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decomposition of m! may be found by the formula

BHE A2

where [a] is the integer part of 4. Taking it into account, one sees that
for the numerator this number is (p®—1)/(p —1) and for the denominator
it is (P 1—1)/(p 1)+ (p*~1—1)(p —1)/(p —1). The difference of these
two numbers being equal to 1 proves that f = (pr) is not divisible
by p*. Now (9) shows that for some # also p2f#,. Therefore, in case (i), Go_y
satisfies the identity not holding in @, if and only if R contains some
element of the additive exponent p.

(i) Secondly, assume that d = ¢/2 is divisible by two different
primes p and ¢. In this case the greatest common divisor of numbers

Mgy ...y Mg 18 trivial. Indeed, n, = d is divisible by both p and ¢, and (f)

for suitable choices of 7 is not divisible by either (this can be proved exactly
ag in (i)). Hence to obtain the conclusion on the greatest common divisor
of 7y, ..., %z it remains to make use of (9). Applying formula (8), one
Sees that gu’ 5= 0 for any ¢ # 0 and therefore pu = 0 i5s not a law in G,_,
for any 0 % g e R.

This completes the proof of the main theorem.
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As its name would seem to indicate, the modal logic of programs is, or
can be viewed a8, a generalization of clagsical modal logic. In spite of this
fact there has been little interaction so far between the two fields. One
wonders whether this is accidental, or whether there is 2 deeper explanation.
For it may be that modal logicians and computer scientists are interested
in rather different questions, or that already from the outset the modal
logie of programs is headed for goals that lie beyond the limited territories
of clagsical modallogic — the increased complexity of the former allows,
even invites, such development, and application will probably demand it.
However this may be, it seems to the author that, at least in its
present formative state, the modal logic of programs is truly a general-
ization of classical modal logic, and that the methods of the old discipline
can be brought to bear on at least some of the basic problems in the emerg-
ing one. To give some substance to this claim we shall prove in this
paper a completeness theorem of the kind of which there have been so
many in modal logic. The theorem is interesting in its own right, but the
main point ig perhaps that the proof is achieved by a method that has
been standard in modal logic for many years — the canomical models/
filtrations technique, due originally to Dana Scott and others.

* The contents of this paper were presented in three lectures that the author
delivered at the Stefan Banach International Mathematical Center in Warsaw on
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In view of how diverse the audience of this paper is likely to be, an
effort has been made to make the paper self-contained. For readers who
would nevertheless like more background, the following comments are
in order. The best reference for classical modal logic is presumably Lem-
mon [4]. Other references are Gabbay [1], Hughes & Cresswell [3] and
Segerberg [11]. The originator of the modal logic of programs was evidently
Vaughan Pratt (who nowadays prefers the more tractable term “dynamic
logic”). His paper [6] contains some higtorical remarks and further biblio-
graphical references. An idea of how dynamic logic might develop i given
by his more recent paper [8]. The “extended abstract” Fischer & Ladner
[2]is also a useful reference and was a source of inspiration for the present
paper. Some further remarks on the writing of this paper will be found
in Section 8 at the end of the paper.

1. Program meodal languages

A (propositional) program modal language is determined by four sets
which are supposed to be pairwise disjoint, viz.,
(i) & set @D, of propositional letters,

(ii) a set I, of program letiers,

(iii} a set of propositional operators,

(iv) a set of program operators.

A given program modal language determines a set of program expressions
and a set of formulas as follows. The set II of program expressions is the
smallest set X that satisfies the following conditions:

(@) I, = 2|

(ii) if ¢ is an m-ary program operator and a,...,a,_, € X then
P(aoy «rvy @y_y) €2

The set 2 of formulas is the smallest set X that satisties the following
conditions:

1) @ = 2,

(ii) if o is any m-ary propositional operator and 4, ..., 4,_, € ¥ then
o(dy, ..., 4, ))eZ,

(iii) if aell and A e, then [a]d e X.

Thus, for every program expression o, there is a unary propositional
operator [a].

Although we have not done so here, it might be reasonable to add
various conditions to the definition of program modal language. Instead,
for the sake of concreteness, we shall assume, throughout most of the
paper, as given a fixed program modal language that satisties the following
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conditions:
(i) there are infinitely many propositional letters,

(ii) there are program letters, finitely or infinitely many,

(iif) the only propositional operators are the unary ~]and the binary -,

(iv) the only program operators are the binary -+ and - and
the unary *. ]

We use boldface Roman upper case letters A4, B, C for formulas,
and Greek lower case letters o, # for program expressions. Yet another
typographical convention is to use italic lower case letters ¢, 7, &, m, n, p
for natural numbers, which we take to inlcude 0. Furthermore, we employ
without explanation various simplifying conventions that are common.
Thus we often drop parentheses, and we write A — B where protocol
would demand — (A, B). Non-primitive notation, such as A, v, «,
will sometimes be used and may be thought of as abbreviational devices.
For +(a, B) we write a+ g, for -(a, ) we write, simply, af, and for *(a)
wo write o*. We define

[a]oA =4,
[e]""4 = [a]([o]"4).

In other words, [a]" in a formuld denotes a string of n [a]’s. We speak of
a program expression « in a formmula or in a set of formulas if ¢ oceurs
in the formula or in a formula in the set, respectively.

2. Semantics

By a model (suitable for the given langunage) we nnderstznnd a tnple ( U, R,
V> such that the following conditions hold:
(i) U is a set,

(i) B = {R(a)}4err is a family of binary relations on U that is,
if « is any program expression, then E(a) ¢ U X U, .

(ili) V is a function from @, to U; that is, if P is any proposmonal
letter, then V(P) c U.

Here U is called the domain and V the valuation of the model, while,
for any a, R(a) is called the accessibility relation corresponding to a. Notice
that the coneept of model explicitly depends on the langua,ge (viz., on
what program expressions there are).

We say that a model I = (U, R, V> is a progmm model if, for wll a
and B, it satisties the following eonch’mons

(i} Bla+p) = B(a)VE(H),

3 — Banach Center Publ. t. 9
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(i) E(ap) = R(a)IR(B),

(ili) R(a*) = (B(a))*
Here we use the symbol | for relative product; that is, if 8 and T are
any binary relations, then :

BIT = {<w, y>: ez, D eS8 & {2, y) e T)}.

In (iii) we indulge in what is actually abuse of notation: while the first
asterisk belongs to the object language, the second is a metalinguistic
symbol representing the ancestral operation; that is, if § is any binary
relation, then
8 = {8": n< o},
where of course
8% = {{w, wy: @ is in the field of 8},

gt = g|8m.

Also the typographical shape + does double duty, in the object language
as a program operator, in the metalanguage as representing addition
between natural numbers. These ambiguities should cause no confusion.

Let M = (U, R, V) be any given model. The important concept
of truth at a point in M is recursively defined as follows (for Mk, 4, read
“A is true at % in M” or “A holds at » in M”). Suppose » € U. Then:

(i) Mk, P iff w e V(P), if P is a propositional letter,
(ii) ME, 714 iff not Mk, A4,
(iii) Mk, 4 — B iff ME, A only if Mk B,
(iv) Mk, [a] 4 iff, for all v, if wR(a)v then Mk, 4.

We say that A is true in M if, for all u € U, Mk, 4. If 4 is true in
all models or in all program models, we say that 4 is logically true, respect-
ively, program logically true.

Our analysis has led up to two obvious characterization problems:
how to characterize the set of logically true formulas (not very interesting)
and the set of program logically true formulas (interesting). Is the latter
set axiomatizable? If so, is there a simple way of axiomatizing it? It is
known from Fischer & Ladner [2] that the answer to the first question.
is affirmative. We shall show that also the (vaguely formulated) second
question has an affirmative angwer.

An aside: Students of modal logic will notice that the wsual notions
of frame and validity in a frame or in a clags of frames would be ag readily
generalized as those of model and truth. It is not clear to the author
how interesting such generalizations would be in the present context.
It may be noticed, though, that the semantics of operators representing
test programs (see, for example, Fischer & Ladner [2] or Pratt [7])
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cannot be rendered in frame semantics: Mk, [ A2]B holds if and only if
either not Mk, A or else Pik, B. This “diffienlty” can of course be circum-
vented by introducing [ A%]B as an abbreviation of the formula A -> B.
But the theoretical observation remains.

3. Syntax
By a logic (over the given language) we understand any set I of formulas
that satisfies the following conditions:

(i) L contains every tautology (in the sense of ordinary two-valued
propositional calculus),

(ii) L is closed under modus ponens; that is, if A, 4 - BeL then
Bel,

(iii) L is closed under substitution; that is, if A’ is the result of substi-
tuting a formula B for some propositional letter P in A, then A el
implies A’ e L.

By a normal logic we understand a logic that also satisties the following
two conditions:

(iv) L containg every formula of the form

(#0) [a](A—B)—([a]A~[a]B),

(v) L is closed under a-necessitation, for every a; that is, if 4 e L
then also [a]A € L.

Finally, by a program logic we understand a normal logic that contains
all formulas of the following form:

(#1a) [a+p]A~>[a]d,

(#1b) [e+plAd—[plA,

(#1c) [a]A—~([f]A —~[a+f]4),

(4 2a) [aflA - [a][] A4,

(#2b) [o][1A —~[ap] A,

(4#33) [e*]4— 4,

(#3b) [a*]A->[a] 4,

(#3c) [a*] A~ [e*][a*] A,

(#38d) A-—([a*](4~>[a]d)~>[*] A).

This way of defining program logics seems quite perspicuous. For
example, it makes it at once clear that [a*] is (at least) an S4-modality.
However, it is not the shortest definition possible, particularly if non-primi-
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tive notation is used. Thus (4 1a~c) can be replaced by the single schema
(#1) [e+plA « [alAA[1A4, '

(# ¥ 2a,b) by the single schema '
(#2) [aplA--[a][B]A,

and (A4 3a—c) by the single schema
(#3) [¢*]4 > AA[d][a] 4. ,

The most remarkable of the preceding schemata is (4 3d), a kind of

induction schema (of. the counterparts in tense logic due to Dana Scott

and B. J. Lemmon that are discussed in Prior [9], Pp. 66£L).

Any modal logie, normal or not, induces & dedueibility relation as
follows. Let us say that a formula A is deduvible in o logic I from a set X
of formulas, in symbols I+, A, if there is a finite number of formulas B, ...
vy B,_; € X such that et

By ...AB, ;> AEL. '
If we write F;, A for @+, A, it follows that kA if and only if A e L, that is,
the theses of L are exactly the formulas that are deducible in I from the
empty set. Notice that L is closed under deducibility. Hence A el if
and only if 4 is a thesis of L. b

We say that a set X of formulas iy L-consistent.if not every formula
is deducible in L from 3. An IL-incomsistent set is of course one that is
not L-congistent. It is readily seen that a set X is L-consistent if and only
if every finite subset of J i L-consistent. : b

Let P be the smallest program logic (P for- Pratt). The following
claim is the main result to be established in -this paper: :

THEOREM 3.1. P coincides with the set of :program logically true for-
mulas. : ) ‘

As usnal in modal logie, the soundness part of this elaim is eagy to
establish: that every formula in P (thesis of P) has the property of being
true in every program model is shown by the fact that all tautologies and
all instances of (¥ 0-3) have thig property, and that modus ponens

and e-necessitation preserve it. It is the converse that it is difficuls to
prove.

4. Canonical models .

Suppose that L is a normal logic. By the canonical model of T we mean
the triple My, = Uy, Ry, V,> where )
(1) Uy is the set of all maximal L-eonsistentv sets of formulas,
(ii) for every Program expression o and for all w,» e Uy,

w By (a)v iff, for all ';A, if [u}4 cu then A €y,
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(iii) for every propositional letter P,
Vi(P) ={ue Uy Peu).
The following theorem generalizes Scott’s well known result in modal
logic:
Tee TruTH LEMMA 4.1. If L is any normal logic, then, for all u e Uy,
and for all formulas A, ‘

Mk, A if and only if Aecu.

The proof—a straightforward induction on the complexity of A —
is omitted.

COROLLARY 4.2. If L is any normal logic, then A is a thesis of L
if and only if A is true in My.

Proof. If +; A, then A is an element of every maximal L-consistent
set and hence, by the Truth Lemma, true in M. On the other hand, if
not FyA, then {74} is an L-inconsistent set which, by Lindenbaum’s
Lemma, possesses some maximal L-consistent extension, say @. With
@ e Uy and A e, the Truth Lemma entails the falsity of My, A. m

The canonical model exists and the Truth Lemma holds for every
normal logie, hence in particular for P, the smallest program logic. It is
clear from the corollary, then, that if 9, happened to be a program model,
the completeness problem for P, which is our concern here, would be solved.
As the next few lemmata show, M, is almost a program model —almost
but not quite. (Actually, for the completeness proof we only need the
c-parts of Lemmata 4.3A and 4.3B.)

Levwa 4.3A. If L is a program logic, then, for all o and B,
EBr(a+p) = Ep(a)URL(B).

Proof. Assume that uR;(a)v. Suppose that [a+p] 4 € u. By (J la),
[a] A € u. Hence, a8 w Ry (a)v, 4 e v. This shows that By (a+p) 2 Ry(a).
An analogous argument, invoking (4 1b), shows that By(a+8) 2 R (B).

For the converse, assume that neither %Ry (a)v nor Ry (f)v. Then
there exist A and B such that

[a] A e u,
[f1Beu,

Aé¢v,
Bé¢w.
Consequently, [a](Av B) € u, and [8](Av B) € 4 and so, by (# Le), [a+ 8]

(Av B) € u. On the other hand, A ¢v and B ¢ v implies that Av B ¢ v.
Therefore, not Ry (a+ §)v. This shows that Bz (a+p) < Br(a)UR,(f). m
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LevmaA 4.3B. If L is a program logic, then, for all a and B,
Bi(af) = Br(a)BL(B).

Proof. The easy half of this proof —the =-part—is similar to the
corresponding part of the proof of the preceding lemma; here one uses
the fact that L containg all instances of (# 2a).

For the other half — the <-part — assume that

@) wRy (af)v.

Let Cy, Cy, ..., C,, ... be an exhaustive enumeration of all formulas in v.
We define a new sequence of formulas as follows:

B, = C.,,
Bn+l = BnA CiH-l'

Note that
(2) for all w, B,ev,
(3) for all » and p, B, ,t;B,.

Congider the set
4 ={A: [a]Aeupu{TI[A11B,: n< w}.

We claim that 4 iy L-consistent. Suppose not! Then there are formulas
Ay, ...y Ay, and natural numbers iy, ..., 4,_, such that

4 (el 4y, ..., [a] Ap_icu,
() {Aos -ees 4y 1, NBITIBy, ..., 711 1B, _ } is an]L-inconsistent set.

Suppose that k¥ =max{iy,...,4,_,}. Then (3) and (5) imply that the
set {Aoy ..., Ay, T1[F171B,} is L-inconsistent. From this it follows thatb

FrAgA oo A Ay_y > [f171B,.

Using the fact that L is normal, we conclude (applying a-necessitation,
(# 0) and truth-functional reasoning) that

Frlal Ao ... A[a]d,_ —[a][B]7IB;.

This, in conjunction with (4), yields [«][f171 B, e u. Hence, by (4 2b),
[ef]171B;, € 4. By (1), then, T1B;, € v. Therefore, since v is L-consistent,
B, ¢ v which contradicts (2).

The L-consistency of 4, thus established, enables us to conclude,
by Lindenbaum’s Lemma, that there is some o e U, such that 4 < .
It is easy to show — this is of course why 4 was defined the way it was! —
that wRi(a)x and xR, (8)v. w
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Lemma 4.3C. If L is a program logic, then
Ep(a*) 2 (Bp(a)).

Proof. Basy, since L contains all instances of (4 3a—c). m

If the converse of Lemma 4.3C held, the canonical model of a program
logic would be a program model. But is does not! To see that it does not
hold for P, let P be any propositional letter and = any program letter.
Consider the set :

I' = {[a]"P: n< o}U{T[=*]P}.

For every m, let U ,= (N, R, V,> be some program model such that N
is the set of natural numbers, RB(zx) is the relation of immediate successor,
and

V. (P) = {i: i< n}.

(Thus it is only the valuation that depends on n.) If I" is any finite subset
of I', then there will be some j such that [P e I", while, for all k, [#}+*P
¢ I'. It is easy to see that ; is a model for I" in the sense that, for all
Ael, WkyA. Hence I is P-consistent. But if every finite subset of I’
is P-consistent, then I"itself is P-consistent. Hence, again by Lindenbaum’s
Lemma, " can be extended to some z € U,. By the Truth Lemma we
conclude, pro primo, that there is some y € Uy, such that #Ry (n*) y and
P ¢y (since "I[2*1P ew), and, pro secundo, that o (B(m)}*y does not
hold (since [#]"P e implies that @ (B;(n)" 2 only if P ez). Brgo, the
converse of Lemma 4.3C fails.

5. Filirations

By the set of subformulas of a given formula A we understand the smallest
set X such that the following conditions are satisfied:
iy Aez,

(ii) it TIB eZ, then BeZ,

(iif) if B - CeZ, then B,Ce 2

(iv) it [a]B X, then BeZX.
Let L be any normal logic. Any set ¥ of formulas induces an equivalence
relation on U, as follows:

w = if and only if un¥ =vnV¥.

We write [«| for the equivalence clags of %. Note that = and hence |u| ex-
pressly depend on ¥, even though our symbolism does not reflect the
dependency.

Let ¥ be any set closed under subformulas (that is, whenever A
is a subformula of B, then B e ¥ only if A e ¥). We say that a model
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M =<T, B, V) is a filtration of the canonical model M, for L through ¥
if the following conditions obtain:

(1) U ={ul: vwe T,

(ii) for every program expression o in ¥, if 4 R;(a)v, then

lu| E(a) o],

(iii) for every program expression o in ¥, if |u| E(a) |v], then, for
all 4,
[a]lAdcun¥ only if Aew,

(iv) for every propositional letter P in ¥,
V(P) = {lul: uweV,(P)}.

The following is a generalization of a well-known result in modal
logic:

Trw FrirrarioN TEEOREM B.1. For oll u € Uy, and oll formulas 4 € P,
ﬁhu]A if and only if Aewu.

‘We omit the proof as it is a straightforward induction on the com-
plexity of A. Notice, however, that it is vital that ¥ is closed under sub-
formulas. Tt may also be noticed that the theorem can be stated in a
slightly stronger form: it holds for any 4 that is a Boolean combination
of formulas in Y.

In the statement of the Filtration Theorem nothing has been assumed.
about the cardinality of ¥. It is worth noting, though, that if ¥ is finite,

then so is U, In fact, if card ¥ = n, then card U< 2".

6. The completeness proof

By the Fischer-Ladner closure of a set ¥ of formulas we understand the
smallest set X that satisfies the following conditions:

i) ¥e2z,

(i) ¥ is closed under subformulas,

(iii) i [a+f]A e Z, then [a] A4, [f]d e Z,

(iv) it [af]A € X, then [a][f]d &3,

(v) if [0*]4 X, then [a][a*]A .
(Conditions (iii)~(v) may be compared to (H# #1-3).) We say that a set
is closed under the Fischer~Ladner conditions if it iy its own Fischer—Ladner
closure. The following result is proved in Fischer and Ladner [2]:
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THe FISCHER-LADNER LEMMA 6.1. The Fischer-Ladner closure of
a finite set is finite.
‘We come now to the main observation of this paper. Let ¥ be a formula

set closed under subformulas. Let M = (T, B', 7> be any program model
such that, for all program letters # in v,

lul BN ) o] it Ju, = o, = 0ty Ry (7) vy).

Such models certainly exist. (There are usually more than one gince there
are 1o conditions on R'(x) if x is a program letter not in ¥, and also no
conditions on V(P) if P is a propositional letter not in ¥, Actually, Pt
is a special case of a construction in [2] and a generalization of one in [101.)

THEOREM 6.2. Suppose that L is a program logic and that ¥ is a finite
set of formulas closed under the Fischer-Ladner conditions. Then Mtis a fil-
tration of My, through W.

The proof of the theorem reduces to Proving two lemmata, viz.,
that R' satisties conditions (ii) and (iii) in the definition of filtration.
In the statement of those lemmata we do not explicitly repeat the three
vital assumptions of the theorem: that L is a program logic, that ¥ is
closed under the Fischer-Ladner conditions, and that ¥ is finite. But they
are all needed!

LeMMA 6.3A. For all a in ¥, if u Ry(a) v, then |u| B (a) [o].

Proof. By induction on a. The basic step follows from the definition
of R'. The inductive step consists of three parts.

(I) Suppose that the lemma holds for o and B, and that u By (a+ ) .
By Lemma 4.3A, 4 Ry (a) v or B (B) v, so, by the induction hypothesis,
[u| BT(a) [o] or |u] RT() |v]. Since M is a program model, in either
case |u| R (a+B) |v].

(IT) Suppose that the lemma holds for ¢ and B, and that % B, (af) v.
By Lemma 4.3B, there exists some # € Uy, such that « R (a) x and  B.(B)v.
Hence, by the induetion hypothesis, |u| R'(a) J¢| and |o| R(B) |v]. Since
M is a program model, |u| B'(ap) |o].

(ITY) Suppose that the lemma holds for a, and that

(1) u Ry (a*) 0.

This is the difficult part of the proof; in fact, the difficulty encountered
here is the heart of the whole matter. It is now that we shall finally make
uge of the induction schema (4 3d), which has not been used so far.
One may say that the difficulty in constructing a completeness proof
consists in manoeuvring oneself into a position in which one is able to tap
the power of this schema.
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Suppose, by way of contradiction, that
2) it is not the case that |u| R'(a*) jv].

Tt is an important fact — see [11], pp. 31f. — that, since T is finite, it is
posgible to find a Boolean combination B of formulas in ¥ such that

(8) for all we Uy, Bew iff |u|RY(o®) |w|.

Since M is a program model, Rt(a*) is reflexive. Hence, by (3),
(4) Beu.

Moreover, by (2) and (3), B ¢v. Hence, by (1),

(5) [a*]B ¢ u.

Since L is a program logic we may now appeal to (¢ 3d) to infer, from (4)
and (8), that

[e*](B — [a]B) ¢ u.

Consequently there exist @,y € Uy, such that « By (c*) » and

(6) Beuw,

(M @ Ry(e)y,

(8) B¢y.

By (3) and (6),

9 u] BY (a*) |a].

By the induction hypothesis, (7) implies that

(10) lz| B (a) ly].

Since M' is a program model, (9) and (10) imply that
(1) lul B¥(a*) lyl.

But, aceording to (3) and (11), B e y, which is impossible in view of 8). m

Lemma 6.3B. For all ain P, if lu| RY(a) |v], then, for all A, [a]A eun
NY only if Aeo.

Proof. By induction on a. The basic step follows readily from the
definition of R'. The inductive Step again consists of three parts.

(I) Suppose that the lemma holds for o and B, and that |u| Ri(a+
+8) [v]. Take any 4 such that [a-8]4 eunP. Hence, by (H#4 1a,b)
on one hand and the faet that ¥ is closed under the Fischer—~Ladner con-
ditions on the other, it follows that [a] A, (14 eun¥. Since M' is a pro-
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gram model, either |u| R'(a) |v| or [u] BY(B) |v]. So, in either case, the
induction hypothesis gives us 4 e .

(IT) Buppose that the lemma holds for a and 8, and that |u| Rt (ap) |v].
Take any 4 such that [ef]d e un¥. Then, by (#2a) and the fact that ¥ is
closed under the Fischer-Ladner conditions, [a][f]4 e uN¥. Since M'
is a program model, there exists some & e Uy such that |u|R'(a)|m|
and |z| RY(8) |v|. Therefore, by the induction hypothesis, [81A € ». Hence,
by another appeal to the Fischer-Ladner conditions and the induction
hypothesis, 4 ev. -

(III) Suppose that the lemma holds for «, and that [ul R¥a*) |v].
This case is just slightly more involved than the others. Take any 4
such that [a*]4 e un¥. We claim that, for allve, y € Uy,

() for all ¢, if |o| (BY(a)) lyl, then [a*]4 €z only if [a*]4 ey.

The claim is proved by induction on i. The ease ¢ = 0 is trivial. Suppose
that the claim holds for #, and that

) lo| (BT (@)} Jy].

Assume that [a*]4 e ». Recall that, in the presence of ( # 43b, c), F la*]4
— [a][a*]A. For this reason, and since ¥ is cloged under the Fischer—
Ladner conditions,

@) [e][a*]A eanP.
By (1) there is some 2z e Uy, such that

3) o] B (a) ],

(4) el (BN (a))" Iyl

From (2) and (3) it follows, by the induction hypothesis on a, that [o*] 4 e 2.
Hence, by (4) and the induction hypothesis on 4, [a*]A ey. This ends
the proof of (§).

Now M is & program model. Henece our assumption that |u| R'(a*) |v]
implies that, for some j, |u| (R (a)f[v]. Therefore, by (§), [a*]1 4 ev.
Hence, by (4#3a), Acv. m

It should be clear that we have now reached our goal. For suppose
that A4 is any non-thesis of P. Then, by Corollary 4.2, there is some » € U,
such that A ¢z. By Lemma 6.1, the Fischer~Ladner closure ¥ of the set
{A} is finite. Let M be as deseribed. By Theorem 6.2, M is a filtration,
and by the Filtration Theorem 5.1, then, A fails to be true at || in M.
And MM is a program model by definition!


GUEST


44 K. SEGERBERG

7. The inverse operator

In this section we shall show that the preceding discussion can easily be
modified to accommodate also another program operator of importance,
viz., the inverse operator.

Thus let ~* be added as a new unary program operator. In keeping
with our other conventions we shall write a~* rather than ~Ya). In the
definition of program model we add the condition that, for all a,

(iv) R(a™) = B(),
where ¥ represents the converse; that is, if § is any binary relation,
then

¥ = {@,5>: <y,a5e8).

The notion of a program logic is extended by requiring inclusion of all
ingtances of the schemata

(#42)  Ta]7I[e7]4 ~ 4,
(4 4b)  TI[a]71[e] 4 - 4.

The definition of canonical model is not affected by these changes, but
there is a new observation to add to Lemmata 4.3A~0 (a8 Lemma 4.3D
a8 it were):

Levva 7.1. If L is a program logic, then for all a,
By(a™) = By(a).

Proof. Suppose that uR;(a~Y)v. Take any A such that [a]Ad ev.
Then it is impossible that [a~1]] [e]14 €w, 50 TI[e~?][a] A € w. Hence,
by (4 4b), A €u. Therefore vRz(a¢)u, and so uRy(a)w.

M

Conversely, suppose that 4Rz (a)v. Then »R;(o)u. Take any A
such that [a~']A ew. Then evidently el 1[e]1 A ev. Hence, by
(4 4a), A ev. S0 uR(a™ ). m

The proofs of the Truth Lemma 4.1 and the Filtration Theorem 5.1
go through as before. The definition of Fischer-Ladner closure is extended
by the new condition

(vi) if [e]4e 2, then [a] [a" "] A e .

It now becomes nécessary to prove that the Fischer-Ladner Lemma 6.1

continues to hold in this more general getting. It does, but we omit the

proof (which offers no new difficulty). '
The definition of M' is taken over word for word, and Theorem 6.2

is stated as before, but the terms “program logic”, “Figcher-Ladner

conditions”, ete., are of course now understood in the new, inclusive

icm°
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sense. The proofs of Lemmata 6.3A, B need the following amendments
to their respective inductive steps:

Ad Lemma 6.3A.: (IV) Suppose that the lemma holds for a, and
that w Br(e™)v. By Lemma 7.1, v By (a) . Hence, by the induction
hypothesis, o] Bt(a) [4|. Since, by definition, 9M' is a program model,
[u| B (a™") Jo]. m ‘

Ad Lemma 6.3B: (IV) Suppose that the lemma holds for a, and
that |u] Rf(a™") [v]. Take any A such that [a']Aeun¥. Note that
by the new Fischer-Ladner condition; [o] J[a~'] 4 € ¥. Since M is a pro-
gram model, o] BY(a) Ju]. Therefore, if [a]171[e '] A e v, it would follow
by the induetion hypothesis that 7|[¢™] 4 & u, contradicting the consist-
ency of . Consequently ~[a] [a']4 ev, and 80, by (H4a), Aev. m

With: these modifications we have a new completeness result. Thus,
like 4 and -, ~* is a very well-behaved operator, from our point of view.

8. Remarks on the background of this paper

The completeness problem solved in Section 6 was put by Richard Ladner
to the participants of a small workshop arranged at Simon Fraser Uni-
versity by 8. K. Thomason in early 1977. The author, who was present,
became interested when he realized that the main difficulty of the prob-
lem — now isolated as part (IIT) of the inductive step in the proof of
Lemma 6.3A — was the same as a problem he had encountered and left
open in [12].

A solution along the present lines was developed during the summer
of 1977 while the author was a visitor in the philosophy department
at the University of Calgary. On the basis of that work an abstract [13]
was prepared. The solution itself was presented on July 25,1977, in a sem-
inar given jointly by Brian F. Chellas and the author.

In early 1978, however, the author discovered a gap in the putative
proof. In the meanwhile other proofs had been found, independently,
by other researchers: Rohit Parikh, Vaughan Pratt, and perhaps others.
Thus, even though the claims made in [13] are correct, and the proof
in this paper is his, the author cannot claim to have produced the first
correct proof. This distinction would seem to belong to Parikh, whose
proof — which also covers the inverse operator discussed in Section 7 —
appears in [5]. Pratt’s proof is sketched in [7].
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BROUWERIAN SEMILATTICES :
THE LATTICE OF TOTAL SUBALGEBRAS

PETER KOHLER

Institute of Mathematics, Justus Liebig Universily, Giessen, F.R.G.

Any Brouwerian semilattice § can be viewed as a (meet-) semilattice
acting on itself, the action being relative pseudo-complementation. This
may be formalized by congidering § as a (universal) algebra with one
binary operation (meet) and for every @ € § a unary operation. The sub-
algebra lattice of this algebra is the main topic of this paper: It is shown
that it is & maximal distributive sublattice of the subalgebra lattice of §
considered as an (ordinary) Brouwerian semilattice ; Brouwerian semilattices
are characterized for which this lattice is Boolean. The question which
distributive algebraic lattices can be represented this way is left as an
open. problem.

1. Preliminaries

A Brouwerian semilaltice is an algebra {8, A, x,1>, where {8, A, 1) is
2 meet-semilattice with the greatest element 1, and where the binary
operation * is relative pseudocomplementation, i.e. #<{o*y holds for
elements @, y, # € § if and only if 24 # < y. Following the usunal practice
we will mostly identify the Brouwerian semilattice {8, A, *, 1> with the
underlying set S.
For the basic arithmetic of Brouwerian semilattices we refer to [4], [7].
Let us recall the following rules of computation:
For all @,9,2¢8:
1) ey oy =1,
(2) 1xz =g,
(3) TxY = Y,
(4) LADRY = TAY,
(5) (TAY)*2 = ox(y*2),

[47]
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