UNIVERSAL ALGEBRA AND APPLICATIONS
BANACH CENTER PUBLICATIONS, VOLUME 9

PWN-POLISH SCIENTIFIC PUBLISHERS WARSAW 1982

- [9] V. Trnková, Relational automata in a category and their languages, Lecture Notes Comp. Sci. 56, Springer-Verlag, 1977, 340-355.
- [10] -, General theory of relational automata, Fund. Informaticae 3 (1980), 189-233.

Presented to the Semester Universal Algebra and Applications (February 15 – June 9, 1978)

WEAK AUTOMORPHISMS OF 1-UNARY ALGEBRAS

LIBOR POLÁK

Department of Algebra and Geometry, Faculty of Science of JEP University, 66295 Brno, Ozechoslovakia

Groups of weak automorphisms of 1-unary algebras have been described only in the case of free algebras (see [5] and [1]). Proposition 1 of this note generalizes these results and gives a description for the general case. Proposition 2 tells which groups are of the form "group of all weak automorphisms modulo group of all automorphisms" for 1-unary algebras, Proposition 3 shows that the class of all groups of weak automorphisms of 1-unary algebras is at least as rich as the class of all groups of automorphisms of these, and Proposition 4 ensures that this class does not contain all groups.

I would like to express my thanks for inspiration to my students R. Ptáčník and Z. Svoboda, the authors of [4]. In fact, they have studied groups of weak automorphisms for some 1-unary algebras but without the help of groups of automorphisms of those algebras.

Note that groups of automorphisms of 1-unary algebras were characterized in [2].

For a 1-unary algebra $\mathfrak{A}=(A,f)$ let $\mathscr{A}\mathfrak{A}=(A\mathfrak{A},\cdot)$ and $\mathscr{W}\mathfrak{A}=(W\mathfrak{A},\cdot)$ denote the group of all automorphisms and the group of all weak automorphisms of it, respectively. Let f^n stand for the nth iteration of f (i.e. $f^0=\mathrm{id}_A$, $f^{n+1}a=f(f^na)$ for all $a\in A$, $n=1,2,\ldots$). By N we denote the set of all positive natural numbers and let $\mathscr{Z}_d=(Z_d=\{0,1,\ldots,d-1\},\cdot)$ be a semigroup, where the operation is the usual multiplication modulo $d,d\in N$.

Proposition 1. Let $\mathfrak{A} = (A, f)$ be a 1-unary algebra.

- (1) If for no $n \in \mathbb{N}$ $f^{n+1} = f$, then any weak automorphism of \mathfrak{A} is an automorphism of \mathfrak{A} .
- (2) Let d be the smallest $n \in N$ such that $\mathfrak A$ satisfies $f^{n+1} = f$. Then the set

 $Z\mathfrak{A} = \{n \in Z_d | n \text{ is invertible in } \mathscr{Z}_d \text{ and algebras } (A, f) \text{ and } (A, f^n) \text{ are isomorphic} \}$

forms, with respect to multiplications, a subgroup $\mathcal{Z}\mathfrak{A}$ of semigroup \mathcal{Z}_a , and $\mathcal{W}\mathfrak{A}$ is isomorphic to a semidirect product of $\mathcal{A}\mathfrak{A}$ by $\mathcal{Z}\mathfrak{A}$.

Proof. (1) If $a \in W\mathfrak{A} - A\mathfrak{A}$, then there exist integers $m, n \geqslant 2$ such that

(*)
$$\alpha f = f^n a \quad \text{and} \quad f a = \alpha f^m$$
.

Thus we have $f^{mn} = f$ and (1) is proved.

(2) $\mathcal{Z}\mathfrak{A}$ is a finite abelian group. Let $\mathcal{Z}\mathfrak{A}=\mathcal{G}_1\times\ldots\times\mathcal{G}_k$ be its decomposition into a direct product of its cyclic subgroups, $\mathcal{G}_i=(g_i)$ and let $\varrho_{g_i}\colon (A,f)\to (A,f^{g_i})$ be an isomorphism such that $\varrho_{g_i}^{g_{i-1}}=1_A$ and $\varrho_{g_i}\varrho_{g_j}=\varrho_{g_i}\varrho_{g_i}\cdot \text{For }n=g_1^{n_1}\cdot\ldots\cdot g_k^{n_k}\in \mathcal{Z}\mathfrak{A}$ is $\varrho_n=\varrho_1^{n_1}\cdot\ldots\cdot \varrho_k^{n_k}$ an isomorphism of (A,f) onto (A,f^n) (i.e. a weak automorphism of \mathfrak{A} satisfying (*)). Thus, $\mathscr{W}\mathfrak{A}$ is isomorphic to $(A\mathfrak{A}\times\mathcal{Z}\mathfrak{A},\circ)$, where $(\alpha,m)\circ(\beta,n)=(\alpha\varrho_m\beta\varrho_m^{-1},mn)$.

Proposition 2. For any subgroup $\mathscr G$ of the semigroup $\mathscr Z_d$, $d \in \mathbb N$, there exists a 1-unary algebra $\mathfrak A$ such that $\mathscr M\mathfrak A / \mathscr A\mathfrak A$ is isomorphic to $\mathscr G$.

Proof. Let

$$\mathscr{G} = (\{n_1, ..., n_k\}, \cdot)$$
 and $B = \{0, 1, ..., d-1, 0_0, 1_0, 1_1, 2_0, 2_1, 2_2, ..., (d-1)_{d-1}\},$

where all symbols are considered pairwise different.

We define

$$g(i) = i + 1 \pmod{d}$$
, and $g(i) = i$, for all $i, j \in Z_d$, $i \geqslant j$.

Let $\mathfrak{A}=(A,f)$ be a 1-unary algebra with connected components isomorphic to $(B,g^{n_1}), (B,g^{n_2}), \ldots, (B,g^{n_k})$.

It is easy to check that IN is isomorphic to G.

Proposition 3. For any 1-unary algebra A there exists a 1-unary algebra B such that WB is isomorphic to AA.

Proof. Let $\mathfrak{A}=(A,f)$ be a 1-unary algebra with $W\mathfrak{A}\neq A\mathfrak{A}$. For any $a\in A$ we add to A two new elements a' and a'' and define fa''=a', fa'=a. Denoting the resulting algebra by \mathfrak{B} , we have $\mathscr{W}\mathfrak{B}=\mathscr{A}\mathfrak{B}\cong\mathscr{A}\mathfrak{A}$.

PROPOSITION 4. There is no 1-unary algebra A with WA isomorphic to an additive group of rationals.

Proof. By [3], Corollary 3.2.3, there is on 1-unary algebra $\mathfrak A$ with $\mathfrak A\mathfrak A\cong (Q,+)$. Moreover, (Q,+) is not a semidirect product of its subgroup

by a non-tirival finite group. Now, the assertion follows from Proposition 1.

References

- J. Dudek and E. Płonka, Weak automorphisms of linear spaces and of some other abstract algebras, Colloq. Math. 22 (1971), 201-208.
- [2] J. Hyman, Authomorphisms of 1-unary algebras, Algebra Universalis 4 (1974), 61-77.
- [3] B. Jónsson, Topics in universal algebra, Lecture Notes in Mathematics, No. 250, Springer-Verlag, Berlin 1972.
- [4] R. Ptáčník and Z. Svoboda, On weak automorphisms of 1-wary algebras, Communication of the conference of students scientific activity, Brno 1978.
- [5] J. R. Senft, On weak automorphisms of universal algebras, Dissertationes Mathematicae LXXIV, Warszawa 1970.

Presented to the Semester Universal Algebra and Applications (February 15 – June 9, 1978)