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Preliminaries

Let € = (L; A, v) be a lattice. The set of ail convex sublattices of @
(including the empty set) under the set-theoretic inclusion forms a complete
lattice C(8). The intervals, i.e. the sets [a,0] ={rellagag b} form
a sublattice 1(2) of O(8) ([a, b] is empty whenever a < b fails to be true).
Several authors studied the lattices 0(8) and I(8) and their relations
to & (see e.g. [3], [4], [8], [2])- Recently such a study was done by G. Birk-
hoff [1]. In [2] there is proved that for two finite lattices Land &, 0(Q)
is isomorphie to €(L’) if and only if & and £’ are divect products of sub-
lattices that are themselves isomorphic or dually isomorphie. In this note
there is shown that this assertion is true for arbitrary lattices. Moreover,
some other equivalent conditions for £ and &', to have corresponding
lattices €(2) and C(%') isomorphic, are given.

Given a, b € L, {a, b> will denote the interval [anb, avb](the smallest
interval containing both @ and b). ¢ will denote the dual of &. Given two
lattices (L; A, v) and (L'; N, V), the corresponding order relations will
be denoted by < and < respectively.

1. Main results
TemoREM 1. Let & = (L; A, V) and & = (L5 N, V) be lattices
and f: L — L' a bijection (denote f(x) = o'). The Jollowing conditions are
equivalent:
() @<y impliss £=(a'ne') < y'n2), f (@' ue) <f(y'uy),
@'y dmplies (xA2) < (yaz), (va) < (yve)'.
(i) K € C(R) if and only if f(K) = {f(®)] =z e B} eC(2).
(i) I eI(8) if and only if f(I)eI(L').
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(iv) There are subdirect represemtations g: & -UXB and g’ &
>AXB such that the diagram

o1 L

g 0

Y 1 ¥ ~
AxB >UA X B

commies ; the mapping & (not @ homomorphism) is given by i(a, b) = (a,b).
(v) There are direct representations g: & — A x B and g8 > UXB
such that the diagram drawn in (iv) commutes.

Remarks. 1. Obviously the mapping f having one of properties
()~(v) is an isomorphism of the (unoriented) graphs of 8 and &' (provided
all bounded chains in £ and &’ are finite). From the results of [5] and [6]
it follows that in case £ and &’ are finite and  is modular also the con-
verse is true. (In fact the methods of [5] and [6]1 may be used to lattices
whose all bounded chains are finite.)

2. The equivalence of (ii) and (v) was proved in [9] (see also [79.
The proof in the present paper is much more simple.

3. In [9] there is shown that the following condition is equivalent
to (if).

(Vi) (an@)v(zAd) =0 = (ava)a(zvb) if and only of

(@' naYu(@'Nd') =g’ = (6" Vs’ n(z'ub’)

(i.e. the mappings f and J~! preserve the betweenness relation (in the sense
of [107)).

TemorEM 2. Let 8,8 be lattices. There are bijections between the
Jollowing three sets: (1) the set of all (lattice-) isomorphisms of (L) to C(L');
(2) the set of all (lattice-) isomorphisms of I(8) to T (83 (3) the set of all
mappings f: L - L' having the properties in Theorem 1.

2. Proofs of the theorems
2.1. Proof of Theorem 1.

2.1.1. (i) = (ii). Suppose K € C(8). Let o', y' e f(K). From BAY < @,
ysavy using (i) we get wag =f(@ry)A(@a YY) <f @' ny)
<f“1((a;v'y)’n(mvy)’) =a%Vvy, hence f~'(x'ny’)e K and z' Ny’ e f(K).
Analogously, #'Uy’ ef(K). Next let @y ef(K), o' <2 <y'. Then
Y EK, (WAy) = (2ny) < (yay) =y and oAy = @ry) n(zay))
<Y N(EA YY) =2A 9 < 9, hence ZA Y e K. Analogously, 2 v y e K, hence

zeK and 2 e f(K). Thus SF(E) € 0(8"). The converse assertion follows by
symmetry.
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2.1.2. (ii) = (iii). Let I =[a,b] be an interval in £. Then f(I) is
a convex sublattice of &’ and if f(X) is a convex sublattice of ' containing
both a’ and b’, then K is a convex sublattice of & containing both & and b,
hence I « K and f(I) « f(K). Hence f(I) = {a’, b'>.

2.1.3. The proof of the implication (iii) = (iv) proceeds in several
steps. Suppose f, ¢ and 8’ satisfy (iii).

2.1.3.1. Obviously z e <z, %> (in ) if and only if # & (&', ¥’> (in £').
Hence (wAy), (evy) els'ny,a'uy] and f(@ny), f(z'uy)
elzrny,zvyl

2.1.3.2. Let a,b,¢,del,and =c,avd =b.Thena' < b’ if and only if
¢ =d, and b =& if and only if &’ < ¢'. .

Proof. Obviously <a,d> = <b, ¢)>. There are u’,»'eL’ such that
in & <a',d’y =[w',v'], hence a’'Nd’ =4’ =b' N, 'V =0 =bUc.
If o’ = b, then (since ¥’ ') v =b'Ud el¥,dD, hence ve<lb,d>
=[d, b] and d e [¢, ] which yields d’ € {¢’, ') and, since ¢’ < v, ¢’ < d'.
The proof of the converse implication is analogous. The proof of the
second equivalence is similar.

2133. Let a<b<c. Then a'< ¢’ implies a’'< b ¢ and ¢'s a’
implies ¢’ < b' < a'.

The proof is obvious.

2.1.3.4. Let us define relations 6,, , in L and 6;, 6; in L’ as follows.
xfyy (and 2'6jy’) if and only if there is ¢ ¢ L such that i<, t<y and
Vca, ¥ cy'. 20y (and #'0;y') if and only if there is t € L such that
i<z, i<y and ' =¥, y =t

2.1.3.5. 6, (8;) are equivalence relations in L (L') for i =0, 1.

Proof for 6,. Reflexivity and symmetry are obvious. Let 26y, y02.
Then there are t, s € L such that 1 <@, i<y, ¢’ s o', t' =9, <y, <%,
s' <=y, 8 =2 By 2.1.33, (wAy) =o', (yrar) =7, (@Ay) = ((m/\g/)\l/
v(yAaz), (Waz) s (@ay)viyaz). By 2132 (mf\y/\z)’ < (zAy),
(xAyAR) < (yAz). This yields #60,2. The assertion for 6, follows from the
symmetry. The proofs for 6, and 6, are analogous.

2.1.3.6. 6y, 0, (6;, 6;) are congruence relations on L (L').

Proof for 0,. Let =, 4,2 L, 0.y, and let ¢ be the element in the
definition 2.1.3.4. By 2.1.33, #' < ((zAz)vi)’ and by 2.1.3.2, (¢r?)
S (2n®)'. Symmetrically, (2At) < (2Ay). Hence zAz 6, 2A y. The proof
of v 0; vy is similar. The proof for 6, follows from the symmetry, and
those for 6, and 6, are similar.

21.3.7. () 2 <y and xbyy imply ' <y'.

(b) s <y and x6gy imply y' < x'.

Proof. The proof follows from definition 2.1.3.4 and from 2.1.3.3-
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2.1.3.8. 6,A 0, = @ (the identity), 6,4 0, = o'.
The first assertion follows from 2.1.3.7, the second follows by sym-
metry.

——

2.1.3.9. 8/6, == &'/6;, 8/6, = 8'/6;. The corresponding isomorphisms
are [#]0,— [2'16; (¢ = 0,1).

Proof. According to 2.1.3.1, zay<f'(@' ny’), (@' ny’) = (zry),
hence @Ay 0,f (@' Ny’), (@Ay) 62’ ny’. [£]10,< [y]10, implies [x]6,
=[oAy10,, [&'16, = [[@Ay)']0, = [o’'Ny'16, = [#'16,A[y']6, hence
[#16, = [y']16,. The converse implication follows by symmetry. This
proves 2/6, ~ 2'/6;. The proof of the second isomorphism is analogous.

2.1.3.10. & and &' satisfy (iv).

Proof. Using 2.1.3.8 and 2.1.3.9 we get subdirect representations

> 0/0,x [0, Q[0 %26 = /6, x [0,

given by g: @ ([#]0,, [2]16,) and g¢': 2’ ([x]0,, [#]6;). For zel
we get (g'f)e = ¢'(2") = g(#) = (ig)x. This proves (iv).

2.1.4. (iv) = (v). It suffices to show that g and ¢’ in (iv) are surjective.
Denote the lattice operations in % and B by A and v . From the commurta-
tivity of the diagram and from the definition of the mapping 1 it immediately
follows Tm (g) = Im(g’). First we claim that (a,, b,), (@a, b,) € Im (g) implies
(@1, b,) €eIm(g). Indeed, (ay,d;) =g(c) and (ay,b,) = g(d) for some
¢, d e L. Using the commutativity of the diagram we get ¢'(¢') = (ay, by),
(@) = (@3,b). Then g'(e'Nd') = (ayA ay, byv by), §'(c'UA) = (4, sy
by Aby), hence (a;A ag, by v by) and (g V ay, by A by) belong to Im(g). Again,
the elements of A X B, (ay, by v by) = (@A @y, bV by) v (g, by) and (a, v a,,
ba) = (a1 V @y, D1Aby) V (as, by) belong to Im(g), hence (a,, by) = (ay, by V
V by} A (@ V @z, by) € Im(g).

Nowlet a € 4, b e B be arbitrary. Since g is a subdirect representation
there are a, € A and b, € B with (a, b,), (a;, b) belonging to Tm(g). Using
the above result we get (a,b) eIm(g) which proves g surjective. The
surjectivity of g’ follows from Im(g) = Im(g").

2.15. (v) = (). As in 2.1.4, g(a) = (@1, @) = g'(2"), 9(y) = (91, ¥)
=g'(y") and o<y yields @, <yy, 0,<Y,, ¢(f(@'Ne)) =g (@' N2)
= (@1A 21y BV2) < (Yy ARy, YpV 2,y) = g(f(y'n?)), hence f~(z'n#)
< f(y'N2’). The second relation follows in the same way. The remaining
relations follow by symmetry.

=R

I

2.2. Proof of Theorem 2. A one-element interval {a, &) will be denoted
by <{a>. With any isomorphism g: 0(2) - 0(2) a mapping ¢*: I -~ L'
will be associated as follows. Given a e L, {a) is an atom of O(L) hence
g<ay is an atom {a’> in C(2'). Set g*(a) = a'. Obviously ¢*: a+s>a’ is
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a bijection of L to L’. We claim that g* has property (ii). Given K € ¢ (),
a € K is equivalent successively to <a) = K, <a'> = g<ad = 9K, o’ e gk,
hence gK = {g*(a)| @K} = ¢*(E). Consequently ¢*(E)e 0(2). From
the symmetry it follows that M e 0(8') implies g*~ (M) € 0(2), hence g*
satisfies (ii).

Now let k: L — L’ be a mapping satistying (ii). Setting, for K € ¢ (2),
ME = {h({a)| a e K} we get a mapping k+: 0(Q) — (8"} which is easy
to check to be an isomorphism of lattices. Obviously (g*)* = g and (h*)*
=k which gives a bijection between the sets (1) and (3) of Theorem 2.
In the same way a bijection between the set (2) and the set of all mappings
f: L — L' satisfying (iii) can be established.
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