms from (P¥, ¢); thus it suffices
to show that they coineide on P, . Indeed, since for each k we have a;,.;-fi
= fry1 o (see 3.1) we get

(Y. ALY (by induction)
= B 1 (Bua ee B)F T (n o = a)
= ﬁu.anvll(ﬂn—s ' . ‘.Bl)# r (an'ﬂf——l = ngnlan—l)

* * *
Nyt e 0T =Nyt

= ﬂn"’?'a*—l'(ﬁn-z' '131)#"" (77'”::—1 = 0,_1)
=B O O e O (by induction)
=B By +-- BFer (by induetion)
=By er BT r (765 = Bu'm)

(b) To prove @ € & we shall exhibit, for everyn = 0,1, 2, ..., a mor-
phism 7,: W, - F with 7,-a = w,. Then, given an (&, .#)-factorization
a = e¢-m, we infer that {(v,-¢)-m} is a compatible family for the chain
{k,}; hence so is {z,-¢e}; therefore there exists a A with z,-¢ = w,,-1 and so

w, = W, for ecach #,

which implies 1-m = 1. Thus m is an isomorphism and @ =e-m '€ &.

(b1) Define a sequence x,: § —P, with
(1) 7‘n+1'157z.+1 = %y and

by induction on n. First », = 15: @ =@ and x, is the injection »,: @
— P, = Q-+ FQ. The inductive step uses the pullback of a,, f:

Hpt1 Opg1 = ¥ Yp,
n

@n +1 . an
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Put p =154 0: Q+FQ —»Q; Yot1 = Lo+ Fy,: W, — W,. Denote
Uy = np, + Fnp ~@: P, +FP, > PfF and define a sequence g, : W,
- P, with

(2) Qn'ﬂn = Vo @p—1 &Hd Qn'an = (”n—-l +an—1) 'un—l'
TFirst, 0, = Ig: Wy — P, = W,. Given g, let us verify that
(3) (7’71+1 ‘ gn) T, = (":n +F971,) '%n ﬁ;?:

and then define g, .,, using the same pullback as above:

Wa s
N

P,
(%n +Fpa )t

@n+ 1 an

BE
Indeed, since
(4) U By = (But-FBy) 4,y
we have
(ont-Fen) B = (2, B+ F (0, B,)) (by (4))
= (a1 T F (1 00)) Uy (by (1) and (2))

= (10 +Fyﬂ.) ‘ (Hn—l +Fen—1) l’u‘n-l
= (lo+Fy,) 0, a, (by induction and (2))
= (Yn-(—l ) Qn) Cay, (Vn—{—l = 10 +Fyn) .

o (15)2) Detine 7, = g,-7,: W, - E (where €,: P, —F are the colimit
Injections of B = colim {6,}). Then we prove

T d =w,
by induction. First, z,-a = 0170y

=1la =a, =w,. T : :
first notice that 1 1 3. For the induction

(5) %, @) =a,+ Fa,-g for each n
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(because in the construction of P¥ as a colimit w®n): W - P¥ we

have u, = w{f and o} is a frec extension of a,, see 2.1). Further

(6) "y Tp "Gpt ... tal =7, for each n

because of (1), which yields #x,-n-a) = %, a, = %, ;7. Finally, since
* o)t (P¥, p) = (Q%, ¢) is & homomorphism, we have

[ AR

(7) pray .. o) =F(ar... d)p
Now, assuming 7,-a@ = w,, we get

Tpi1 @ = Qny1(Bppq @) (definition of z,,,)

= g1 g1 O e TGy (definition of a)
= (,+Foy) 4,y .. -a] (by (2))

= (y+Foy,)-(an+ Fa, ¢) ay_s- ... af (by (5))

= (xn'an-a:_1~ -af)-i—(an-Fan-tp-az_l' ...-af)

=g+ Flen ay oy -ee "a) g (by (6) and (7))
=g+ F(en 8 a) e (definition of &)
=19+ Fw, ¢ (induction)

= Wy (see 2.1).

This concludes the proof.

4. The proof of the theorem on analyses
Extend ¢ and 1, freely to homomorphisms
i (T*, ) >(Q,0) and =15 (@¥,9) >(Q, ).
Then for ¢¥: (I¥, ¢) — (@, ¢) (see 1.6) we have
i =% (I%, 9) > (@, 6)
because both * and r are homomorphisms extending i: I —@. Consider

pullback of » and ¢ (square I) and the pullback of i¥* and » (square II):
V-L> U —A--> T
yl 1T lv I 11

Then the outer square is a pullback of ¢ and 4* = ¢¥*.r; hence
L(4) = [u, %-7]
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by Definition 1.5. Further,
luy %-2] = [ng, 910 [v, A] = L@ [, 1].

7N
/\/\

and so, to prove the theorem, it suffices to verify

[v,4] = (AUM )*OR,.
Now, in the construction of Q¥ (2.1) we have 7y = w, and Fw, ¢ = ¢, Wy
therefore w, = 15+ Fng-p. Thus

(AVM ) = [ng, 1]V [Ty 9, 8] = [ng+Fng-@, 1o+ 0] = [wy, 19+ 6].
By 3.3,
(AVM Y = [Lgw, 1.
Hence
(AVIYOR, = [o#, 710 [+1q, 1] = [1g#, #*]0 [t g, 1]

= [125#7 7'#:’0 [7707 1Q]O [tJ 11'] .
The proof will be concluded when we show
(*) [1g%, 710 [1g, 10] = [Lg#, r].
Consider the pullback of r* and 7, (square III):
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By definition of #* we have r-y = 5-¥; hence there exists a z: Q¥ > 2
with 7-0 = #. It follows that

(e 1ge) = n1fs =1gw; thus 1ixeé.
This implies
Clo#, 7] = [e-1g%, 0-Lo% 1.

Further, both ## - and 134 -r are homomorphisms from (@*#, ¢) to (@, o)
which equal » on @; hence r¥-r = 174 r. Therefore g 1547 = o-r¥-r
=o't =0 (for n-r =1). We get

[1Q#, r] = [9'13#7 c].
This proves (), because [o-15s, 0] = [15#, 7 ]o[ng, Lol

VN
/\/\

This proves the theorem.
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Groups of weak automorphisms of 1-unary algebras have been described
only in the case of free algebras (see [5] and [1]). Proposition 1 of this
note generalizes these results and gives a description for the general case.
Proposition 2 tells which groups are of the form “group of all weak auto-
morphisms modulo group of all automorphisms” for l-unary algebras,
Proposition 3 shows that the class of all groups of weak automorphisms
of l-unary algebras is at least as rich as the class of all groups of auto-
morphismg of these, and Proposition 4 ensures that this class does not
contain all groups.

I would like to express my thanks for inspiration to my students
R. Pt4énik and 7. Svoboda, the authors of [4]. In fact, they have studied
groups of weak automorphisms for some 1l-unary algebras but without
the help of groups of automorphisms of those algebras.

Note that groups of automorphisms of 1-unary algebras were charac-
terized in [2].

For a Il-unary algebra A = (4,f) let &% = (4%, ) and #U
= (WY, -) denote the group of all automorphisms and the group of ail
weak automorphisms of it, respectively. Let f™ stand for the nth iteration
of f (i.e. f* =id,, f"'a = f(f"a) for all ae 4, n =1,2,...). By N we
denote the set of all positive natural numbers and let £, = (Z; = {0, 1, ...
..., =1}, -) be a semigroup, where the operation -is the usual multi-
plication modulo d,d e N.

PROPOSITION 1. Let N = (4,f) be a L-unary algebra.
(1) If for no neXN f*** =f, then any weak automorphism of U s
an automorphism of W

(2) Let d be the smallest n € N such that U satisfies f** =f. Then
the set
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