- [3] H. Huß und K. Rosenbaum, Über die symplektische Struktur von Gruppenalgebren, Wiss. Z. PH Erfurt/Mühlhausen 2 (1974), 55-63. - [4] K. Rosenbaum, Vorlesungen über symplektische Moduln, Teil 4, Erfurt 1976. Presented to the Semester Universal Algebra and Applications (February 15 – June 9, 1978) ## ON REGULARITY CLASSES OF BINARY RELATIONS HANS-J. BANDELT Oldenburg University, Oldenburg, G.F.R. The regularity classes of the semigroup of all binary relations have been described in full generality by K. A. Zareckii [7]. In this note we are concerned with special binary relations for which the diagrams immediately tell us whether or not the relation belongs to a certain regularity class. In particular, we give a complete characterization of those binary relations on a finite set belonging to a non-trivial regularity class which happen to be the complements of quasi-orders. To do this, we may restrict ourselves to complete lattice orders. A special case was already established in [2]: the complement of a partial order is regular if and only if the associated completion by cuts is completely distributive. Let S be a semigroup with identity. Given non-negative integers m and n, the regularity class $\mathscr{C}_S(m,n)$ is the set of all elements $a \in S$ for which there exists an element $x \in S$ such that $a^m x a^n = a$. The elements of $\mathscr{C}_S(1,1)$ and $\mathscr{C}_S(2,2)$ are called regular and completely regular, respectively. For $m+n \leq 1$, $\mathscr{C}_S(m,n)$ is trivial, that is $\mathscr{C}_S(m,n) = S$. Every regularity class is already equal to $\mathscr{C}_S(m,n)$ for some $m,n \leq 2$. The nontrivial classes other than $\mathscr{C}_S(0,2)$, $\mathscr{C}_S(1,1)$, and $\mathscr{C}_S(2,0)$ are given by trivial intersections (cf. [3]). The semigroup of all binary relations on a set X is denoted by $\mathscr{B}(X)$. For ϱ , $\sigma \in \mathscr{B}(X)$ the product is written as $\varrho \circ \sigma = \{(x,z) | \exists y \in X, (x,y) \in \varrho, (y,z) \in \sigma\}$. ϱ^{-1} and ϱ' denote the converse of ϱ and the complement of ϱ respectively; ϱ^{-n} is written for $(\varrho^{-1})^n$. Our first lemma is a straightforward extension of [5], Theorem 1. Lemma 2 is an immediate consequence of this (cf. [5], Theorem 2). LEMMA 1. Let ϱ , ϱ_1 , $\varrho_2 \in \mathcal{B}(X)$ be binary relations and let $\sigma = \{(x, y) | \varrho_1 \circ \{(x, y)\} \circ \varrho_2 \subseteq \varrho\}$. Then $\sigma = (\varrho_1^{-1} \circ \varrho' \circ \varrho_2^{-1})'$. *Proof.* For $x,y\in X$, $(x,y)\notin \sigma$ if and only if there exists $(u,v)\in \varrho'$ such that $(u,x)\in \varrho_1$ and $(y,v)\in \varrho_2$ if and only if $(x,y)\in \varrho_1^{-1}\circ \varrho'\circ \varrho_2^{-1}$. LEMMA 2. For a binary relation $\varrho \in \mathcal{B}(X)$, $\varrho \in \mathcal{C}_{\mathcal{B}(X)}(m,n)$ if and only if $\varrho \subseteq \varrho^m \circ (\varrho^{-m} \circ \varrho' \circ \varrho^{-n})' \circ \varrho^n$. E. S. Wolk [6] characterized partial orders as regular, reflexive, antisymmetric relations (for a simple proof cf. [5]). Using Lemma 2 it is an easy exercise to prove the analogous result for any other non-trivial regularity class: Theorem 1. A reflexive and antisymmetric relation $\varrho \in \mathcal{B}(X)$ belongs to a non-trivial regularity class of $\mathcal{B}(X)$ if and only if ϱ is a partial order. Proof. Given $m+n\geqslant 2$, let $\varrho\in\mathscr{C}_{\mathscr{B}(X)}(m,n)$ be reflexive and antisymmetric. We will show that ϱ is transitive. Wolk's theorem settles the case m=n=1. We may therefore assume that m=0 and n=2. Put $\sigma=(\varrho'\circ \varrho^{-2})'$. By Lemma 2 $\varrho\subseteq\sigma\circ\varrho^2$. Since ϱ is reflexive, $\varrho'\subseteq\varrho'\circ\varrho^{-2}$ (cf. [2]), whence $\sigma\subseteq\varrho$. Further for each $a\in X$, $(a,a)\in\sigma\circ\varrho^2$, whence there exists $(x,y)\in\varrho$ such that $(a,x)\in\sigma$ and $(y,a)\in\varrho$. Since ϱ is antisymmetric, $a\neq y$ implies $(a,y)\in\varrho'$ and thus $(a,x)\in\varrho'\circ\varrho^{-2}$, which is impossible. So we get a=y and therefore $(x,a)\in\varrho$. As $(a,x)\in\varrho$, again by antisymmetry we get a=x and thus $(a,a)\in\sigma$. Hence σ is reflexive and we infer from Lemma 1 that ϱ is transitive, completing the proof. Let $\alpha\in \mathscr{B}(X)$ be an equivalence relation and let $\mathscr{B}_{\alpha}(X)$ denote the subsemigroup of $\mathscr{B}(X)$ which consists of all elements having α as their two-sided identity. Each $\varrho\in\mathscr{B}_{\alpha}(X)$ defines a binary relation ϱ_{α} on the quotient set as follows: $(x\alpha,y\alpha)\in\varrho_{\alpha}$ if and only if $(x,y)\in\varrho$. By [8], Proposition 6.2, $\varrho\mapsto\varrho_{\alpha}$ establishes an isomorphism between $\mathscr{B}_{\alpha}(X)$ and $\mathscr{B}(X/\alpha)$. We therefore have: For $\varrho\in\mathscr{B}_{\alpha}(X),\ \varrho\in\mathscr{C}_{\mathscr{B}(X)}(m,n)$ if and only if $\varrho\in\mathscr{C}_{\mathscr{B}_{\alpha}(X)}(m,n)$ if and only if $\varrho_{\alpha}\in\mathscr{C}_{\mathscr{B}(X)}(m,n)$. A quasi-order \prec on X is a reflexive and transitive relation. It defines an equivalence relation \equiv by $\alpha\equiv b$ if $\alpha\prec b$ and $b\prec a$ and finally a partial order \leqslant on X/\equiv in the above way. Since the complement of \prec obviously belongs to $\mathscr{B}_{\equiv}(X)$, we have proved the following LEMMA 3. Let \prec be a quasi-order on X and let \leqslant denote the corresponding partial order on X/\equiv . Then non \prec is in $\mathscr{C}_{\mathscr{B}(X)}(m,n)$ if and only if \leqslant is in $\mathscr{C}_{\mathscr{B}(X)=)}(m,n)$. Let X be a partially ordered set. Put $$\begin{split} \beta_X &= \{(p\,,\,q)|\ \forall x\in X\ \text{either}\ x\leqslant p\ \text{or}\ q\leqslant x\}\,,\\ \mathscr{R}(X) &= \{p\in X|\ p\leqslant r\Rightarrow \exists q\in X,\ (p\,,q)\in \beta_X,\ (r\,,q)\notin \beta_X\}\,. \end{split}$$ X^* denotes the normal completion (alias completion by cuts) of X. Let L be a complete lattice. A subset $X\subseteq L$ is called *join dense* (meet dense) in L if every element of L is the join (meet) of elements of X. It is known that L is isomorphic to X^* if and only if X is join and meet dense in L (cf. [1]). For $p,q\in L$ set $q_-=\bigvee\{t\in L|\ q\leqslant t\}$ and $p_+=\bigwedge\{t\in L|\ t\leqslant p\}$. The pair (-,+) sets up a Galois connection between L and its dual LEMMA 4. For a complete lattice L, the image of the map - is equal to $\mathscr{R}(L)$. Lemma 5. For a partially ordered set X, \leqslant belongs to $\mathscr{C}_{\mathscr{B}(X)}(0,2)$ if and only if $\mathscr{R}(X) = X$. *Proof.* From [2], the lemma, it follows that the product $\leqslant \circ \geqslant \circ \geqslant$ is equal to $\geqslant \circ \geqslant$, which is evidently the complement of β_X . Therefore by virtue of Lemma 2, \leqslant is in $\mathscr{C}_{\mathscr{R}(X)}(0,2)$ if and only if \leqslant is contained in $\beta_X \circ (\beta_X^{-1})'$. By the definition of $\mathscr{R}(X)$ this is equivalent to $\mathscr{R}(X) = X$. LEMMA 6. For a partially ordered set X, \leqslant belongs to $\mathscr{C}_{\mathscr{B}(X)}(0,2)$ if and only if \leqslant belongs to $\mathscr{C}_{\mathscr{B}(X^{\bullet})}(0,2)$. Proof. Let X be join and meet dense in $L\cong X^*$. Clearly $\beta_X=\beta_L\cap X^2$. Suppose that $\mathscr{R}(X)=X$. Since X is meet dense in L, for each $p\in X$ and $r\in L$ with $p\leqslant r$, there exists $t\in X$ such that $r\leqslant t$ and $p\leqslant t$. Then there exists $q\in X$ such that $(p,q)\in\beta_X$ and $(t,q)\notin\beta_X$. Consequently $(r,q)\notin\beta_L$, whence $X\subseteq \mathscr{R}(L)$. Since X is join dense in L and by Lemma 4 $\mathscr{R}(L)$ is closed under arbitrary joins, we conclude $\mathscr{R}(L)=L$. Conversely, if $\mathscr{R}(L)=L$, then $(r,p_+)\notin\beta_L$ whenever $p,r\in X$ with $p\leqslant r$. Since X is join dense in L, there exists $q\in X$ such that $q\leqslant p_+$ and $(r,q)\notin\beta_X$, whence $p\in \mathscr{R}(X)$, proving $\mathscr{R}(X)=X$. Combining Lemma 6 and [2], the theorem, we conclude that for a partially ordered set X, \leqslant is in $\mathscr{C}_{\mathscr{B}(X)}(m,n)$ if and only if \leqslant is in $\mathscr{C}_{\mathscr{B}(X)}(m,n)$. Note that it is also not difficult to derive Lemmas 3, 5, 6 from the results of [7]. Let L be a complete lattice. Then by $\mathscr{M}(L)$ denote the set of all elements $x \in L$ such that $x \neq 1$ and whenever $x \geqslant \bigwedge S$ for $S \subseteq L$, then there exists $s \in S$ with $x \geqslant s$. $\mathscr{J}(L)$ is defined dually. By Lemma 4 $\mathscr{M}(L) \subseteq \mathscr{R}(L)$ and therefore $\mathscr{R}(L) = L$ whenever $\mathscr{M}(L)$ is join dense in L. This proves LEMMA 7. If L is a complete lattice, then \leqslant is in $\mathscr{C}_{\mathscr{A}(L)}(0,2)$ whenever $\mathscr{M}(L)$ is join dense in L. Using Lemmas 4, 5, 7 the following assertions are readily verified: EXAMPLES. 1. The lattice L of Figure 1 is not modular, though \leqslant is in $\mathscr{C}_{\mathscr{B}(L)}(0,2).$ 2. For the chain N of non-negative integers, \leqslant belongs to $\mathscr{C}_{\mathscr{B}(N)}(1,2)$ but not to $\mathscr{C}_{\mathscr{B}(N)}(2,0)$. Fig. 1 - 3. Put $Z_n=\{(a,b)\in \mathbf{Z}^2|\ 0\leqslant a-b\leqslant n\}$, where \mathbf{Z} denotes the chain of integers. For each $n\in \mathbf{N}$ the complement of the partial order on Z_n is completely regular. (Note that $\mathscr{M}(Z_n)=\mathscr{J}(Z_n)=\{(a,a)|\ a\in \mathbf{Z}\}\cup \{(a+n,a)|\ a\in \mathbf{Z}\}.$) - 4. For every chain C which is dense in itself, \leq is completely regular. Obviously for every lattice of Figure 2 the complement of the partial order is completely regular. That this infinite list in fact includes all finite examples is stated by our concluding theorem. Fig. 2 Theorem 2. Given a finite lattice L, the following are equivalent: - (i) \le is completely regular, - (ii) \leqslant belongs to $\mathscr{C}_{\mathscr{B}(L)}(0,2)$, - (iii) L is a sum of four element Boolean lattices (see Figure 2). Proof. (i) \Rightarrow (ii) is trivial, (iii) \Rightarrow (i) follows from Lemma 7. Suppose that (ii) holds. Clearly we may assume that L has at least two elements. Assume that L contains only one atom p. Since, by Lemmas 4, 5, $p=p_{+-}$, p_{+} is the unique atom of the interval [p,1]. Continuing this argument we conclude that L contains an infinite chain, a contradiction. Therefore L has at least two atoms p and q. Then $p \leqslant p_{+}$ and $q \leqslant q_{+}$, whence $q=p_{+}$ and $p=q_{+}$. Thus for each element $x \in L$ distinct from 0, p, q, we get $x \geqslant q_{+} \lor p_{+} = p \lor q$ and $x_{+} \geqslant p \lor q$. Hence, if $p \lor q < 1$, we may apply the above arguments to the interval $[p \lor q, 1]$. Thus it follows by induction that L must occur in the list of Figure 2. ## References - [1] R. Balbes and P. Dwinger, Distributive lattices, University of Missouri Press, 1974. - [2] H.-J. Bandelt, Regularity and complete distributivity, Semigroup Forum 19 (1980), 123-126. - [3] E. S. Ljapin, Semigroups, 3rd ed., Amer. Math. Soc., 1974. - [4] G. N. Raney, Tight Galois connections and complete distributivity, Trans. Amer. Math. Soc. 97 (1960), 418-426. - [5] B. M. Schein, Regular elements of the semigroup of all binary relations, Semigroup Forum 13 (1976), 95-102. - [6] E. S. Wolk, A characterization of partial order, Bull. Acad. Polon. Sci., Sér. Math. Astronom. Phys. 17 (1969), 207-208. - [7] K. A. Zareckii, The semigroup of binary relations (Russian), Mat. Sbornik 61 (1963), 291-305. - [8] —, Maximal submonoids of the semigroup of binary relations, Semigroup Forum 9 (1974), 196-208. Presented to the Semester Universal Algebra and Applications (February 15 – June 9, 1978)