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The regularity classes of the semigroup of all binary relations have been
described in full generality by K. A. Zareckii [7]. In this note we are
concerned with special binary relations for which the diagrams immediately
tell us whether or not the relation belongs to a certain regularity class.
In particular, we give a complete characterization of those binary relations
on a finite set belonging to a non-trivial regularity class which happen
to be the complements of quasi-orders. To do this, we may restrict our-
selves to complete lattice orders. A special case was already established
in [2]: the complement of a partial order is regular if and only if the
associated completion by cuts is completely distributive.

Let S be a semigroup with identity. Given non-negative integers m
and n, the regularity class ¥g(m,n) is the set of all elements a € 8 for
which there exists an element » e § such that a™za® = a. The elements
of ¥5(1, 1) and ¥4(2, 2) are called regular and completely regular, respecti-
vely. For m+n <1, €g(m,n) is trivial, that is €g(m,n) = 8. Every
regularity class is already equal to €g(m, ) for some m, n < 2. The non-
trivial classes other than %(0,2), ¥g(1,1), and %4(2, 0) are given by
trivial intersections (cf. [3]).

The semigroup of all binary relations on a set X is denoted by #(X).
For ¢, ¢ € Z(X) the product is written as goo = {(z, 2)| Iy € X, (%, y) € o,
(y,#) ec}. ¢~' and o’ denote the converse of p and the complement of o
respectively; o™ is written for (o).

Our first lemma is a straightforward extension of [5], Theorem 1.
Lemma 2 is an immediate consequence of this (ef. [5], Theorem 2).

LevMa 1. Let o, 04, 02 € B(X) be binary relations and let o = {(w, ¥
eo{(®,y)jo e, < o). Then o = (e7'0e'0gy™")"

Proof. For z,y e X, (z,y)¢o if and only if there exists (u,v) e’
such that (u, ) € o, and (y, v) € g, if and only if (2, y) € o7 00’097
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LepmA 2. For a binary relation o e #(X), o € Caxy(m, n) if and
only if ¢ < g"o(e™™o 00 ") 0g"

E. 8. Wolk [6] characterized partial orders as regular, reflexive,
antisymmetric relations (for a simple proof ef. [5]). Using Lemma 2 it
is an easy exercise to prove the analogous result for any other non-trivial
regularity clags:

TEEOREM 1. A reflexive and antisymmetric relation o € B(X) belongs
to a non-trivial reqularity class of #(X) if and only if o is a partial order.

Proof. Given m+n>2, let ¢ e¥bygx, (m, n) be reflexive and anti-
symmetric. We will show that ¢ is transitive. Wolk’s theorem settles the
case m = % =1. We may therefore agsume that m = 0 and n = 2. Put
o =(¢'0¢™"). By Lemma 2 ¢ < 0o¢®. Since ¢ is reflexive, o’ < g'0p~2
(ef. [2]), whence o < ¢. Further for each a € X, (a, a) € 60 g% whence
there exists (z, y) € ¢ such that (a, ) € o and (y, a) € o. Since ¢ is anti-
Symmetric, @ 7y implies (a,y) € ¢’ and thus (a, %) € p’'0p~?, which is
impossible. So we get @ =y and therefore (2, a) € ¢. As (a, @) € ¢, again
by antisymmetry we get ¢ = 2z and thus (a, a) € 0. Hence o is reflexive
and we infer from Lemma 1 that g is transitive, completing the proof.

Let o e #(X) be an equivalence relation and let #,(X) denote the
subsemigroup of #(X) which consists of all elements having a as their
two-sided identity. Each ¢ € #,(X) defines a binary relation o, on the
quotient set as follows: (za, ya) € g, if and only if (z, y) € 0. By [8], Pro-
position 6.2, g +> g, establishes an isomorphism between #,(X)and #(X|a).
We therefore have: For pe4%,(X), g€ Cgix)(m,n) if and only if o
€ €y x)(m, ) if and only if g, € Cgixia (M, ). A quasi-order < on X
is @ reflexive and transitive relation. It defines an equivalence relation
=bya=>bif a<bandb< a and finally a partial order < on X/= in
the above way. Since the complement of < obviously belongs to #_(X),
we have proved the following

LeymA 3. Let < be a quasi-order on X and let < denote the corresponding
partial order on X|=. Then non< isin Cax)(m, n) if and only if < is in
Caxim (M) ).

Let X be a partially ordered set. Put
Bx ={(p, q)| Vo e X either s<p or ¢ <a},
Z(X) = {peX| p<Lr=1¢ €X, (p,q) € Bx, (r,q) ¢ Bx}-
X* denotes the normal completion (alias completion by cuts) of X. Let L
be a complete lattice. A subset X < I is called join dense (meet dense)
in I if every element of L is the join (meet) of elements of X. It is known
that L is isomorphic to X* if and only if X is join and meet dense in I
(cf. [1]). For p,geLset q. =\/{teL| g i and p, = A{teL| ¢t p}.
The pair (—, +) sets up a Galois connection between I and its dual
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and determines the relation f; (see [4], Theorem 6); in particular one
infers from this the following

Lexnia 4. For o complete lattice I, the image of the map — is equal
to Z(L).

LevwmaA 5. For o partially ordered set X, < belongs to Caxy(0, 2)
if and only if #(X) = X.

Proof. From [2], the lemma, it follows that the product <o Foll
is equal to oz, which is evidently the complement of Bx . Therefore by
virtue of Lemma 2, { is in Cax)(0,2) it and only if & is contained in
Bxo(fy")’. By the definition of Z(X) this is equivalent to #(X) = X.

Lmarva 6. For a partially ordered set X, < belongs to Cax (0, 2)

if and only if < belongs to Fax (0, 2).

Proof. Let X be join and meet dense in I =~ X*. Clearly fv = p,n X2
Suppose that 2(X) = X. Since X is meet dense in L, for each p € X and
r €L with p < r, there exists { € X such that r <t and p < t. Then there
exists ¢ € X such that (p, ¢) € 5 and (i, q) ¢ Bx . Consequently (r, q) ¢y,
whence X < #(L). Since X is join dense in T and by Lemma 4 £(L) is
closed under arbitrary joins, we conclude %(L) = L. Conversely, if #(L)
= L, then (r, p,) ¢ f; whenever p, r € X with p < . Since X is join dense
in L, there exists g € X such that ¢ < P, and (7, q) ¢ fx, whence p e Z(X)
proving £(X) = X.

Combining Lemma 6 and [2], the theorem, we conclude that for
a partially ordered set X, <is in Cax)(m,m) it and only i< is in
Cacxn (M, 7).

Note that it is also not difficult to derive Lemmas 3, 5, 6 from the
results of [7].

Let L be a complete lattice. Then by .#(L) denote the set of all
elements z € L such that » % 1 and whenever 2 > A 8 for § < L, then
there exists s € § with # > s. #(L) is defined dually. By Lemma 4 .4 (L)
S Z(L) and therefore #(L) = L whenever .4 (L) is join. dense in I.
This proves

?

Levva 7. If L is a complets lattice, then < is in Cary (0, 2) whenever
A (L) is join dense in L.

Using Lemimas 4, 5, 7 the following assertions are readily verified:

Bxaweres. 1. The lattice L of Figure 1 is not modular, though < is
in Cary (0, 2).

2. For the chain N of non-negative integers, <L belongs to Eypy, (1, 2)
but not t0 gy, (2, 0).
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Fig. 1

3. Put Z, = {(a,b) € 23] 0 < a—b < n), where Z denotes the chain
of integers. For each n e N the complement of the partial order on Z,
iy completely regular. (Note that (Z,) = #(Z,) = {(a,a)l acZ}yu
U{la+n, a)] aeZ}.)

4. For every chain ¢ which is dense in itself, < is ecompletely regular.

Obviously for every lattice of Figure 2 the complement of the partial
order is completely regular. That this infinite list in fact includes all
finite examples is stated by our concluding theorem.

Fig. 2
THEOREM 2. Given a finite lattice L, the following are equivalent:
(1) < is completely regular,
(il) < belongs to Cary(0,2),

(i) L s a sum of four element Boolean lattices (see Figure 2).
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Proof. (i) = (ii) is trivial, (ili) = (i) follows from Lemma 7. Suppose
that (i) holds. COlearly we may assume that L has at least two elements.
Assume that L contains only one atom p- Since, by Lemmas 4, 5,p = p s
P, is the unique atom of the interval [p,1]. Continuing this argument
we conclude that I contains an infinite chain, a contradiction. Therefore L
has at least two atoms p and ¢- Then p < p, and g & 4., Whenceq =p_
and p =g, . Thus for each element x e L distinct from 0, p, g, we get
229,Vp, =pvyq and 2, >pvg. Hence, if pvg< 1, we may apply
the above arguments to the interval [pv g, 1]. Thus it follows by induction
that T must occur in the list of Figure 2.
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