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1. Imntroduction

The results discussed bere are concerning an algebraic structure that is
clogely related to a many-valued propositional calculus.

Among the extensions of the intuitionistic logie, the general symmetrie-
al modal propositional calculus has been introduced by Moisil in 1942 [16].
This caleulus is obtained by the addition of one unary connective — the nega-
tion sign — to the alphabet of the intuitionistic propositional calculus. Two
logical axioms and one rule of inference characterize this new connective:
the double negation laws and the contraposition rule. In 1969, in order to
study this caleulus from an algebraic standpoint, Monteiro [24] developed
the theory of the symmetrical Heyting algebras. These algebras are Hey-
ting algebras or pseudo-Boolean algebras with a symmetry, i.e. with an
involution that inverts the order given by the implication. Particular
cases of symmetrical Heyting algebras are symmetrical three-valued
Heyting algebras [8], three-valued Zukasiewicz algebras [14] and of
course Boolean algebras.

On the other hand, in 1967, Rousseau [28], [29] formulated the
classical and the intuitionistic m-valued propositional caleulus, giving
the first standard axiom system for these. Algebraic approaches to these
caleuli are respectively Post algebras and pseudo-Post algebras. Predicate
calculi based on these propositional caleuli have been studied by Rasiowa
[26].

The aim of this expose is to present a many-valued logie, connected
with the general symmetrical modal propositional calculus. We will con-
centrate our attention on the algebraic view-point. Thus we will introduce
the notion of a symmetrical Heyting algebra of order n. Roughly speaking,
it is & symmetrical Heyting algebra with n —1 unary operators satisfying
suitable conditions. In a semantical model for this logie the mentioned
operators may be interpreted as modal operators.

[289]
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In a talk given at the University of Lyon in 1975 we have considered
symmetrical fkasiewicz algebras [9], i.e. Zukasiewicz algebras of order n
with an automorphism which is at the same time an involution. In the
case n = 3 the notions of symmetrical Heyting algebra of order 3 and
symmetrical three-valued Eukasiewicz algebra are equivalent. For one
thing, this fact is a consequence of Moisil’s remark [16] that, in the three-
valued case, the Zukasiewicz negation can always be defined by means
of the pseudo-complement, the dual pseudo-complement and the meet
and the join. For another, it is well known that three-valued Eukasiewicz
algebras are Heyting algebras [19]. Sinee Moisil’s remark does not hold
for n > 3, the structures mentioned above are only equivalent up to and
including the three-valued case.

In order to obtain the definition of the abstract algebra that will
be considered here, the characterization given in [10] has played an
essential role.

Only the first part of the lectures given at the Seminar will be published
in this volume. Two typieal representation theorems — by means of sebs
and topological one — have been published in [11].(%)

2, Preliminaries

We recall the definition of structures and some properties needed for the
understanding of the work.

According to [21], p. 151, a Hilbert-Bernays algebra is an abstract
algebra (4,1, A, v, =) such that (4,1, A, v) is a lattice with unit 1
and for any two elements x, y there is a greatest element z = @ = y such
that zA2<y.

It is well known that in a Hilbert—Bernays algebra the system (4,1,
Ay V) is a distributive lattice with unit 1 =z = = [2].

A Hilbert-Bernays algebra with a zero element 0 will be said to be
a Heyting algebra. In this case the element ~Jo =« = 0 is called the
pseudo-complement of z.

An abstract algebra (4,0,1, A, v, ~) is said to be a De Morgan
algebra or quasi-Boolean algebra ([1], [26], p. 44) if (4, 0,1, Ay, V) s
a distributive lattice with zero 0 and unit 1 and ~ is a De Morgan negation
on 4. This last condition means that ~ is a unary operation on 4 — called
the De Morgan negation — satisfying the following conditions:

~~E =2, ~(EVY) = ~STA Y.
The following properties are true in any De Morgan algebra ([26], p. 44):

<y i and only if ~y< ~z,

(*) Other selected parts will appear in Zeitschrift fiir Mathematische Logic und
Grundlagen der Mathematik,
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~1=0 and ~0=1,
~EAY) =~V ~y.

A De Morgan negation ~ on a lattice 4 is called a Kleene negation
if for all @,y € A the condition

BA~Z LYV ~Y

is satisfied. In this case the De Morgan algebra is said to be a Kleene
algebra or normal i-lattice ([26], [12]).

By a symmetrical Heyting algebra we will mean an abstract algebra
(4,0,1, Ay v, =, ~) where (4,0,1, A, v, =) is a Heyting algebra
and ~ is a De Morgan negation on A. We have horrowed this notion
from [24]. In particular if (4,0,1, A, v, =) is a Boolean algebra the
notion of a symmetrical Heyting algebra is similar to that of a symmetrical
Boolean algebra or involutive Boolean algebra ([17], [22], [23])

3. Symmetrical Heyting algebras of order n

Throughout this lectures we will be concerned with an abstract algebra,
whose definition is given below.

On a symmetrical Heyting algebra (4,0,1, A, v , &, ~) We are
going to define »—1 unary operators (» an integer > 2), noted 8y, 8, ...
-+5 81~ The required properties for these are the following:

— the operators 8; are (0, 1)-lattice homomorphisms from 4 onto
the sublattice B(4) of all complemented elements of A such that 88,
=8 for all 4,j =1,...,n—1;

— 8, and 8,_, are respectively an interior operator and a closure
operator on 4 ([26], p. 115-116);

— they are related to the operation = and ~ by the equation

71

Bi(@ = 9) = A (8w = 8w),

=1

8~z =r~8,_z.

This situation suggests the following definition:

3.1. DEFINITION. An abstract algebra % = (4,0,1, A, v, =, ],
~,y 81y -ovy 84y), m an integer > 2, where 0,1 are zero-argument oper-
ations, 71, ~, &, ..., §,_, are one argument operations and A, v, =
are two-argument operations is said to be a symmetrical Heyting algebra
of order n if

(S1) (4,0,1, A, v, =, ], ~) is a symmetrical Heyting algebra,

and for every @, y € 4 and forall ¢, j =1, ..., n —1 the following equaticns
hold:

(82) Si(wry) = 8zAly,
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n—1
(83) 8z =9) = k/;.(‘s'kﬁ = 81Y),

(84) 8;8;0 = S,

(S5) Spve ==,

(S6) 8 ~w = ~8,_,

(87) SevT8 =1, with 7z =2 = 0.

It follows from the above definition and from the fact that the class
of all symmetrical Heyting algebras is equationally definable [21] that
the class of all symmetrical Heyting algebras of order # is also equationally
definable.

We will refer to a SH-algebra A of order =, for short.

Let us note the following facts:

3.2. If (4,0,1, A, v, =>,71, ~,8,) is SH-algebra of order 2,
then 8@ = for all x € A and (4,0,1, A, v, =, 7], ~) is a symmetrical
Boolean algebra.

Indeed, by (86) S, ~& = ~S; by (85) and (S1) 8, ~ & < ~= and
~p < ~B8. 8o 8 ~& = ~ and S,z = » for all x e 4. Moreover, by
(ST),zvTlz=1foreachs e 4, 50(4, 0,1, A, V, =, 7], ~)is asymmetrical
Boolean algebra.

It is possible to show that SH-algebras of order 3 are equivalent to
involutive three-valued Heyting algebras studied in [7] and [8].

3.3. The definition of the Fukasiewicz algebra of order 3, or three-
valued Frukasiewicz algebra, has been introduced by Moisil in 1940 [14],
as an attempt to give an algebraic approach to the three-valued logic
considered by ZXukasiewicz in several mathematical logic works [13].
Lukasiewicz algebras of order n are generalizations of the same algebras
of order 3 and have also been introduced by Moisil in 1941 [15]. For a
development of the theory of Zukasiewicz algebras of order » see the
works of Moisil himself [18], [20] and [3], [4], [5].

In [10] a characterization of Fukasiewicz algebras of order u has
been given in which the intuitionistic implication plays an essential role.
This characterization allows us to conclude that Fukasiewicz algebras
of order n are SH-algebras of the same order.

34. For every SH-algebra A of order n the following conditions are
satisfied :

(88) Bl =1, 80 =0, for all ¢ =1,...,5~1,
(89) S(mvy) = 8wv 8y, for all i =1, cey =1,

(810) If 8@ =8y for all i =1, ...,n~1, then o = y (determination
principle),
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(811) 2<y if and only if S < Sy,
(812) Se<8r<... <8, 2,
(S13) < 8,2,
(S14) BpATI8@ =0, for all 4 =1,...,n—1,
(815) SpvT18m =1, for all § =1, ...,n—1,
(816) 8 (TIw) = 718, &, for all i =1, ...,m—1.

In fact, by (S1) and (83), for all 4 =1, ..., n—1

n-1

n—-1
Sl =28z=>a)=A(8z=>82=A1=1.
‘ Emi

k=i

Consequently, by (81), (S6) and the last result we geb 8,0 = §;(~1)
=8, 1 =r~1=0for all 4 =1,...,m—1. Thus (S8) holds. (S9) is
a consequence of (S1), (S6) and (S2). The proof of (810) can be found in
[10], p. 135. Suppose # <y for some z,y ¢ 4. By (32) it follows that
8,2 < Sy. Cn the other hand, if S < Sy, then by (32) Sz = Sz A Sy
= §;(zAy). Hence by the determination principle z = zAYy and o< y.
Thus (S11) holds. The proof of (S12) can be found in [10], p. 135. By
(811) < 8, # is equivalent to Sjz< 8,8, .z, which is equivalent,
by (84), to Sz < 8,_,2. This together with (812) proves that (S13) holds.
Since 4 is a Heyting algebra, A "]z = 0 for every zc 4. In particular
S 2AT18m = 0 for every ¢ =1,...,n—~1 and %€ 4. Thus (S14) holds.
On the other hand by (S4) and (87) Sv I8z = 8,8zv 188z =1,
ie. SwvTI8 e =1 for all 4 =1,...,n—1 and every wed and (S15)
holds. Using (81), (S3), (S8) and (S12)

n—1

n~-1
8;(Mz) = 8;(z = 0) = A (82 = §,0) =k/§..—lskx = T8, 17.

=1

The proof of 3.4 is finished.

3.5. Given an arbitrary SH-algebra .4, we will denote by B(A)
the Boolean algebra (B(4),0,1, A, v, =,7]) of all complemented
elements in A. If b e B(4), its complement b’ is equal to ~Jb.

Indeed, bAd' =0 and bvd' =1. The first equality means that
b < 7Ib, so by the second equality 1 =bvd' <bvTlb, ie. bv™Ib =1.
Thus ~b = b'.

3.6. For all i =1,...,n—1 let 8;(4) be the image of A under S,.
By (S4) mappings §; have a common image §;(4) = 8,(4) = ...
=8,_.1(4) and §;(4) = {wed: S = x}.

Since by (82), (88) and (89) these mappings are (0, 1)-lattice homo-
morphisms, 8;(4) is a sublattice of A. We will show that S;(4) is closed


GUEST


294 L. ITURRIOZ

under ~.In fact, ifz € §;(4), then 8z = ; by (86) ~z = ~8@w = 8,_;~z
50 ~zef, ;(4) = §;(4). Thus 8§;(4) is a De Morgan sublattice of 4.

3.7. For all £ =1,...,2-1, §;(4) = B(4).

To see 8;(4) < B(4) it is sufficient to note that by (S14) and (S15)
every element in §;(4) is complemented. On the other hand, if b e B(4),
then there exists §’ € B(4) such that bvb’ =1 and bAb" = 0; operating
with 8; and applying (89), (38) and (S2) we get S;bv &b’ =81 =1
and S;pA8yp" = 8,0 = 0; thus (8;b) = 8,0’ < ¥ by (85). This is equiv-
alent to b< 8;b. But by (85) again 8;b <, so 8;p =0 and b e §,(4).
We have shown that 8,(4) = B(4). Combining this result with 3.6 we
get 3.7.

3.8. Tt follows from the resulis above that the image (8;(4) = B(4), 0,
1,a,v,=>,7], N) s a symmetrical Boolean subalgebra of A, for all
t=1,..,n-1

3.9. Using the De Morgan and the intuitionistic negations denoted
“~” and “77” respectively, we can consider, for notational convenience,
the operation “[™” given by the equality

(A) % = ~"]~a.
The operation [~ has the dual properties of these of . Morcover,
o (8) Tle<< [Tw,

(b) Mz =T,

(¢) TI~b = ~7b for all beB(4),

(d) B(4) = {wed: Tz = [a}.

In fact, [2=[2v0 = Foav@ea™e) =(TCeva)a([Tev ) =
[T#v T2 so (a) holds. Since ["["zA [z =0, it follows MMe< I a.
On the other hand, by (a), 712 < [ "% and thus (b) holds. By (a), 71~b
<[ ~b=~T1b.Since b e B(4), bv b =150 ~bA ~71b =0and ~"b
< 7]~b and (c) holds. The lagt property follows easily.

?.10. The operation ~ on the lattice 4 permits us to consider a
duahjcy principle. Consequently every statement proved for A, v and ~
remains true if A and v are replaced by v and A respectively.

The following example of a SH-algebra of order n plays an important
role.

3.11. ExAmPLE. LetL, be the set of fractions Jl(n—1)withj =0,1, ...
---y #—1 considered as a sublattice of the real numbers and 8,2 the Car-
tesian product (L), i.e. the set of all z = (%,y) with e L, and y € L,.
8,2 with the pointwise defined operations Ay v is a Heyting algebra.
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Let us put on 8,2
~2,9) = (1—y,1—2)
and for all 4 =1, ..., 01,

Si(mr (l/) = (‘Sim7 Sz‘y);
where

S = fjfm-1) =7 = FIEm
0 if d+j<m.
The system (8p2,0,1, A, v, =, 7], ~, 8, ...,8,,) is a SH-algebra of
order .
In the case n = 3, we get the example given in [7]and [8]- In addition,
we can see that, in general, we have v ~w £ 1, A ~z £ 0, ov oz 1,
oAz 0, Tlof ~, ~ef Tin, ~o L M@ o~z
In general, SH-algebras of order n are not Kleene algebras (see Ex-
ample 311 above for n = 3). But we can prove that:

3.12. For a SH-algebra A of order w the following conditions are eqUiv-
alent:

(1) A satisfies the Kleene law,

(i) 4 is a Zukasiewicz algebra of order n.

Suppose that 4 is a SH-algebra of order n satisfying the Kleene law.
Since 4 is a De Morgan lattice, it is a Kleene algebra and this fact implies
that for every z € B(4), if &’ is the Boolean complement, then 2’ = ~z
([25], p. 454). By (S7) and (S14) the last result implies that 8,2 v ~8,z = 1.
According to the characterization of Fukasiewicz algebras of order m
given in [10], p. 134, we conclude that 4 is a Emkasiewicz algebra of
order %. That (ii) implies (i) is a consequence of the fact that the negation
defined in Ymkasiewicz algebras satisfies in particular the Kleene property
ag it was proved by different ways in [30] and [3].

Recall that Post algebras of order m are analogous with centered
Liukasiewicz algebras of the same order, i.e., Zukasiewicz algebras of order n
with # —2 elements 6, 6,, ..., ¢,_, such that ([3], p. 41):

0 i i<,
(B) Si(ej) = . S
1 i i+j=n.
By notational convenience let us put ¢, = 0 and e, , = 1.
This fact suggests us to introduce the following definition:

3.13. DEFINITION. A SH-algebra of order # will be said to be cen-
tered if it has » —2 elements e,, ¢,, ..., 6,_, satisfying condition (B) above.

Combining 3.12 and the result above we get
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3.14. For a SH-algebra of order n the following conditions are equiv-
alent:

(1) A is centered and satisfies the Kleene law,

(ii) .4 4s a Post algebra of order n.

3.15. In a centered SH-algebra of order n the following properties
Rold ([31], p. 198, [321):

(a) 0 =g <o <...<6,_,<6,_; =1,
n 1

b)) z = (S _TAE),

) If b eB (A) and bre; < e;_; for somej =1, ...,n—1, then b = 0.

Thus every centered SH-algebra of order n is a Post algebra of the same
order.

In account of (811) to prove (a) it is equivalent to prove
1) 8r6; < 8y8,,;-

L k-+4i < nby (B) we get 8¢, = 0 and (1) holds. If k+4 > n, then Sy, = 1.
But A+i+1>k+i>=n so S,heﬁl =1 and (1) holds. Operating on the
right side of (b) with 8;,4 =1, ..., n—1, and applying (S9), (S2), (34}, (B)
and (S12)

n—1

8 V 8, jrne) = V (B ABi;) = V 8,_x = Sm.
= J n—1i
By (510), (b) holds. Suppose b e B(4) and bae; < ¢;_, for some j. Operating
with 8,_; and applying (S11), (82), 3.6, 3.7 and (B) we obtain bA S
< 8,461 =0. 50 bAl =b =0 and (c) holds.
Following [6] if 4 is a centered SH-algebra of order » let us put

n—i%

() —Z =n\7(_l‘8193'/\ €;).

i=1

3.16. In a centered SH-algebra of order n the Jollowing conditions are
satisfied:

(d) ——z =2,

(€) —(@Ay) = —av—y,

@) er—o<yv—y,

—b ="1b for all beB(4),
~— = — o,

(i) 8;—z=—8,_ =
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Indeed, by (39), (S2), 3.7 and 3.5

n-1

—_—— = V (718, —zAe;) = V [(718; V {TI8wAe;)) A6

n—1 n~1
= \/1 (j/\ (8 v18,6) 7 ¢))
1= =1
n—1 n-1
= V1( ((Smae) v (TI8ign6)).
i=1 " j=1
Ifitji<n
(S ne) v (TI86;0e;) = (Spae)ve =e.
itjzn
(Sjpae)v (7180 6) = Smae
80
n—1
N (Senre)v(TI8ene) = 8,_mAe¢;.
i=1
Hence

n-1

——x =V (§,xre) =

=1

297

and (d) holds. By definition (C) and applying (82), 8.7 and 3.5 we get

—(@AY) = V("'IS (mAy)ng) =

n—1

= V (T8 mAe) v(TISyAe)

n—1

V (718 v I8y A e;

= v (T18mAe) v \/ (TByre) = —av —y

80 (e) holds.
To prove (f) it is equivalent to prove that

({) Si(wn —2) < 8i(yv

—y)for all ¢ =1,...,n—-1.

In order to prove this last inequality assume that » is an odd number.
On one hand, if 1<<i<< (n—1)/2, we get

1)

But 1
and

@)

<i<

n~1
(@A —z) = V (8@ ATI8m A 88;)

j=1

n—1

=V (8;A7182) = Sz A8, .

=

(n—=1)/2 s0 2i<n

n—1

-1 and ‘i<n—i.

8 < 718

Hence Sur<

S,_@

N~
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Combining (1) and (2) we obtain

Bima —a0) < Swa"I82 =0
and (f') holds.

On the other hand, if ¢ > (n +1)/2, then 2¢ > n+1 > n and ¢ > n —i.
Thus
n—1

S;lyv —y) = 8yv V1 (T18;9 A S;85)
=

n—1
=8yv V T8y = 8yvTi8y =1
=n—1
and (£') holds. ’
In the case » is even it is still necessary to consider the possibility
% =n/2. Thus

n—1
Bpp(@n —z) = j\/ (80 A T8 A 8, 08)
=1
n—1
=j\/l (8 ATI8) < B A8 = 0
=n/2
and (f) holds. Moreover,
n-1 n—1
—b =V (TI8bre) =V (Tbre) ="
g=1 i=1
which gives (g). Using the determination principle
n-1 n—-1
Spr~—z = 4/\1 (~TWv Bp~e) = A (~T182V 8xly—i1)
i= =1
n—1
=IA_ ~" 8 = ~T18z,
n—1 n=1
8y —~ "=.\/1 (M8 @A Be) = V ~718,_2 = ~7182
i= k=n—i
we conclude that (h) is true. Finally
n—1 n—1
—8x =j\/1 (TI88mae) =V (TI8wAe) = 18z
= i=1

and

n—1 I
Sn—i—w =j\/1 ("{Sj:cA ;S’"_iej) =V —I,S'],w = "8,z
- A

thus (i) holds.
In a centered SH-algebra of order # let ug put

(D) A = =~ = ~v—g,

©
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3.17. In a centered SH-algebra A of order n the map a is an automor-

phism of A which is at the same time an involution.

It is a consequence of Definition 3.1 and the properties of 3.16.

3.18. The following conditions are equivalent:
(i) 4 s a centered SH-algebra of order n,

(i) A 4s a Post algebra of order n with an automorphism which is at
the same time an involution.

That (i) implies (ii) is a consequence of 3.15 and 3.17. On the other
hand Rousseau [28] has shown that every Post algebra of order = is a
Heyting algebra and Epstein [6] has proved that every Post algebra of
order » has a symmetry “—". The operation ~z = —az is a De Morgan
negation on A. Gathering these results together the proof is complete.

4. A propositional calculus based on SH-algebras
of order n

In this section we present a propositional calculus extension of the intu-
itionistic propositional caleulus. The axiom system is given in such a way
that the set of all SH-algebras of order ¢ is characteristie, in the sense that
will be given below.

In discussing the axiom system we will use some familiar notions
about propositional caleuli (see [27]).

Let L = (A% F) be a formalized language where 4° = {V, A, v,
=, ~, 8,3 8,_1,(,)}, » an integer> 2, is the alphabet and F
the set of all formulas over A°. Formation-rules are as usual. Elements p
in ¥ are called propositional variables; A, v, =, 71, ~,8;,..., 8,_; pProp-
ositional connectives and the parentheses are auxiliary signs.

In the axiom system below A, v, = and | may be interpreted as
the conjunction, disjunction, intuitionistic implication and intuitionistic
negation respectively, ~ as a De Morgan negation and 8, ..., 8, as
modal functors.

To avoid a clumsy statement of the rule of substitution, axiom
schemas are considered instead of axioms. For any formulas @,y of L
we will write for brevity (¢ =y) instead of ((z = 9)A(y = ).

4.1, Axiom Schema.

(A1)~(A8) axioms of the positive propositional caleulus of Hilbert and
Bernays (see [26], p. 236),

(A9)  (~ma =),
(A10) (@ = ~r~),
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(A11) (8;(mAy) = SzA 8y),
(A12)  (Byz =) = ([ (8o = Sp)A ) A (Sas = Bu))),
(A13) (882 =8m), +=1,...,0-1,
(A14) (8 = ),
(A15) (8~ = ~8,_2), +=1,...,0-1,
(A16) (S vTI8).

Rules of inference
(R1) 2029 yogus Ponens,
(R2) M Contraposition rule,

(~y = ~nu)
(z =19)

R3 e D
(B3) (S = 8y)

4.2. Let D be the least set of formulas of I containing the logical
axioms (A1)-(A16) and closed under the rules (R1L)~(R3). The formalized
language L with the selected subset of derivable formulas make up an
n-valued general symmetrical modal propositional calcwlus.

Following Lindenbaum and Tarski the set of formulas F of the formal-
ized language can be considered as an abstract algebra§ = (F, D, A, v,
=,71, ~; 8, ..., 8,.,); V is the set of generators of §. For a, ﬁ ey
leta _ﬂlfandonlylfa = feDand f = aeD. By (Al)~(A8), (R1)~{R3)
it is well known that =is a congruence on F.

The propositional calculus here considered is an extension of the
general symmetrical modal logic introduced by Moisil ([16], p. 411, [20]).
This author has shown ([16], p. 412-413) that the most interesting the-
orems in this logic are those showing that the negation ~ is a duality.
That is

(A17)  ((~av~y) = ~(@ay),
(A18) (~(@vy) = (~zA~y)),
(A19)  ((~mA~y) = ~(2vy)),
(A20)  (~(2AY) > (~@V~y)).

Let | F| be the set of all equivalence classes |a] algebraized in a standard
way. Furthermore, a is derivable if and only if |a| is the unit element of
|F|. In this way the Lindenbaum algebra & = /= = (|F|, ~\D|, |D|, A,
Vy =, "1, ~,8,...,8,_;) is a SH-algebra of order =.

icm

©

MODAL OPERATORS ON SYMMETRICAL HEYTING ALGEBRAS 301

4.3. By a valuation of L in a SH-algebra A of order n we will under-
stand any mapping v: V — A, that is, any point » = (v p)pey OF the Car-
tesian product A”. Bvery propositional variable p in L determines a map-
ping p4: A” > A by means of the equality p,(v) = v(p). By induction
on the length of a formula, each o in I determines a mapping a,: AV
— A.

4.4. Since g is a SH-algebra of order » we can interpret formulas
of I as mappings from £V into 8. The valuation v°: V —> @ guch that
2°(p) = |p| for every propositional variable p of L will be called the ca-
nonical valuation of L in L.

For every formula e of L

ag(v°) = lal
for the canonical valuation 2% In fact, for every propositional variable p

Pe(0°) = v°(p) = [p|
and by induction on the length of o the result is obtained.
A formula a of L is said to be valid in A provided that a,(v) =1
for every valuation » of L in A.
Finally, we get that the class of all SH-algebras of oxrder » is charac-
teristic, i.e.,

4.5. COMPLETENESS THEOREM. For every formula a of the m-valued
general symmetrical modal propositional caleulus the following conditions
are equivalent:

(1) a %8s derivable in the propositional calculus,
(i) o 98 wvalid in every SH-algebra of order n.

The method of the proof is similar to that which ean be found in [27]
for other propositional caleuli. It is routine to show that a derivible
formula in the propositional calculus is valid in every SH-algebra of
order . On the other hand, suppose e is valid in &, i.e. ag(?») =1 for
every valuation v € 7. In particular, if » is the canonical valuation
" e 27, ay(v°) = 1. Because of a result above, |a] =1 s0 aeD.

4.6. Remark. The n-valued general symmetrical modal propositional
calculus is consistent. In fact, since (i) — (ii) in 4.5, no propositional
variable p in V is derivable in the propositional calculus.

4.7. Let D(A) the set of formulas of the n-valued general symmetrical
modal propositional caleulus which are valid in a SH-algebra A of order n.
The algebra A is said to be a characteristic matriz for the propositional
caleulus if D = D(4).
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It is possible to show that the nm-valued general symmetrical modal
propositional caleulus has a finite characteristic matrix, more precisely,
that D = D(8,2).
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