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1. Intreduction

A very broad order theoretic model for cluster analysis was introduced
in [2] and [8], with special attention paid to the role of cluster analysis
in connection with problems of biological classification. In the present
paper this model will be further generalized so that it will encompass
an even broader class of cluster methods. However, before proceeding,
let us examine the role of such a model.

After all, cluster analysis already has a fairly well developed theory.
Several books, and literally hundreds of papers have been written on the
subject. People are able to analyze properties of various clustering techni-
ques, compare them, and arrive at meaningful classifications of various
sets of objects. What purpose can it possible serve for a lattice theorist
to step in, abstract the subject to the point where it is no longer recogniz-
able, apply some high powered mathematical machinery to this abstract
version of cluster analysis, and finally reach some conclusions that were
already common knowledge? Of course if this is all that could be accomp-
lished, little purpose would be served by such a model. What then should
2 mathematical model be able to do?

1. Tt should provide an axiomatic framework in which various cluster
methods may be analyzed and compared.

3. Ttshould be broad enough to encompass a large number of commonly
used clustering techniques.

3. It should possess enough structure so that meaningful mathematical
techniques may be employed.
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4. It should provide results that are of some interest to people who
actually use clustering techniques.

5. It should provide a strueture in which one can separate conjecture
from fact. One should be able to distingusih properties that ought to hold
from those that do hold.

The model to be presented leads to some interesting problems in the
theory of partially ordered sets. The question of how well it satisfies the
above requirements must be left to the reader to decide.

2. Background material from the theory of partially ordered sets

A basic familiarity with the theory of posets, semilattices, and lattices
will be assumed. Despite this, it will be convenient to specifically develop
certain notions here. Unless otherwise specified, all partial orders will
be dencted <, and the symbols v, A will be used for the join and meet
operations where they are defined. The symbol 0 or 0, (1 or 1,) will be
used to denote the least (greatest) element of the poset P, provided such an
element is present.

Let P, @ be posets. A mapping ¢: P — @ is called isotone if p, < p,
in P implies that o(p;) < @(p,) in Q; it is & join homomorphism if the exis-
tence of p, v p, in P implies that ¢ (p, v p,) acts as the joinin @ of @(p,), ¢(Ps)-
To say that it is a complete join homomorphism is to say thatb:

(1) for M a nonempty subset of P, the existence of \/ M in P implies
that (VM) acts as the join in @ of ¢ (IM); ‘

(2) it P has a 0, then ¢(0) is the least element of (). There are dual
notions of a meel homomorphism and a complete mest homomorphism.

An ideal of a poset P is a nonempty subset I of P having the property
that for each # eI, y <« implies that y ¢ I. An ideal of the form (@]
={yeP: y<a}is called a principal ideal. There are dual notions of
a filter and. a principal filter, the latter being denoted as [). It will prove
convenient to classify mappings according to how they behave with
respect to principal ideals and filters. The first result is

TeEOREM 2.1 ([1], Theorem 2.1, p. 5). Let P, @ bo posets and : P
—Q. TAE:

(1) ¢ s isotone.

(2) The pre-image of every principal ideal of Q is either emply or an
ideal of P.

(8) The pre-image of every principal filier Q is either empty or a filter
of P.

A mapping ¢: P — @ is called chain residuated it the pre-image of
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every principal ideal of @ is the union of finitely many principal ideals
of P; it is called chain residual if the corresponding condition holds for
principal filters of Q. Let CR(P, Q) denote the set of chain residuated
mappings of P into @ with CR* (P, @) the set of chain residual mappings.

TEmOREM 2.2. Let P,Q be posets and C e CRT (P, Q). Then:

(1) C is isoione.

(2) If Q has a largest element 1, then 1 €range C.

(3) ws{@ in P implies C(z,))C(x) in Q.

Proof. (1) This is immediate from Theorem 2.1.

2) I p eC’"([l)}, then C(p) = 1.

(3) To say that w,| is to say that the indexing set {6: 8eD} is
directed, that 6, < 4, in D implies @y 2 @5, and that @ = Agr,. By (1),
O(w) is a lower bound for all 0(z,). Suppose y is any other lower bound.
Then for each deD, z,e 07 ([y)) = [a)Ula)V ... Ula), where k is
a positive integer. We may clearly choose an index 8, so that %, dominates
a minimem number of these a;’s. Then for 6> §,, ;> a, iff Ty, 2= ;-
Thus there is an @, that is a lower bound for {ms: 6= 85}, 50 ;< @
= A {#s: 6= &} It is immediate that y < C(a;) < .

There is a final type of mapping that will be of some interest.
A mapping ¢: P — @ is said to be residuated if the pre-image of every
principal ideal of @ is a principal ideal of P; it is residual if the pre-image
of every principal filter of @ is a principal filter of P. Let Res (P, @) denote
the set of residuated mappings of P into @, and Rest(P, @) the seb of
residual maps. In case P = ¢}, we use the symbols Res(P) and Res™(P)
in place of Res(P,P), Rest(P,P). In view of the fact that the theory
of these mappings is well developed in [1], it will not be repeated here
(see also [2] and [3]). It should be noted, however, that for every residu-
ated mapping ¢: P—Q there corresponds a unique residual mapping ¢ :
@ — P; these mappings are related by the equation

¢(p) < ¢ if and only if p < ¢*(g).
Notice that if P and @ are replaced by their duals, then % becomes
residuated with ¢ the associated residual mapping. It will prove conve-
nient to let ¢* denote the residuated mapping associated with the resi-
dual mapping ¢.
To establish the reason for the terms “chain residuated” and “chain
residual” we close this section by considering

TaEOREM 2.3. Let' P, Q be posels. Assume that P has a largest element 1,
Q has a smallest element 0, and that @ + {0}. A mecessary amd sufficient
condition for each chain residuaied mapping of P into Q to be residuated is
that P be a chain.


GUEST


308 M. F. JANOWITZ

Proof. If Pis a chain, it is clear that CR(P, §) = Res(P, Q). Suppose
conversely that this condition holds. Let a, b denote arbitrary elements
of P, and let ¢ be a fixed nonzero element of ¢. Define : P — @ by the
rule g(p) =0 it p<a or p<b, ¢(p) =g otherwise. Then ¢~*((y])
= (a]u(b] if gLy and (1] if ¢<y. Thus ¢ eCR(P, Q) = Res(P, Q).
Taking p = ¢t (0), it is immediate that (p] = (a]U(d], 50 a < b or b < a.
This shows that P is indeed a chain.

3. The order theoretic model

A deseription of the basic problem in cluster analysis appears in [2].
Essentially, we are given a finite set P whose cardinality is at least 3.
The imput data may be regarded as a residual mapping (: RT — X,
where R* denotes the non-negative reals, and X the Boolean algebra
of all subsets of the set of two element subsets of P. The output may be
similarly regarded, so a cluster method may be defined to be a mapping
F: Rest(R*, Z) - Rest (R, X). These ideas are generalized in [2] as
follows: R* is replaced by an arbitrary join semilattice I with 0; X is
replaced by a pair M, N of posets, each of which has a unit element;
a cluster method is then regarded as a mapping F: Res™ (L, M)
. —Res™ (L, N). There are a number of advantages to this procedure,

some of which we now list:

1. It costs nothing, as one can always specialize the results back to
the context in which they arose.

2. By viewing the theory in an abstract setting, one can obtain addi-
tional insight into what is happening.

3. Earlier models due to Jardine and Sibson [4] and Matula [5] may
in a sense be subsumed by the new model.

4. One may view the output of a cluster method as a sequence of
classifications of the set P, rather than as a sequence of reflexive symmetric
relations on P. It turns out that this eliminates a great deal of confusion,
especially when the output is to allow some overlap between clusters
gt li]given level. An extremely lucid discussion of these issues occurs
in [5].

Why then are we led to further generalize the model? The answer
is both simple and illuminating. Let us return to the context in which the
model arose and view a cluster method as a mapoing F: Res™ (L, Z)
—Rest (L, Z), where J is the Boolean algebra of all reflexive symmetric
relations on the finite set P. A cluster method called single linkage clus-
tering is one of the most commonly used techniques. It proceeds as follows:
For each § € %, let y(8) denote the equivalence relation. generated by S.
For C e Res* (L, Z), take F(C) = yo(. Notice thongh that by [2], The-
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orem 6.2, p. 67, this defines a cluster method iff L is a chain. Thus if one
wants to have single linkage clustering available in sitnations where L
is not a chain, the model must be generalized. What saves the day (see
Lemma 4.1) is the fact that F(C) e OR* (L, £). This leads us to define
a cluster method to be & mapping F: Rest (L, 2) - OR™ (L, X), and if
cluster methods are to be composed we must take them to be mappings
F: CRT (L, 2) - COR™(L,2). To recapitulate, here is the final version
of our model:

L is a join semilattice with 0 with |I} > 1;

M, N are posets with unit elements;

& cluster method is a mapping F: CR™ (L, M) - CR* (L, N).

Though the theory will develop in this abstract setting, it will still
be useful to think of M as representing the Boolean algebra of reflexive
symmetric relations on a finite set P. Before examining the role of ¥,
it will be necessary to present a definition. A classification of P ([5], p. 7)
is a set € of subsets of P such that:

1) U¥% =P, and

(2) C4,Cre¥ with €, = 0y = 0y = C,.

One then thinks of ¥V as the set of classifications of P, partially ordered
by the rule ¥, < ¥, iff 0, € %, implies the existence of 0, € ¥, such that
¢, =0,.

There should be no confusion if this new model is referred to as
Model L, where I denotes the underlying join semilattice in which all dis-
similarities are measured. The earlier model that was developed in [2]
and [3] could then be called the Restricted Model L, and a mapping F:
Res™ (L, M) - Res™ (L, N) a restricted cluster method.

4. Flat cluster methods

As in [2], a cluster method F is called flat in case there is a mapping
y: M -~ N such that F(C) =yo0 for all ¢ e CR*(L, M). A mapping
y: M — N is called L-flat in case there is a cluster method ¥ such that
F(0) = yo( for all ¢ e CR* (L, M); in other words, to say that y is L-flat
is to say that € e CR* (L, M) implies yoC e CR™ (L, N). This section is
devoted to the solution of the analogues of the First and Second Flat
Cluster Problems (See [2], § 6 and 7). This amounts to the characterization
of flat cluster methods and L-flat mappings of M into N. We begin with
the

FrsT FrAT CLUSTER PROBLEM. Let y: M — N be given. What prop-
erties must y have in order that there exist a cluster method F such that
F(0) = yo0 for all C e CR* (L, M)?
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A useful result is provided by

Lumma 4.1. Assume that M is finite. A mapping y: M —N is then
chain residual iff it is isotone and maps 1y nto Ly.

Proof. By Theorem 2.2, every chain residual mapping of M into N
has the specified properties. Suppose conversely that y: M — N is isotone
and maps 1;, into 1. For n € N, Theorem 2.1 may be invoked to see that
y7Y{[n)) is a filter of M; in that M is finite, y~Y([n)) must even be the
union of finitely many principal filters of M, whence y is chain residual.
The lemma now follows from the fact that the composition of chain regi-
dual mappings is chain residual.

THEOREM 4.2. (1) If L is a two element chain, then a mapping y: M
~ N is L-flat iff it maps 1, into 1y

(2) If L is not a two element chain, and M 1is finite, then y: M - N
is L-flat iff it is isotone and maps 1y, into Ly.

Proof. (1) For arbitrary L, let y: M — N be L-flat. The fact that
y{1y) = 1y now follows as in the proof of [2], Lemma 6.1 (1), p. 65.
If L is a two element chain, the converse is clear.

(2) I y: M — N is isotone and maps 1, into 1y, then by Lemma 4.1,
it is chain residual, and consequently L-flat. Suppose now that y is I-flat.
As in the proof of (1), y(15;) = 1y. In order to show that y is isotone we
note that Z must have a chain of the form 0 < & < k. We must show that
for y <z<<ly in M, y(y) < y(2). So let us define ¢: L — M and O*: M
- 1L by the rules

Loy M2F,
O(hy) ={z, h=hy by B E,

Y, hy 2B b,

0, m<y,
0*(""): hy m<z,mLy,

k, m<e.

Routine verificarion shows that C* is residuated with O its associated
residual mapping. The fact that yo( e CR*(L, N) now shows that

7{¥) = (¥00)(0) < (yo O)(h) = y(2),
80 y is indeed isotone.

CoROLLARY 4.3. If L s not a two element chain, then every Jlat L-cluster
method is isotone.

Next we turn to the

SecoND FrLAT CLUSTER PROBLEM. Suppose the cluster method B is
gwen. What properties must F enjoy in order that it be flat?
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In connection with the solution to this problem, it will be nseful
to say that a cluster method F' is 6-compatible for 0 e Rest (L) it F(Cob)
= [F(0)]ob for all ¢ € CR*(L, M). In view of [2], Theorem 7.4, p. 68,
we are led to conjecture that the answer will involve F being 0-compatible
for all 8 e Rest(L). Indeed, we have

THEOREM 4.4. A necessary and sufficient condition for a cluster method
lo be flat is that it be 6-compatible for every 6 e Res™ (L).

Proof. The proof of [2], Lemma 7.1, p. 68, also shows that F flat
implies that F is 0-compatible for all 6 e Rest(L). We may therefore
assume the indicated compatibility condition, and concentrate our
efforts on showing F to be flat. The proof will be broken up into a namber
of steps.

Step 1. Let 1py: L — M be defined by I,.(h) =1, for all h eL;
Iy: L—XN is defined in a similar manner. Note that 1, e Res* (L, M)
and Iy e Rest (L, N). We claim that F(1,) = I,. For suppose the range
of F(1,) contained an element n = 1. Then for some A e L, [F(T)]1(h)
= n. Evidently 4 cannot be the largest element of L, so there is some ele-
ment k> h. By [2], Lemma 7.2, p. 68, there exists & € Res* (L) with
8(h) = k. Then 308 =1y, so P(1y) = F(1y08) = F(1y)0d; conse-
quently, n = [F(T,,)](h) = [F(1,)](8(h)) = [F(1,)1(k). Choosing % so
that [F(14)](k) = 1, will now produce a contradiction.

Step 2. Let 0, (" e Rest (L, M), and suppose that ¢, ¢’ each have
range {m, 1,} for some fixed m< 1. We claim that [F(C)1(0)
= [F(0")1(0). To establish this, let 0-Y([1,,)) = [&) and 0 ([1y) = [k).
Sinee neither 0 nor " is 15, we must have h, & > 0. We may clearly assume
that < k and define § as in [2], Lemma 7.3, p. 68. Then ¢’ = Coé,
50 F((') = F(0od) = F(0)od. Thus [F(C)(0) = [F(0)])(5(0))
= [F(C)](0).

Step 3. We are now ready to define a mapping y: M—N. We begin
by defining y(1y) = 1. For m < 1,, wechoose € € Res* (L, M) so that
its range is {m, 1,}. Now take y(m) = [F(C)](0) and recall from Step 2
that this definition is independent of the choice of (. We have yet to show
that F(C) = yoC for every ¢ e ORY (L, M). We begin with a special case.
For arbitrary h e L, [F(15)1(h) =I1y(h) = 1y = (yoly)(h) so the result
holds for 1,,.

Step 4. Let O e Res™ (L, M) have a 2 element range. By the very
definition of y, it must then be true that

[F(0)](0) = (yo0)(0

).
Step 5. The result for h>0. Let CeCRY(L, M) with O s 1,.
If m = (k) for h> 0, we are to show that y(m) = [F(O)](h). If b is
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the largest element of I, there is nothing to prove. Thus we may assume
the existence of k > h with k € 071([1,)). Then 0<< k<< & and § may be
chosen as in [2], Lemma 7.2. It is easily verified that Co 6 € Res™ (L, M)
with range {m,1,} or {1,,}. Using Step 4, it follows that

[F(O)](R) = [F(C)](8(0)) = [F(Co)](0)
= (y0008)(0) = (yoO)(h) = y(m).

Step 6. The result for h = 0. Let € be as in Step 5. Liet &y e C7'([1,,))
and note that h, > 0 since 0 #1,,. Suppose %k can be chosen so that
k> 0 and hy L k. IL & is defined as in [2], Lemma 7.3 (with k, taking the
place of h), it follows that Cod e Res* (L, M) with range {C(0),1,).
By Step 4,

[F(0)1(0) = [F(0)](8(0)) = [F(C08)1(0) = (yoC0)(0) = (yo0)(0).

If no such k can be found, then i, < k for all k¥ > 0. It is immediate that
0 e Rest (L, M) with C7*([1)) = [%). The result of Step 4 may now be
directly invoked.

The results provided by [2], Theorems 6.2 and 7.4 may now be viewed
as providing the solution to the First and Second Flat Cluster Problems
for restricted cluster methods.

5. Semiflat cluster methods

With each set. # of cluster methods, one may associate the set of all
residual maps 6 on I for which each F' € # is f-compatible. Furthermore,
for each subset & of Res™ (L) one may associate those cluster methods I
that are 6-compatible for each 6 e &. This procedure sets up a galois
connection between the subsets of the set of all cluster methods and the
subsets of Res*(L). It would be interesting to determine the galois closed
objects in this correspondence. The characterization of flat cluster methods
was & start toward solving this problem. The current section is devoted
to the study of a more general galois closed clags of cluster methods.
As in [3], a cluster method ¥ is called semiflat in case there is a family
(¥mdmenr_of mappings of M into N such that F(0) = yy,00 for all ¢
€ CR* (L, M); while a family (y,,),.car of mappings of M into N is called
L-semiflat in case there is a cluster method F for which F(C) = ygu00
for each CeCR*(L, M) —in other words, if (e OR*(L, M) implies
that g0 C & CR* (L, N). As in [3], p. 49, it costs nothing to assume
that for @ 22 m, y,,(#) =y, (m), so this we now do. The next lemms is

then an analogue of [3], Lemma 2.1, p. 49, with a proot so similar that it
will be omitted.

©
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LEMMA 5.1. Lét (yp)pmear be an L-semiflat family. Then

(1) ¥m(1ar) = 1y for each m e M.

(2) 7y, (m) =1y for all me M.

(3) If L is not a 2 element chain, then m< m' in M implies y,,(m)
L yulm’) in N.

In view of the above lemma, we agree that I shall not be a 2 element
chain, and that the family (y,,),.,; of mappings of M into N will be called
potentially L-semiflat in cage:

(1) Pm(@) = yu(m) for all z 2 m;

(2) ¥m(La) =1y for each m e M;

(3) ylM(m) =1y for all m e M;

(4) Ym(m) < p,(m’) whenever m <m’ in M.

The content of Lemma 5.1 is that for L not a 2 element chain, every
L-gemiflat family is potentially L-semiflat. We turn now to the analogue
of the First Semiflat Cluster Problem ([3], p. 48):

Find necessary and sufficient conditions for a given family of mappings
of M into N to be L-semiflat.

The next theorem should be compared with the result provided by [3],
Theorem 2.4, p. 52.

THEOREM 5.2. Assume M is finite. Then

(1) If L has height 3, a family (¥,n)menr 18 L-semiflat iff it is potentially
L-semiflat.

(2) If L has height greater than 3, & family (vp,)men 8 L-semiflat iff
it is a potentially L-semiflat family of isotone mappings.

Proof. (1) Let (7,)menr Pe 2 potentially L-semiflat family of mappings
of M into N, and let € € OR* (L, M). We must show that with m = C(0),
ym00 € OR* (L, N). Accordingly, let neXN and consider y;'([n)
= {my, My, ..., M}, which is finite since M is finite. For each index i,
C~*([m,)) is the union of finitely many prinecipal filters of L.

Case L. For some index 4, C7'([m;)) = L. Then m = C(0)> my,
80 Ypu(m) = yp(mg) =n and y;}([n)) = M. It follows that (y,,00)([n))
= 0~1(M) = L.

Case 2. For each indew i, 0~*([m,)) # L. The principal filters of L are
all of the form I, {1;} or {h,1;} for some b with 0<<h< 1. It follows
that each 0~*([m,)) is a finite subset of {0}, and the same is true of
0-*({m;}). Hence 0~ ({my, my, ..., m;}) is a finite subset of I\ {0}. In that
¥m(Ly) = 1y, we know that 1, = m; for some index j, whence 1pe
C'({m;}). Tn summary, we have that (y,oC)™'([n)) is the union of &
finite collection of principal filters.
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(2) Assume now that I has height greater than 3 and that (y,,)
is L-semiflat. We must show each y,, to be isotone. If s < #in M and m s,
then y,,(8) = ym(m) <y, ()2 if ¢ =1y, we may invoke Lemma 5.1 to
obtain y,,(s) < y,(t). This leaves us with the case where m < s <1< 1,,.
Using the fact that L height greater than 3, we choose a chain 0 < h << k
< hy of elements of I, and define ¢: L — M by the rule

Y= by,

t Y=k, ykh,

$, y=h,y Rk,

m, y 2 h.

As in the proof of [3], Lemma 6.1, p. 68, we have 0 e Res™ (L, M). It
follows that

Ym(8) = (7m0 0) (B) < (y,0 O) (k) = v (1).
Now assume (y,,) e 18 & potentially L-semiflat family of isotone mappings.
By Lemma 4.1, each y,, is chain residual. Hence ¢ € CR* (L, M) implies
Y000 € CRT (L, I).
Now we dispose of the

SECOND SEMIFLAT CLUSTER PROBLEM. What properties must a cluster
method F have in order that there ewist a family (v,)nenr of mappings of M
into such that F(C) = pgpoC for every O e ORY(L,M)?

In view of Theorem 4.4 and [3], Theorem 3.8, p. 57, we seek a solution
that involves compatibility of F with respect to a certain family of residual
mappings on L. To begin with, we note that the proof of [3], Lemma 3.1,
P. 54, also produces

LmyMa 5.3. Bvery semiflat cluster method F is @-compatible for all
6 € Rest (L) such that 6(0) = 0.

Assume now that F: CR*(L, M) —CR' (L, N) has the property
that:

L If I does not have a largest element, then F is 0-compatible for
all 6 e Res™ (L) that are decreasing in that (k) <% for all h e L.

II. If L does have a largest eloment, then F is 6-compatible for all
6 € Res™ (L) for which 8(0) = 0.

Our goal is to show that P is semiflat. The Pproof will be broken up
into & series of lemmas. For ease of reference, the proof of each of the next 3
lemmas will be divided into 2 cases. In Case I we shall agsiime that L
does not have a largest element, and in Case IT that it does.

Lunvwa 5.4, F(1y) =1y,

Proof. Oase I. Let h> 0 and choose a sequence 0<< < k< hy of
elements of L. By [3], Lemma 3.2, p. 54, there is a decreasing & € Rest (L)

meM '
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such that é(h) = 0. If % is chosen so that [F(1,,)1(h) = 1, one then has
that

1y = [F(13)1(h) = [F(13)1{8(h) = [F(T4)1(0).
Case II. Let 0 << h<<1;. Taking 6(y) = 0 for Yy #1y, 0(1z) =1,
one has € Res™ (L) with 4(h) = 0. Hence
[F(im)](h) = [F(im)](ﬁ(h)} = [F(iM)](O)'
On the other hand, we may take é(y) = lpfory>h, 6(y) =0fory B h
to get
[F(1301(R) = [F(T3)1(8(R) = [F(T5)1(1g) = Ly-
Lepmta 5.5. Let m <1y in M and 0, D e Rest (L, M). Then
(1) If the range of O'is {m, 15} with 07 ([1,)) = [k), F(C) € Res+ (L, N)
and has range {n, 1y} for some n < 1y in N. Furthermore, if n < Ly, then
[F(0)17([Ly)) = [A)-
(2) If 0, D each have vamge {m, 1.}, then [F(0)](0) = [F(D)](0).

Proof. (1). Case I. Choose hy>h,>h so that [F(C)](hy) = Ly.
Now define 6: L — L by

Y, Y=hy,
8(y) =ik, Yy=h,ybh,,
0, y>h

Then 6 is a decreasing residual mapping on L. Since ¢ = (o 4, we have
F(0) = F(0)o 4. Hence
1 Yy>=h
B(C —JN = 1ty
wenw ={Fonw, 131

Oase II. The mapping af given by of (y) =1 for y > % and 0 for
y 2 has the property that € = COoof with ¢f (0) = 0. Hence F(C)
= F(Cloaf, 5o again [F(0)](y) = 1y or [F(C)](0).

(2) Let C7'{[1y)) = [4), D*([1y)) =[k) and note that h,%k> 0.
‘We may clearly assume that b # k, since otherwise ¢ = D.

Case I. Tt h<< k, choose hy; >k and use [3], Lemma 3.2, p. 54, to
get a decreasing residual mapping 6 such that (k) =% and 6(y)>h
if y> k. Then D = Cod shows that F(D) = F(C)o s and consequently,

[F(D))(0) = [F(C)o8](0) = [F(0)}(0).
It hf{ k, choose hy > kv k and apply the above argnment to the pair
hyhvk as well as to the pair &, hv k.

Case T1. Recalling that of () =1, for y >k and 0 for y 2k, we

have D = Coaj, so
[F(D)](0) = [F(C)oaf1(0) = [F(0)](0).
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LeMMA 5.6. Let ¢, DeRes™ (L, M) each have range {m,s,1,,} with
m<s<ly If 07s) =I[k) and D7) =[k), then [F(O)I(h) =
[B(DY(%).

Proof. Assume first that b = k. Let C7'([1)) = [k) and D~([1,,))
= [k,). It %, > ky, we note that A, > h > 0 so by [3], Lemma 3.2, p. 54,
we may defire a residual mapping é on L by

¥, Y=k
8(y) =1k, y=h,ykk,
0, yEh

Then 4 is decreasing and D = (od. Consequently,
[F(D)1(h} = [F(C)o 6](h) = [F(C)](R).

For the general situation, the above argument may be applied to the pair
By hyv ky as well ag to the pair %y, hy v k;. )

We now consider the situation where » # k. By what has just trans-
pired, we may assume that b, =k,.

Case I. If h <k, note that 0 << h<< k< ;. Defining ¢ as in [3],
Lemma 3.2, p. 54, we have ¢ decreasing, D = (o, and

[F(D)](k) = [F(C)o 8](k) = [F(C)](R).

In general, this argument is applied to the pair 7, kv k and to the pair
ky vk with h; chosen so that b, > hvEk.

Oase TI. We may again assume that 2, = &, and use [3], Lemma 3.2,
D- B4, to define §eRest(L) so that 6(0) =0, d(k) =h, and s(y)>h
iff ¥ > k. We then proceed as in Case I.

LEMMA 5.7. Let € € CRY (L, M). If O(R) = 1y, then [F(0)](h) = Ly.

Proof. If & is the largest element of L, there is nothing to prove.
If not, we can find an h; > & in L; indeed, b, may be chosen so that &, > &
and [F(C)](k)) = 1y- We now define 6: L - L by

Yy Y=hy
6(?/) = hy Y= }"7 y} hl}
0, ykh.
Then ¢ € Rest (L) is decreasing, and if D = (o4, we have
1 >h
D s Y= nh,
w =g, 3

Thus D € Res™ (L, M). Now if €(0) = 1,,, we could invoke Lemma 5.4;
otherwise, we have D'([1y)) = [k). By Lemma 5.5, [F(D)](h) = 1y,
so [F(C)](h) = [F(C)o 8](h) = [F(Co 8)](h) = [F(D)](h) = Ly .
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Finally we are ready to define a family (y,,)mear Of mappings of M
into . We begin by taking Y15, (1) = Ly for all 7 € M. Suppose m < 1.
We choose C eRest (L, M) to have range {m,1,} and define y,(m)
= [F(C)](0). By Lemma 5.5, this definition is independent of the choice
of 0. For m < r< 1, we choose ( € Res* (L, M) so that the range of ¢
is {m,r,1y}. We then let y,(r) = [F(C)]1(k), where [h) = 0}([r)).
By Lemma 5.6 this definition is independent of the choice of . Finally,
¥ 15 extended to all of M by defining y,,(1;,) = 1y and 9, (7) = y,,(m)
it # 3> m.

Lmwma 5.8. For € e ORY (L, M), F(0) = ygq00C.

Proof. First of all, since F(1,) =1y, we have for all heL that
[F(I)1h) =1yR) =1y = (%1,,°127) (B), so the result is true for ¢ = 1,,.
Now choose C eCR* (L, M) and assume that ¢ #£1,. Let m = C(0)
and # = C(h) for some fixed h e L. Choose hy >k so that O(hy) =1y
and consider the following cases:

Case 1. r =1,,. Then by Lemma 5.7 [F(C)](R) = 1y = yp()-

THEOREM 5.9. Let M, N be partially ordered sets with 1. For a mapping
F: CRY(L, M) - CR* (L, N), (1) = (2) = (3). If L does not have a largest
element, then also (3) = (1).

(1) F s semiflat.

(2) F is H-compatible for all 8 € Res™ (L) such that 6(0) = 0.

(3) F is O-compatible for all decreasing 6 € Res™ (L).

The above theorem completes the solution of the Second Semiflat
Cluster Problem for the present version of Model L, while [3], Theorem 3.8,
Pp. 57, may be regarded as a solution for restricted cluster methods.

6. Relation to other models

An extremely rich mathematical model for cluster analysis is developed
in great detail in [4] by N. Jardine and R. Sibson. Its precise relationship
to Model L is explored in [2], and for that reason will not be discussed
here. A more recent graph theoretic model has been introduced by D. Ma-
tula [5], and it is this model that will now be discussed. In the interest
of readability, it will be convenient to briefly introduce the model before
showing its relation to Model L.

A graph G = (V,E) may be defined to be a mnonvoid wvertex
set V = {0,,0,,...,0,} and an edge set ¥ = {e,, €, ..., 6,} Where m
< n(n—1)/2 and each edge ¢, is a distinct pair o,0; of elements of V, denoted
¢, = 0,0;. If m = n(n—1)/2, the graph G is called complete. If the set H
of edges is linearly ordered, then @ is an ordered graph. A proximity graph
P = (V, E) is then an ordered graph where V = {0;, 0,, ...,0,} is & set of
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objects to be classified and B = {e,, 6, ..., 6,} is a set of objeet pairs
called links, and the order relations on the links is determined by some
sort of measure of dissimilarity. To illustrate this concretely, set V = {w, z,
¥, 2} and let d be given as follows:

dlw = y =
w 2 1 3
© 5 2
y 3.5
z

Here d: Vx V — R* has the property that the higher the value of d(a , b),
the more dissimilar is the pair (@, b). This yields a complete proximity
graph G = (V, E), where E has the ordering

WY < wp = rz<< we < Yz < &Y.

Notice that ww = a# signifies that d(w,s) = d(z, 2). The splitting levels
of the proximity graph P = (V, H) are the levels s = 0, s =m = |H|
and all ¢ for which ¢, < 6,,;. In the example at hand, the splitting levels
are 0,1, 3, 4, 5, 6.

The dlassifications of V are partially ordered as in Section 3. A
stratified clustering of V is taken to be a sequence § — (Lyy Lyy ooy Iy) of
classifications, where

(i) Ly = {{01}7 {03}, -+, {on}}’
(i) For i<k, L; < L,,.

Matula defines a level clustering method to be a mapping y of the elass 2
of proximity graphs into the class of eclagsifications of the object sets
of the corresponding proximity graphs, and a stratified clustering method
as a mapping o of proximity graphs into stratified clusterings; in other
words, both y(@) and (@) are classifications of the object set V of the
proximity graph G = (V, E). A condition ([6], pp. 7-8) is then added
to guarantee that the cluster methods do not depend upon the nature
of the objects being clustered, but depend instead only upon the ordinal
Proximity relations. Finally, Matula defines a graphical level clustering
method as a level clustering method that ignores the ordering of the et B
of links of P = (V, E).

Let us now see how all of this fits into Model L. Tiet V be a set of
objects to be classified with V] =n> 8. Take M = the Boolean algebra
of all reflexive symmetric relations on V, N = the poset of classifications
of V, and L = R*. If we adopt Matula’s convention for the splitting
levels of a proximity graph, agreeing to take (0) = 04, We can associate
@ unique element of Res* (L, M) with each proximity graph G = (V, B).
A level clustering method may then be viewed as the transformation of an

©
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increasing sequence m, = 0y < m, < My < ... < My, =13, of elements
of M into an element of N; a stratified clustering method becomes a trans-
formation of the indicated sequence of M into a sequence fy = Oy <my < ...
.o <1y of elements of V. If necessary, we may adjoin Mgy = 1 o this
sequence, 3o that it may be associated with a unique element of Res* (L, N),
whose splitting levels are 0,1,2,...,7-+1. Finally, a graphical level
clustering method is simply a mapping of M into N. Matula’s threshold
stratified clustering methods then turn out to be flat cluster methods,
and his ordinal cluster methods are equivalent to a certain type of mono-
tone equivariant method (see [2]). A definition of these terms may be
found in [5], p. 9.

In closing, we mention some of the differences between the models.
First of all, Matula allows an imput to be a proximity graph that is not
complete. This amounts to considering partially defined residual map-
pings — a feature that has not been incorporated into Model . Secondly,
his outputs do not necessarily group all of the members of the object
set into a single classification at the final stage of the clustering process.
But this is done for technical reasons only, and one can simply add 1 more
classification to the output in order to achieve this condition. Thirdly,
his splitting levels are always nonnegative integers, whereas in Model L,
any member of L may serve as a splitting level. The final, and perhaps
the most important, difference between the models is in their viewpoints.
The graph theoretic nature of Matula’s model makes it natural to consider
clustering techniques that are defined in terms of various connectivity
and separation properties of graphs, while the order theoretic flavor of
Model L seems to lead one to quite different types of methods. Despite
these differences, the cluster methods studied by Matula in [5] may for
the most part be viewed as monotone equivariant methods within Model I,
with I = R*.
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