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A normal modal logic is said to be complete if for each non-thesis a of the
logic there is a Kripke frame for the logic on which « is not valid. This
paper addresses the question whether there is an effective procedure for
determining whether or not a given finitely axiomatized normal modal
logic is complete.

We shall consider logies with several necessity operators: if § = NV
={1,2, ...} let K¢ be the logic whose language has ~], v, and distinct
unary operators 0, for 7 €8, and which has the axioms and rules of K
for each 0. That is, the axioms of Ky are the classical tautologies and
O;(p ~q) — (O ~DOy) (¢ € 8), and the rules of inference are Substitution,
Detachment, and Necessitation (from o, infer oo (i € 8)).

Let Flag be the set of all formulas of Kg. If § e Flag, let K (B) be
the logic obtained from K by adding § as a new axiom; Ky(8)+y means
that y is a thesis of Kg(B).

A EKripke frame W for Ky consists of a non-empty set W together
with binary relations <; (¢ € 8) on W. The relation Wg (8 is valid on W)
is defined as follows: a valuation 0 assigns to each o e Flag a subset 0(a)
of W subject to the conditions

6(7la) = W—6(a),
6(avp) = B(a)ui(p),
0(cya) = {wl (Vo)(w <0 = v e 0(a)},
and WEB if 0(f) = W for every valuation 6.
* This paper is a revised and extended version of a lecture presented at the
Stefan Banach International Mathematical Center, Warsaw, in April, 1978. The author
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A general frame (W, P) for K consists of a Kripke frame W together
with a non-empty family P < P(W) such that

XeP =>W-—-XeP,
X,YeP »XuYeP,
XeP = {w (Vo)w<pw =>veX)}eP (ied).

A valuation for (W, P) is a valuation 6 for W such that 6(a) e P for each
a €Flag, and (W,P)Eg if 0(8) = W for every such 6.

It is easily seen (cf. [4]) that a is a thesis of Kg(p) if and only if «
is valid on every gemeral frame on which g is valid; Ky(B) iz complete
if this remains true (for all @) when “general frame” is replaced by “Kripke
frame”.

A general frame (W, P) is connected if the smallest equivalence relation
containing all the <,’s is W X W, and refined if P is the basis of a Hausdorft
topology on W such that each <, is closed in W x W (cf. [4] for a more
explicit definition). If is not difficult to show (cf. [7]) that for each general
frame (W, P) and formula o not valid on (W, P) there is & connected,
refined, general frame (W', P') such that every formula valid on (W, P)
is valid on (W', P') but « is not valid on (W', P’). Hence Ky(B)ra if and
only if a is valid on every connected, refined, general frame on which B
is valid.

It § = T, then K, (B) is a conservative extension of K (y) if the theses
of Kg(y) are exactly the formmulas of Ky which are theses of K.(B)-

ProrosirioN. If 8 €T and B e Flag, then Ky (f) is' a conservative
eotension of Kg(B). If 80T =@, € Flag, y € Flay,, and Ky () is consistent,
then Ky, (BAy) is a conservative ewtension of Ki(y).

To prove the first statement, it suffices to note that if (W,P) is
a general frame for Kg, (W, P)kf, and ~|(W, P)ky, then we can find a
general frame (W', P) for K, such that (W', P)kg and ~|(W’ ,P)Ey; namely,
W' is W together with <, = W X W for i e T —8. The second statement
is proved in [8].

An intuitive understanding of certain recursion-theoretic notions
will be necessary (and sufficent). A set ¢ = N is recursively enumerable
if there is an effective procedure for generating the members of ¢ (not
necessarily in any particular order) and recursive if there is an effective
procedure for determining of an arbitrary number whether or not it is
a member of 0. A set C is reducible (or many-one reducible, in the usual
terminology) to another set D if there is a recursive (that is, effectively
caleulable) function f such that (Vn)(n eC <= f(n) eD), and .D is universal
(respectively, co-universal) if every recursively enumerable et is reducible
to D (respectively, to the complement of D). There exish recursively
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enumerable, non-recursive sets; such a set is not reducible to any recursive
seb, 80 no universal or co-universal set is recursive. Reducibility is transi-
tive, and one set is reducible to another if and only if its complement is
reducible to the complement of the other, so any set to which a universal
or co-universal set is reducible is itself universal or co-universal respectively.
We identify formulas with natural numbers via a suitable Godel num-
bering of Flay.

&8 = {1,..., m} we write Fla,, and K,, for Flag and K respectively.
Let 4,, = {feFla,| K, (f) is consistent} and B, = {8 eFla,,| K, (B)
is complete}. Our main result is the following.

TEREOREM. (a) A, 5 recursive, but A, is co-universal for all m > 2.
(b) B,, s universal for all m> 3.

It is easy to see that A4, is recursive, since K,(f) is consistent if and
only if § is valid on some one-element Kripke frame [2]. Since K, is a con-
servative extension of K,, when n < m, 4, is reducible to 4,, (8 € 4, < f(8)
€ 4,,, where f(f) is § or p A "|p according as § e Fla, or not). So to complete
the proof of (a) it suffices to show that 4, is co-universal.

‘We shall make use of some constructions appearing in [7]. Let ¢
be any recursively enumerable set. By [7], Section 4, there is a number m,
a formula § of K,,, and a recursive sequence a,, as, ... of formulas of K,,,
such that

(%) (Vn)(n eC <K, (ta,).

Moreover, examination of this construction reveals that if (W, P) is any
connected, refined, general frame for K,, and (W, P):§ then, for each #,

(%) (W,P)ka, or (W,P)r a,.

By the reduction procedure of [7], Section 2, one obtains a formula
g’ of Ky, and a recursive sequence a;, a,, ... of formulas of K, such that
(*) is true of f,q;, a;, ... But examination of this construction shows
that () no longer holds. All that can be said is that 6(q;,) is independent
of 6, that is, if (W, P) is a connected, refined, general frame for K,, (W, P)
kf’, and 6, and 0, are valuations for (W, P) then, for each n, 6, (a;) = 6,(a}).
In order to restore (++) we must retreat to K,.

Levwma. If C is a recursively enwmerable set, then there is a formula
of K, and a recursive sequence a, a,, ... of formulas of K, such that (%)
and (x*) hold.

To prove the lemma, let 8, ¢;, a;, ... be formulas of K; as in the
preceding paragraph. Let § be the conjunction of f’, Oyp — 0,9, and the
85 axoms for n,, and for each n let o, be D,a,. If (W, P) is a general
frame for K, and (W, P)kf’, then (W', P8, where W' is W together with
<2 = WxW; moreover, (W,P)ky = (W', P)ky for all y eFla,.” Thus
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K,(8) is a conservative extension of K,(f'), so ne( <« I (8)ka,
< K,(B)to, < K,(B)Fa,, and () holds. Moreover, it (W, P) = (W, <.,
<4, P) is connected and refined and (W,P)EB, then <, = WX W so
0(a,) € {&, W} for any valuation 6 for (W, P); but 0(a,) it independent
of § (any valuation for (W, P) is a valuation for (W, <,, P), and 0(d))
is independent of 6), so (W, P)ka, or (W, P)E a,; that is, () holds as
well. This completes the proof of the lemma.

Let € be any recursively enumerable set and let 8, o, ag, ... e as
in the lemma. If n € 0, then K,(f)ta, so Ko(B A Ta,) is inconsistent and
B A Tla, ¢ 4,. Conversely, it n ¢ C, then 7K, (8)Fa,, so there is a connected,
refined, general frame (W, P) such that (W, P)kg but ~(W, P)kq, . Because
of (xx), (W, P)kBATa,, 80 K,(BArT]a,) is consistent and fA T, € 4,.
Thus (V) (n €0 < fA7Ta, ¢ 4,). Since 0 was arbitrary, 4, is co-universal.

We turn now to the proof of (b). If m > 3, let y € Fla,,, be such that
K, (y) is incomplete ([1], [5]). If O is any recursively enumerable set;,
let 8, a1, g, ... be as in the lemma, 50 n € C = K, (B)Fa, < (fAa,) ¢EA,.
Ifn €0, then K,(8A"a,) is inconsistent, so K, (8 A e, Ay) is inconsistent
and thus complete, and (8A7la,Ay) €B,,. Conversely, if = ¢(, then
K,(BAa,) is consistent. By the proposition K,,_,(8A Ta,) is consistent
and K, (BA"la,Ay) is a conservative extension of Ky (). Then since
Ky (y) is incomplete, so is K, (8A7la,Ay) and (BAJe,Ayp) ¢ B,,. Thus
wehaven € ¢ < (A7 ]a, Ay) € B,,,and Cis reducible to B, . This completes
the proof of the theorem.

It is clear that each 4, has recursively enumerable complement.
Thus part (a) of the theorem specifies each 4,, up to recursive isomorphism
type ([3], Chapter 7) and so determines exactly the complexity of each 4,,.
Part (b) is much less definitive. In the first place, the condition m > 3
should not, it seems to me, be required. The reduction procedure of ([7],
Sections 2, 3) provides, when m > 7 > 1, aformula ¢ of Fla, and a recursive
function ¢: Fla,, — Fla, such that if K, (f) is incomplete, then so is K, (oA
A@(B)), bub (contrary to what I said in April) it is not clear whether the
converse holds as well. If so, then B, is reducible to B, whennzmz>1
and so B,, is universal for all m > 1. In the second place, part (b) leaves
open the possibility that there may be an (infinite) recursive set 1" of
formulas of K, such that, for every g €Fla,, K, (f) is complete if and
only if § is equivalent to some formula in I". T do not believe that this is
the case.

An interesting problem, related to the ones discussed here, was men-
tioned by a member of the audience at the Banach Center. (I hope he
has had more success with it than I have.) Is {8 e Flay| K,(B) is decidable}
decidable ?

Addendum (added August 25, 1978). Robert E. Woodrow showed
me a way to prove that B, and B, are universal, by modifying the reduction
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procedure of [7]. Another way, which does not require such a modification,
is as follows.

Let a formula §eX,, be called r-persistent if whenever (W, P) ig
refined and (W, P)kg, then WEB. Tt is clear that if K,,(8) is inconsistent,
then f is r-persistent, and if § is r-persistent, then K, (8) is complete. It is
not difficult to show that the reduction procedure of [7] preserves r-persis-
tence, that is, it B is r-persistent, then 5o is 54 ¢(B). So we may apply
the reduction procedure to the formulas fA —a, Ay of K, to obtain for-
mulag 7, = §Ap(BATla,Ap) of K, (or of K,) such that ne( <1, € B,
(or By).
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