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Flow diagrams are used in programming as descriptions of some partial
mappings of appropriate sets into themselves. In our algebraic treatment,
the role of such partial mappings will be played by the elements of a
partially ordered semi-group, provided with some additional algebraic
structure. The algebraic systems obtained in this way will be called pro-
gramming spaces.

DEFINITION 1. A programming space is a 6-tuple (¥, 4, B, 0, v, *,
where & is a partially ordered semi-group with an identity I, 4, B and O
are elements of %, v and # are a binary and a unary operation in &
respectively and the following conditions are satisfied for all ¢, v, y and ¢
in #:

(i) CA = 0B =1I;
(i) (pyv)4d = o4, (p¥9)B = yB;
(i) olpxv) = opM o¥;
(iv) p<yp =Ive<Ivy;
(V) I¥(x@)p < *@;
(vi) yxop<e = y(xp) < e-
Remark 1. Condition (v) can be replaced by the condition
Iy (xp)p = 4¢.

This can be seen in the following way. Let <#, 4, B, 0, v, +> be
a programming space in the sense of Definition 1. I ¢ = IV (+p)p, then
o < *p; using condition (iv), we obtain the inequality I¥ op < IV (+g)g,
i.e. the inequality Iv op < ¢, and from this inequality and (vi) it follows

that +p < ¢. Hence p = #p. Thus we see that in a programming space
(F, A, B, 0, v, *) the element *p is the least fixed point of the mapping
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6+ Iv fp. Furthermore, using conditions (iii) and (vi) we see also that
for each p in & the element y(xgp) is the least fixed point of the mapping
0> py Op.

Now we shall give some examples of programming spaces. In each
of these examples, the operations v and * can be considered ag a kind
of branching and iteration respectively.

Exawpin 1. Let & be a partially ordered semi-gorup of all partial
mappings of the set N of the natural numbers into itself (the semi-group
multiplication is defined as composition, i.e. gyp(s) z«p(zp(s)) for all ¢
in N, and ¢ < y means that p is an extension of ¢). Let

A(s) =28, B(s) =2s+1, C(s) = [s/2],
if s is even,

if s is odd,

(pxp(s) = |7
p(8),

and let (xg)(s) =¢ iff there is a finite sequence r,, r,,...,7, of natural
numbers such that r, =s, 1, =1, 7,7y, ..., 7, are odd, 7, 18 even
and 7y, = @(ry) for j =0,1,...,m—1.

ExampIr 2. Let & be the partially ordered semi-group of all contin-
uous partial mappings with open domains of the set of the real numbers
into itself. Let

A(s) =¢é, B(s) = —¢, O(s)~Infs|,

(Prp)(s) =t =(s>0&p(s) =t)v(s< 0 &yp(s) =1

and let (+p)(s) = iff thereis a finite sequencer,, s, ..., r,, of real numbers
such that 7y =, 7, =1, 7,7, ..., 7,,_; are negative, r,, iy positive and
tip =o@(ry) for j =0, 1,...,m—1.

Exawerr 3. Let Y, 4, T, F, K, "(q) have the same meaning as in [4].
Let # be the partially ordered semi-group of all partial mappings of ¥
into ¥,let A =T,B=F,0 =K, pvy = A(w, ¢, p) and let xp = “(p).

) The next examples can be considered as non-deterministic modifica-
tions of Example 1 (in Example 6, the idea of complexity of data processing
is also involved).

Emmm 4. Let &# be the partially ordered semi-group of all multi-
valued mappings of N into N (py is defined by pp(s) = Ufe@): r ep(s)}
and ¢ < p means that ¢(s) < p(s) for all s in N). Let

A(s) = {25}, B(s) = {2s+1}, 0(s) = {[s/2]},
(pry)(e) = [P\ H e even,
y(s), if s is odd,
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and let ¢ e (+p)(s) iff there is a finite sequence #;,7, ..., 7, of natural
numbers such that r, =s, r, =1, 1,1, ..., are odd, 7, is even
and 7, e(r;) for j =0,1,...,m—1.

ExAMPLE 5. Let & be the set of 2ll mappings ¢ of N* into the interval
[0, 1] such that } @(s, t) <1 for all s in N, let gy be defined by
i=0

ov(s, 1) = X o(r,p(s, 7

r=0
and let ¢ < » means that ¢(s, t) < p(s, ?) for all s and ¢ in N. Let
.A(.S', 1) = 5557 B(sl 1) = 6§s+17 C(S, 1) = 6%5/2];
(s, t), if s is even,
p(s,t), if s is odd,
and let +p be defined in the following way:
(%) (2K, 1) = Of,
(+@) (2K +1,214+1) =0,
(@) (26+1, 2) = (261, 21) + X ¢(2k+1, 24, +1)p(2q:+1, 21) +
© 00 21=0

+ 3 3 o@k+1,2¢;+1)p(2¢; +1,2¢,+1)p(2gs +1,20) + ...

g1=04g5=0

(pxp)(s, 1) =

ExAMPLE 6. Let K be an arbitrary semi-group with an identity 4
and let & be the set of all subsets of the Cartesian product N x K xN.
Let # be partially ordered by the inclusion relation and let

oy = {8, B, 1 Ir({r, L, ep &<s,k, 1) € y)}.

A = {¢s, \,28>: s eN},

B = {{s, A\, 2s+1)>: seN},

0 ={s, \,[s2D: s eN},

oy = {{s,k,t>: {s,k,t)ep &s is even}u
U{<s, k,ty: (s, k,t> ey &s is odd}

and let (s, &, t) & xp iff there are a finite sequence ry, 7, ..., 7, of natural
numbers and a finite sequence %y, %, ..., k,_, of elements of K such
that 7, =8, 7, =&, P4, 71, «ery Fm_y are 0dd, 7, s even, <1y, k;, 75> €@
for j =0,1,...,m—1 and Kk, ... kyp_, = k.

Let

ExaMpLE 7. Let & be the set of all partial mappings of N into the
set of subsets of N, let gy be defined by the conditions

Dom (py) = {s: s eDomy & y(s) = Domg},
s e Dom(py) = gy(s) = U {p(): r e p(s)}
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and let ¢ <y means that p is an extension of ¢. Let

A(s) = {2s}, B(s) = {2s+1}, O(s) = {[s[2]}

for all s in N, leb
p(s), if s is even,

p(s), if s is odd,

and let @ be defined by the conditions: Dom (=) is the least set @ of natural
numbers containing all even numbers and such that s €@, whenever s
is an odd number, s € Domeg and ¢(8) < @; if s e Dom (xp), then ¢ e (x@) (s)
iff there is a finite sequence 7y, , ..., 7,, of natural numbers such that
To =8, Ty =1, Toy #1y 000y Ty TG 0dd, 7, I8 even, s, € Dome and 7y,
ep(r;) for j =0, 1, ..., m—1.

We shall complete this list of examples by giving a less conerete one
(concrete instances of this example can be obtained using the examples
of iterative combinatory spaces given in [6]-[10]).

ExawrLe 8. Let {(¥#,,%,1I,L,R, 2, T,F,<) be an iterative com-
binatory space in the sense of [7]. Denote by # the semi-group &, con-
sidered together with the partial ordering < and let I be the identity
of this semi-group, 4 =(T,I), B = (F,I), 0 =R, ovy = (L > ¢, ),
*p = [p, L]. It is worth mentionning that conditions (vi), (vii) and (xi)
of Definition 1 of [7] are not necessary for this example. Also the condition
on y in Definition 5 of [7] can be replaced by the following weaker condi-
tion: p = (3 = I, yp) and p belongs to each subset of & having the form
{6: y0< ¢} and closed under the mapping 6+ (x > I, 6p) (the second
part of this condition can be considered as a very special case of D. Scott’s
p-induction rule).

Suppose now (#,4,B,0,v,%) be an arbitrary Programming
space. We shall prove some lemmas.

Levwa 1. For all ¢ in &, we have (+p)A = A, (xp)B = (%@)@B.

Proof. We use the equality +¢ = Iv (+p)p and condition (i) of Defi-
nition 1.

Lemma 2. The mapping @ > *p s increasing.
Proof. Let ¢ <ga. Then Iv (vy)gy < IV (4g5)gy =@, (by condi-

tion (iv) of Definition 1). Hence, by condition (vi) of Definition 1, we have
the inequality *@; < *q,.

DEFINITION 2. A mapping I" of #” into & is called left-homogeneous
i I'gh, -y @0y) = oI'(6y,..., §,) for all §,,...,6, and ein #.

The operation v is a left-homogeneous mapping of #* into F. It
1<i<n,1<j<n and ¢ is some element of & , then the mapping
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I'(01,y ..., 0,) = (0;0;) 6 is a left-homogeneous mapping of F" into #.
Trivial examples of left-homogeneous mappings are the mappings of
the form I'(6,...,0,) = 0,0, where 1<¢<n and ¢ is some element
of & . The study of left-homogeneous mappings gives a way for the algebraic
treatment of flow diagrams. Namely, the tail functions (cf. [6]and [1]-[3])
of a flow diagram satisfy a system of equations (called the characteristic
system of the diagram) which has the form

0; = Ii(0yy ey Oy 1)y 4 =1, .0y m,

where Iy, ..., I,, are left-homogeneous mappings in the eorresponding
semi-group of partial mappings (as a matter of fact I3, ..., I, have
a very special form and each of them depends only on one or two of its
arguments).

LemmA 3. Let I' be a left-homogencous mapping of F* into F. Then
I(p, ) = O« (4Ap0)0x(A%0C*) I'(BA, AB)
for all ¢ and v in F.
Proof. Using Lemma 1 we prove that
Cx (Ap0)Ox (A0 BA =@, O%(AyC)Cx(A%p0?%) AB = y.
Then we use the left-homogenity of I

Remark 2. Lemma 3 gives a generalization of the expression for
conditionals by means of composition and iteration given in [4].

Lmvta 4. If 0 << @y and p; << g, Then @M 91 < @Y Yo

Proof. We apply Lemma 3 to the mapping I'(p, ) = gy and then
we use Lemma 2.

DEFINITION 3. Let
6y =90, <<01,-“19m:0m+1>> = 0m+10—v—'<<917"'70m>>0’

b =1, Cpirg =Bl for t=1,yMy  Cppim =4,

Levma 5. If @y < Wy oeey O < Yy then
1y vy Pmd SKP1y oevy Yd-

Proof. By induction, using Lemma 4.

LeMMA 6. For each positive natural number m, the mapping
I'(ﬁl, teey am) = <<617 sy 0m>>

s left-homogeneous.
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Proof. By induction, using condition (iii) of Definition 1.

Levwa 7. If 1<e<Km, then Oy, ooty 0,08, = 6, for all 0, ...

m F.

? Gm

Proof. By induction, using conditions (i) and (i) of Definition 1.
Levma 8. Let I' be a left-homogeneous mapping of F™ into F. Then

I‘(eli ey gm) =<<61: ey 0m>>11(:m.17 ey Cm,m)

for all 6,,...,0,, in F.

Proof. By application of Lemma 7.
From Lemmas 5 and 8 we can obtain the following generalization
of Lemma 4: If I' is a lefi-homogensous mapping of F™ into F and

P Puyoees P S Yy then Loy, oony 07) STy, oony Pia)-
The main result of this paper reads as follows:

TeeorEM 1. Let I, ..., I}, be left-homogeneous mappings of Fm+!
into F and let y € F. Let

A =I’~£(Cm+1,1:"'ycm+1,m+1), i =1,...,m,
o =Ly }m»oy
@ =y0(x0)pnprsy, G =1,...,m.

Then
%:Pi(gvly'“)‘Pm;y); i=1,...,m,
and if the elements vy, ..., v, of F satisfy the inequalities

1/)521113(1/}13"';1/)7"; '}')y 1'=1, very My

then
PLSVLs ooy O < Yoo

Proof. By Lemma 1, we have Y0(#0) Lpimyr = pO0(x0)A = yCA
= y. Henee, using Lemmas 1 and 7, we can obtain

¢ = yO(x0)BL,, ; = y0(x0) B, ;
= y0(x0)&Ay, --., 2o s = yO(%0) X
= 1-'4(70("“’) Cmaray ooy 70(*G)Cm+1,m+1)
=Tip1, ooy Omy ).

Now, let u,, ..., ¥, be arbitrary elements of & satisfying the inequalitics

Y2 LWy ey Uy ¥)y 0 =1,..., m.Bet 6 = 1y ovny Yoy ¥ LEL SISy
then, using Lemma 7, we obtain

0dy = Fi(‘scmﬂ,u sy 6;m+1,m+1) = Ii(yy, cony Yiny V) Loy

©
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From here, applying Liemmas 6 and 5, we have

Y0x. 00 = yC v {8l vuny 02,30 < YOV Lyyy onny Pd0
=KW1y o0y Yy ¥H = 6.

Using condition (vi) of Definition 1, we conclude that yC(xs) < 6 and
hence ¢; < 80, ,; =y, fori=1,..., m.

In the programming space considered in Example 3, the elements
@; constructed in Theorem 1 can be expressed by means of composition,
conditionals, iteration and the elements y, 4,B,0,4,...,4,. If 6,
= I;(6yy -y O, ¥), ¢ =1, ..., m, iy the characteristic system of some
flow diagram, then y = I and the operations I3, ..., I}, are expressed
by means of composition and conditionals. But conditionals can be expres-
sed by means of composition, iteration and some fixed elements of #,
as shown in [4] (cf. Remark 2 above). Since the tail functions of a flow
diagram form the least solution of its characteristic system, we see thatb
Theorem 1 contains the essential part of Bohm and Jacopini’s result
about reduction of flow diagrams which is given in [4].

From Theorem 1 we easily obtain the following

COROLLARY. Let I, ..., I, be left-homogeneous mappings of F™+?
into F and let y,, ..., v, belong to F. Let

’11: = Fi(£‘m+1,17 ey Cm-x-l,m? Cm+1.m+1cp,1: ..
0 =<Ky ooy 20,
@ =&Yy o0y )’p>>0(*‘7) cm-}-l,i’

*) Cm+l,m+lc_p,p))
1=1,...,m.
Then

@i =Ty @ry ooy Pms Y1y eees ¥p)y £ =1,.00ym,

and if the elements vy, ..., v, of F satisfy the inequalities
"/"i>ri('/’1!"'7'/’my7’17"')7p)7 1 =1,..,m,
then

PLS V1 ooy P S Yo

For obtaining this corollary, it is sufficient to apply Theorem 1 to
the mappings I', ..., I}, defined by
Pi(ﬁl’ ey emy 6m+1) = Fi(ely seey Gmi om-{-lcp,l’ “esy Gm-}—lcp,p)
and to the element y =y, ..oy ¥pd.
Using the corollary of Theorem 1 we can prove that least solutions
of systems of the form

0; = Ii(Opy oony Oy Y1y ey ¥p)5 E =1, .00ym,
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where I7, ..., I}, are left-homogeneous, can be found by the method of
elimination. The proof can be based on the following proposition about
increaging mappings in partially ordered sets (cf. [10], Proposition 1.1.7
of Ch. IIT):

Let #' and &'’ Dbe partially ordered sets. Consider the set &' x &'
with the partial ordering defined in the following way: {¢’, ¢"> < {y’, ">
iff ¢’ < ' and @' < ¢”. Let I and I'"” be increasing mappings of the par-
tially ordered set #' X&' into the partially ordered sets #' and &' respec-
tively. Let for each 6" in &' the inequality I(0’, ") < 6’ has a least
solution 6’ = B(6”) in &'. Let 6’ = ¢” be the least solution of the in-
equality I (B(6"), 6”)< 6 in #''. Then the pair {B(p"), ¢'"> is the
least solution of the inequality I'(6) < 0 in #' X" and the least fixed
point of the mapping I', where I' is defined by the equality

T(0', 0) =<I"(0', 6), (8, ).

Now we shall show an application of Theorem 1 to the generalized
recursion theory developped in [7] and [10]. In order to do this, we shall
first prove the following statement:

Levva 9. Let we & and I' be a lefi-homogencous mapping of F°
into & . Let 0, be the least 0 such that 6 = I'(I, 6, 0nB) and =, be the least »
such that v = I'(4, v, B). Then 6, = Ox(t,m)7,.

Proof. Let ¢ = % (vyw). By the left-homogenity of I' and Lemma 1,
we have

Ciry = I'(Ci4, Cury, CB) = I'(1, Civy, CirgnB) .

Hence 6, < Oiz,. For proving an inequality in the opposite direction,
note that by Theorem 1 we have

7y = C(x0)L, 1,
where

o = F(Zz,zA; 52,17 £,2B)C.
Let # = Ox0gn. Then #A = CA = I, xB = 6,nB. Hence
K0y; %yo = (KB, =) Lopd, €0y, %) La,15 0oy %) $,,2B)C

=I'(x4, 6, zxB)0 = I'(I,6,, 6,7B)C = 6,0
and therefore

#0x.Q00; )0 = u0x 6,0 = B, xy.
By condition (vi) of Definition 1 we conclude that
#0(20) < (B, %Y.
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Therefore
B 1ty < K0, %) G =

and hence
Oyvurgm < Ox b = .

Applying once more condition (vi) of Definition 1, we get €< ». Hence
Cury < %7y < 0.

In the rest of the paper, we shall suppose that {#,,¥, I, L, R, %,
T,F, <) is an iterative combinatory space in the sense of [7] (we could
algo use the less restrictive assumptions given in Example 8 above, togeth-
cr with the condition that (z, I)0 = (x, 0) for all z in % and all 6in #,).
We shall also suppose that ¥ is some subset of #,. A mapping H of &,
into &, will be called normally representable with respect to ¥ if there are
elements a, f, y, x and » of &, recursive in ¥ in the sense of [7] and such
that

H(w) = y[ﬂ(Iy wv), zla

for all w in #,. The promised application to generalized recursion theory
reads as follows:

THEOREM 2. Let H be a mapping of F, into F, which is normally
representable with respect to ¥ and let x be an element of F, which is recursive
in . Then the mapping o — [H(w), »] is also normally representable with
respect to V.

Proof. Let a, 8,7, x and » be such as in the definition of normal
representability formulated above. Having in mind the programming
space described in Example 8, we shall apply Lemma 9 to the mapping I"
defined by

I'(6y, 0, 0;) = (X = (x> 6y, O0)y, 03)

and to the element # = 8, (I, wvR), where o is an arbitrary element of #,
and B, = B(RL, R). We shall first show that #B = (I, wv). Let » be an
arbitrary element of #. Then

aBw = n(F, %) = P ((F, ), o) = B ((F, v), I) vz,
But p,((F, ), I) = B(x, I) since for all y in & we have

ﬁl((Fy z), I)y = ﬁl((F; @), y) = 13("”7 y) = ﬂ(ws Iy.
Therefore

aBx = Bz, Yove = B(», ovw) = B(L, wv).

The equality #B = §(I, wv) is thus established. Denote by 7, the least =
such that = = I'(4, 7, B). From the expression for 7, given by The-
orem 1 we see that 7, is recursive in ¥. We shall prove that

[H(w), »] = B[nh (I, wvR), L](% > 4, 70a).


GUEST


286 D. SKORDEV

Let ¢ = [7,f1(I, wvR), L], ie. ¢ = [rymw, L]. By Lemma 9 and Theorem 1,
the element Rir, will be the least 6 such that 0 > I'(I, 0, 0aB). Consider
now the system of inequalities

(x> I, 00)<8,
<.

(% = by, 6=B)

For each 0 in &, the element (x > I, 6a) is the least solution of the first
inequality with respect to §. By substitution of this element instead of §
in the second inequality we get the inequality I'(I, 0, 6xB) < 0 and its
least solution with respect to 6 is Rur,. By the proposition formulated
after the corollary of Theorem 1, the least solution of the considered system
of equations simultaneously with respect to § and 9 is

6 = (x> I, Rirya), 0 = Rur,.

On the other hand, we could solve the same system also by elimination of 6.
For each § in #,, the element 8y [=B, y] is the least § such that (5 > by,
67B) < 6 (this follows easily from the definition of iteration). By substi-
tution of Gy [#B, x] instead of 6 in the inequality (» = I, fa) < 8 we obtain
the inequality (x> I,8H(»))<8 and its least solution with respect
to § is [H (o), »]. Thus the least solution of the considered system of equa-

tions simultaneously with respect to § and 6 can be written also in the
form

0 =[H(»),%], 6=[H(w),x]lyl=B, 1]

By comparing the two expressions for § we obtain that
[H(w), %] = (x> I, Ritea) = Re(x > A, 140).
The proof of Theorem 2 is completed.
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