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0. Introduction

Bainbridge [1] introduced the characteristic bisystem char(S) of a sequen-
tial automaton (8) with say » input and % output alphabets in such a
manner that the space € of configurations of (8) is formed and then is
established a certain congruence in ¢ taking into account the structure
of (8).

In the present paper we directly (without forming a congruence)
construct char(8) by means of a change to a corresponding monoid auto-
maton F(S) and then forming the bisystem of the compositum &(X)
F(8)u(Y) (cf. (2.5))- Since it is hard to get an insight into the preserva-
tion properties of char(8) we introduce the new concepts of a hetero-
geneous monoid automaton and a heterogeneous (admissible) bisystem
using general coding maps &, x, v, which may be of an independent; interest.
Nevertheless even then preservation properties are difficult to establish
(cf. Theorem 4.2). .

Our study is a contribution to application of algebraic methods in
the study of the behaviour of sequential automata with several inputs
and several outputs. The study of loop operation (feedback) is postponed
to another occagion.

1. Sequential automata

A sequential automaton in the category set of all sets and all mappings
between sets is a quintuple

CA,B,8,1: 8xA B, m:Sx A48

[347]
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written also as § < §x A 3 B or Al—ifBorfor short 8: 4 — B, where
A, B, 8 are the input set, the output set, and the set of states respectively;
1 is the input-output map and m is the next-state or transition map.

Serial connection (-) of automata S: 4 - B, §8': B — C is defined
according to

s s &%
(42> B) (B;r0) = A7 0, .

where I and m'’ are given by the following defining commutative diagrams
(with d; for any set R denoting the diagonal map

dg: B >R XR: re>(r,7):

S'x8x A
8 x8x A d \
-
o ! X
M\ 88X A X Bx AN
SlXB?O lxlxm“v \
8’ xBxS8 >8"'x 8

m' X1
(Here for short we write 1 xd instead, of 1g X dg, 4, Where 1y denotes
the identity map 8’ - 8, and so on.)

With respect to serial connection as the composition the sequential
automata in Set form a category Set-Aut™ under the assumption that the
Cartesian product ( X) between sets approximately is considered as strictly
associative. .

Parallel connection of automata S: 4 - B, 8': A’ - B’ (also de-
noted by Xx) is defined according to

(A4 Byx(4' 2By = Ax 4 25 B,
Im im vm"
where 1" and m’” are given by the following defining commutative diagram
(with cg, standing for the symmetry map

Cgq: B'XA > AXES': (8, a) - (a,s)):

m’

SXS <+ Sx 8 XxAXA s BxB
mx:’x 1s><cs'4><14'v /,{:,,
SxAx8 xA

Monoid automata are sequential automata with an additional structure.
A monoid automaton in Set in the sense of R. C. Davis and the author

(cf. Budach-Hoehnke [2]) is a sequential automaton A%> B, where

©
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A, (1), 14 and <B, (%), 1%} are monoids, also for short denoted by 4
and B respectively, and (S, m) is a unital A-system, i.e., the diagrams

SxAxA

mxiy/ \fx("’) 8xI =48
SxA< JBxA 15/ N
"‘\ " SxA—>8

8

are commutative, where I is the one element set I — {0}, and 14 i3 at
the same time considered as the map

: T >4: Grs14.

Moreover, the commutativity of the following diagrams is required (with g
as the terminal map

tg: 8 > I: s> @)

SXAXABA o0 | S AXA

lsx(«A)J

Igx 4XmX1ly
Y Y
SxA SxAxSxA
ll llxl
B« = BxB
A
SxI =858 954
tg 1
v hd
I——3B

1B
For short we write I(s, a) = soa, m(s, a) = S. .

Serial and parallel connections of two monoid automata are defined
a8 in the case of ordinary sequential automata. As proved in Budach—
Hoehnke ([2], p. 258), they again are monoid automata. The category
of all monoid automata in Set with serial connection as compogition is
denoted by Set-Maut ™.

Let X be a set and let X* be the free monoid freely generated by X.
To any sequential automaton X 5—(3 Y we assign a new sequential automaton
x* :—3 Y* with the inductively defined maps:

() SxX* —X*,

' 8t (m®y «on ;) = M(s* (@, oon 1, 1), 7,),

81X =3,
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(0): 8x X* - Y*,
8O0 (Byy ~vv @) = (SO (Byy +o Wy 1)) s (810, + o By}, B}
so1X" = 1¥*, ‘
In Budach-Hoehnke ([2], pp. 257, 265) it was proved:

Levwma 1.1. X* e Y* is a monoid automaton and the assignment

X —-> Y .X* o Y*
defines a functor
F: Set-Aut — Set-Maut™.
We consider (X; X ... XxX,)* (where X, ..., X, are sets) as a sub-
monoid of Xy X ... XX, according to the embedding
(XX ..o XX,)* S.Xrx .. xXt
received by the equality o =o' ... " = (v, ..., v;), Where
Vo=, ey By ey O =R, LY e X X L XX,
and
v =a ... 2f e X7, vy O, =l ..ok e X,

For short we introduce the following notation. If X = <(X;,..., X,>
is an n-tuple of sets X;, then XX = X; X ... xX,. 8o, if X* = (X}, ..

. Xp>, then X X* = Xy x ... xX:. The inclusion map (C): (X X)*
— X X* defined above gives rise to a monoid automaton

_ * I ¢
#(X) =(xX) (C):‘(xm? xX*.

LemmA 1.2. Let X ,—%‘» X, X’i,—s;? Y’ be sequential automata. Then
holds ' '

F((X 2> D)X (X' s X)) (T, X)
' (X, TN FE S DXPX s 1)
Proof. Let be

(X—>Y)>< x'__> Y) *XxX'—sis» TxY

and
Xy = X‘L T, R > T)= X" i; T,
Im

F(XxX’ixs>YxY’) = (XxX"‘ el

>(Y><Y’)

©
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Then by induction
(s, 8")0* (@1, &) ... (,, 2)) = (s0(@y ... @,), 80" (a] ... &),

(5 8)* (@1, &) .. (B, ) = (823, .. 3,), /(0] .. 0.

We consider the sequential automaton depending upon X — Xy XD

UX

e(X) = ><X*—>(><X)

oo
where |_J X, is the union of the monoids
=1

X, =X'x.. X XE, x 15 ‘}x X e X X3

n?

with the intersections

x‘
i X e XX X)X
XXfa X oo XXy fori<j,

XnX; = XX oo XXy x {1 '}x

and where the definition of 7, and m, is derived by means of the unique
decomposition of the produet ww of word sequences

Uo=CUpy ey Uy g5 Ly Upyyy ey > € Xy, w = w0y, ..y w,)> € XX*

into the product vu' of elements
4 o
v=0...%e(XX), o =q,. ., u>eX;
) i=1

(hence it exists at least one index j for which u} =1 eX;) such that
L(wyw)y =v, m,(u,w) =u'
and therefore
(1.1) ww =1, (4%, wym, (%, w).
The importance of £(X) for our further considerations mainly rests upon:
Lemwa 1.3. &(X) is @ monoid automaton in Set.

Proof. Let be w,w’ e X. Taking into consideration (1.1) similarly
we get

L (u, ww')m, (4, ww') = u(ww') = (ww)w' =1, (v, w)m, (u, w)w’
=1,(u, w)ln(mn(u'? ), w')mﬂ(mn(u, w), w’)7
hence because of the uniqueness of the decomposition,

ba(, ww0') =1, (u, w)l, (m, (w, w), w'), m,(u,ww’) =mnm,(m,(u,w),w).
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Since % = wl =1 (u,1)m,(u,1) we get
L(w,1) =1, m,(%,1) =u
I X =¢X',..., X" is a sequence of length » of sequences
X ={X,.., X} D1 e X0 =<KX0, ., X0 5
of sets X‘ we use the notation
X] =X, ..., X" =X}, .. X}Ll, P GARIP.

forgetting the subdivision of this sequence of length n;, 4 ... +n,. This
notation is ambiguous in the case n = 1 and then only supphed in a suitable
context.

Levwma 14. If X, ..., X,, X7, .., X,,, are sets and X = (X, ...

vy X5y X' = (X ooy X, then e([X, X']) decomposes up to isomorphy
according to

(6(X) x 6(X"))e( XX, xX') > ¢([X, X']).
Proof. We form

iglf‘i fﬁll&:
oX) = XX T (X, e(X) = XX (kX
I n" n’
o[ X,X']) = x[X, X'T* > (X [X, X)),
where
non Xy =C)j¢>< (xX™*)U(xX*) x Ojﬂ
=1 i=1 =1
= (Y& (O O &) o (<2 g 7) x L"Jl z)
= ((xX)" x Q0T oD% s (xXP) - () ) x (L) £
i=1 i=l

With respect to this decomposition we define a map

6: S—>U X"

for

8 = ((XX)" x {10F 0 0D o (x X)) x () &) X(OX{-)
i=1 =1
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by
o, u, u e Qow,u’y i ve(xX)Y,
'y, w D> luy o'’y i v e (XK.

It is clear that e is one-to-one and onto.
Using the symmetry

e

¢=cgp for U=

s
i
-

and the diagonal

d=dy for W= (()F)x(U)E) % ((xX) % (xX¥)
we have
(6(X) X 8(X")) o XX, xX)

(5 Zax Y %)
v XV .
(2 KOG

= ((xX*) x (xX"™) (%X)* x (xX))-

(X exX 1)y X1 (L xe X 1)y X1 )
 (XEFURX)

l;‘.m;<

((xX)* x (xX) > (X [X, X))

= (XX ) (xX™) > (x[X, X'

and for % e ( xX)* x {LX"TU 1D} x (xX’)* (for short to be identified
with (xX)*u(xX)*)

(1.2) uw, w'y =L (u, <w, wH)mg (w, w, w')
and (with @' = dy, for W' = L"J X ( XX*) x( C) D) X (xX"™))

I =1 xAxex1){, xi))i,
m = (1 X d)(1x (1 X6 X1) X (1 X ¢ X1)) (b XTpr X1y, X101} (mF X1)
= (1x (L xex1)d (I, X b, X m, Xm)) (m¥ x1).
Using the equality

ntn’
(1.3) u’lw,’ pa— l/l(ull’ wll)mll(ull’ w!l) for u/l e U Xi’ wIIEX [X’ Xl]*
=1

23 — Banach Center Publ. t. 9
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we are able to verify that {1, x xe; Lxpx,xpp; €0 18 an isomorphism of
monoid automata in Set in the sense of the author, ¢f. Budach—~Hoehnke

([2], p. 249), ie., that the following diagram is commutative.

8 <" 8 X ((xX*) X (XX ") —> (

ml

n+n
U ) x(x [X,X'T" ) (XX, X7

X [X, X7

[ 1

n-\tn’ -
U X<
i=1

In fact for » e (xX) U (xX)*

we get
{0y Ly u'yy (wy w'H l——> (o, w'D, w, w'dy |
oy Luy u'D, w, wyy I—> {okuy u', (w, LY ]"">

v, Y w, w'y = vluw, ww"
=1 (”<’“‘ u’>7 <w: wl>)m”(v<u7 '”/’>7 <'w5 wl>)7
<’U <u " > <w w >> le(lxcxl)

lx(lnxl

=17 (00, u'y, (w, w'D),

m' (v, w', {w, w'}),

——> 0, U, w, %, W

> <0y 1, (u,y
vy Cuy 'y wy w'yy |-

), I (w5 w )>—>lx(

lx(lxcxl)

y L, w), l;b'(“” w')>):

> {0, Uy Wy u W'

1xd
lfﬁ(v Uy Wy u W, uyw, u,w'D
lx(lnxl XMy X'y )
—~—-—><'v by (wy ), T (0!, w'), m, (0, w),

My (0 0'))

%1 ’
5 (v, T, (0, w), Ty (w w')), my, (w, w), m, () w'))

|i> my (v, L, (w, w), . (0, w')) <m,
o, (1, W), B (w'y w'))

= ("77 oy (g w), L, (', w’)))mz ( <&, (u, w),

uw =1 (u, w)mn(qb, w),

V(odu, w'y, <w, w')

(1, 0), 1l (!, '),

o (w'y w'))),

w'w' =L, (w, w)m.(u’, w'),

m" (vu, w">, (w, w')

v uw, ww'y = v, (u, wym, (v, w), I (@, w')ym,, (u', w'))
0k, (W, ), T (', ') Sy (00 ), My (', w')>

=T (0 Qs ), T (0, w')D) mf (v, (0, ), T (', w)).

My (05 '),

(my, (u, w),

NETEROGENEOUS MONOID AUTOMATA 355
therefore
l”('v<'”" /“">7 <w: wy) = l‘; (’0, <Zn(u: w), Z:;' ('u'y w’)>)a

m" (vu, ', {w, w")
] <ln(“: w), Z;n.'(u,7 wl») <

= my (v My, (%, W'D .

mﬂ(u} w)ﬂ

2. Bisystems

Let S and T be monoids. A unital (S, T)-bisystem @ is a unary algebra
{@, 8, T)> with carrier set @ and with unary operations corresponding
to the elements s € §, t €T applied to the elements g €@ from left and
from right respectively according to

(s;)—>sqe@, (q,t)r>qteQ
such that the following identities hold
(8182)¢ = 81(82¢) (@ is a unmital S-left system),
g(hts) = (gt)t, (@ is a unital T-rigth system),
(s)t = s(qt)
A unital (8, T)-bisystem @ is equivalently described as a functor
@: 8P x T — Set,
(15,17) 1> 15: @ > Q,
(s,8) = (s, 17)(1%, %) = (15,%)(s,17)
> @(s, 1) = B(s, 1T) B(15, 1) = B(15, 1) B(s, 17) = sqt,

159 =4,
gF =g,

(“associativity? law).

where
'15(8,1T)(g) =8q, ¢(1S,t)(9) =

Here the monoids § and T are considered as categories with only one
object corresponding to the identity element 15 and 1T respectively.
LevmymA 2.1. To every monoid automaton Al->B there corresponds

a unital (B, A)-bisystem B X 8 given by the following right and left mulii-
plications a,pplwd to (b,s)eBx8:

(b, 8)a = (bl(ss a), m(s,

b’ (b, s) = (b'B, 5)

a)) (acd),
(b' e B).

We denote this unital (B, A)-bisystem corresponding to A——+B
by G(4 ————> B).
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A unital (B, A)-bisystem R is called admissible if it satisfies the
following conditions:

(i) R =Bx8S,
(i) 8 is a unital A-right system,
(iii) b'(b, s) = (b'b, s) for all b, b’ e B, s € S,
(iv') it exists & function I: 8§ x4 — B such that
(b, s)a = (bl(s, a), sa).
Since R is a (B, A)-bisystem, from (iv') it follows
By 8)(a102) = (BL(3, 105), 8(@305))
= (bl(s, ay), sa) @,
= (bl(s, a1)l(say, ay), (sa,)as)
= (B1(s, a1)l(say, ), 8(a,a,))
hence for all s €8, a,, a, € A it holds
(iv) U(s, asa5) = U(s, ay)1(say, as).
Since R is a unital A-right system, from (iv’) we get
v) (s, 14) =1F for all se&.

We denote an admissible (B, 4)-bisystem Bx § by A4 25 B. From
Lemma 2.1 and (i)~(v) it follows:

LEMMA 2.2. The monotd automata are in 1-1 corvespondence with the
admissible bisystems.

We define composition of admissible (B, A)-bisystem Bx S8 and
admissible (€, B)-bisystem C'x 8’ to be the admissible (C, A)-bisystem
O x 8 x 8 with right and left multiplication

(¢, s, 8)a =((¢, )U(s, a),3a), ¢'(c,s,8) =(cc, s, 5).

Lmvra. 2.3. With respect to the composition just defined the admissible
bisystems in Set form a category Set-Abi> and the correspodence G between
monoid automata and admissible bisystems described in Lemma 2. 1, 2.2 is
a functor

G: Set-Maut™ — Set-Abi™.

We consider the behaviour of G with respect to parallel connection
(i.e. cartesian product).
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Let A I—i—> B, A’ %» B’ be monoid automata with the parallel con-
nection

(4 —>B)X( ~—>B)—~A><A' B><B’

and the corresponding admissible bisystem

G(AxA'ﬁ’iinB) = A x A" ZESE

BxB
given by
(5,0, 5,8 (a,a') = { (0,1 (s, 8", a, a'), (s, s')(a, al))
= (bl(s, @), bU(s", a'), (sa, s'a")).
Thus if we define the cartesian produet of admissible bisystems A% B,
as the cartesian product in the sense of the theory of heterogeneaus

algebras, considering A——»B as a heterogeneous algebra with a trlple
{4, B, 8) of carrier sets, we get:

Luvua 2.4. The functor G is compatible with cartesian products.
We are mainly interested in sequential automata of the form xX

l—'—} XY, where X = (X, ..., X5, ¥ = <(¥,, ..., ¥, are sequences of sets
, XY; respectively. We call the triple

@2.1) X, x Xo> XV, ¥y

a heterogeneous sequential automaton with an s-tuple X of input sets
and a k-tuple ¥ of output sets. The h.s.a. (2.1) is considered as a morphism
from X to ¥. If

(2.2) X XX 2 XY, Y
for X' =<Xj, ..., X;.>, ¥ =<(¥}, ..., ¥;.> is a second h.s.a., then serial

and parallel connection of (2.1) and (2.2) are again h.s.a. and respectively
defined by

(23) (X, (XX > XY) (XX s X¥), ¥y for ¥ =X,

and

(24) X, XD, (XX 2> x¥)x (XX s x¥), [V, VD).

The category of all h.s.a. in Set with serial connection (2.3) as composition
is denoted by Set-Auth™.

It arises the question to find an adequate passage from h.s.a. to
admissible bisystems. A candidate for such a passage is the admissible


GUEST


358 I.-J. HOBENKE
bisystem ‘
(2.3) G{s(X)F( xX l_j} XY) u(¥)

which is called the characteristic bisystem of the h.s.a. (2.1) and is denoted
by char{X, x X 1% XY, Y.

LevMA 2.5. As a heterogencous algebra the characteristic bisystem of
o h.s.a. is isomorphic to the characteristic bisystem in the sense of B. S. Bain-
bridge [1] of the same h.s.a.

Proof is left to the reader.

Unfortunately it iy hard to get an insight in preservation properties
of the correspondence char.

Let us for instance consider parallel connection. It holds

B(IY, Y']) = p( XY, x¥')(u(¥)X u(¥")
and therefore by Lemma 1.2 and (2.5)

(26)  char(<X, XX 2> X¥, ¥y x (X', xX’ s XY, YY)
= @(e(0X, X B(( xxi% X¥) X (x X' Z_S_> X¥) u([¥, ¥

= @(e([X, X' u( xX, xX')(F(xXL% X¥) X F(XX' 5 X¥))(u(¥) X

‘ xp(X)).
Since
e([X, X' u( XX, xX') =2 (8(X) x s(X'))e( XX, XXV u(xX, xX')
% o(X) x (%)

we are not able to reduce line 3/4 of (2.6) to an expression which (at least
up to isomorphy) may be written only in terms of char. Also the fact that
(veplacing <X, xX’ by X, X') .

(1), =) 51,19, =), (1,17 1> o(x, X)u(X, X',

where 1 =1%, 1 =1%"; 1 = X*x x* —> X* X X'* being an
XGEX X X

. . - : X‘.x
1dent11.:y mf)m?ul automaton; is g (sequential) homomorphism opens no
Wway since it is no homomorphism of monoid automata.

3. Construction of general coding maps &, u, »

We assume the existence of three kinds of maps &, u, », which are defined

on.aill sequences‘A ={4;, .., 45, 0 =1,2,..., of monoids 4, and
satisfy the following set of conditions: '
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s
el. g(A)=x4 4 > F,4 is a monoid automaton.
lama
2. s(A) =A——4 it 4 = (4.
14tg
3. &(X*) = &(X).
El. B4 is a monoid.

E2. By = A it A ={4).

E3. By = (xX)*.

. w(d) =M A—1~—> x A4 is a monoid automaton.

"A'tMA

W2, p(Ay =A-1 s 4 it A = (4.
Tastaq

#3. p(X*) = p(X).

Mi. M 4 is 2 monoid.

M2. M, =Aif 4 ={4).

M3. My, = (xX)%.

1. v(A4) :EA——I—>(><A)/1A is a monoid automaton.
YALE 4

2. v(A)=A " s+ Aif A=A
1ty

3. 9(X*) = u(X).

Here £(X), 4(X) are the monoid automata already defined in Section 1.
A4 I8 & congruence in X A; (X A)[A, is the factor monoid of x A4 with
respect to A,.

Obviously E1, E2, E3, and M1, M2, M3, are consequences of ¢, £2, 3,
and ul, u2, p3, respectively.

Such maps e, 1, » are assumed to be realized in any way. We construct
one realization for them:

We assume every monoid 4 to be represented in the form

A = ¢(X*[x); i 4 =X

where X is a set, » is a suitable congruence in the free monoid X*, and ¢
is a suitable isomorphism of monoids. This representation is fixed.
Let

% =0 and ¢ =1z

Ay = <9’1(Xr/”1)7 sirg ‘Fn(-X:/"n»

be a sequence of monoids and write

A = <A17 ..

B=Cotyy ey %0y 9 =LPry ey P>

Then the product Xx = # X ... X%, isa congruence in xX*. ( XX)*/( X&)
denotes the image of the monoid ( xX)* under the canonical homomorphism
X X* — ( xX*)/( xx) of xX* onto the factor monoid ( xX*)/( xx) of xX*
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with respect to Xx.
We get

(x@)(( xX)*[( xx)) C ( X@)(X*)/( xK)) = X A3

we define
My

= (XN XX [(xK)), pa=Ma=r xA.

Then ul, u2, u3 are satisfied.
We introduce the general notions:

)

Ay =A% o XAy XA XA, X e XA

n?

Ay X =Xy ooy XEJ0>

C§

SA

I
-

i

It 8%/ xx) denotes the set of all equivalence classes mod xx of the ele-
ments of 8% we have

8% — 8% | xx) C (X X*)/( Xx).

For w = <w,, ..., w,> € xX* the congruence clags mod Xx containing w
is denoted by @. Obviously @ = (@, ..., %,, Where , for w; e X, denotes
the congruence class mod»; containing w,. If % e 8%, then as already
mentioned in Section 1 there are uniquely determmed elements v e ( xX)*,
u' € 8% such that ww = ow’. Hence o = o%’. In 85" we define the
equivalence g generated by the pairs (@, %,) such that

Uy Ty & 8% (4, uy e §X°)
and there are
T, Tp & ( XX)*)( Xx)

(v, 7 & (XX)")

for which
Bl = Dyl

We define 8,4 as the factor set §, = §%*/g, and the map

mA( y(Xe)(@w )) =u'
if exist @' e 8% and 7 e (xX)*/( xx) such that 7w = % .

myt BgX(xA) -8,

Here % denotes the equivalence class modg containing the elenient %
e 8% and so on.
It is clear that m, is defined everywhere. The uniqueness can be
proved as follows:
Let be u, u', 4y, uy € 8%, v, v, € ( xX)*,
W =TT,

U = WyU,, and U = u,.

icm

©
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Because of % = %, there are u¥, uf? e SX*, o), o) € ( xX)* such that

'E(l) = U, ,M’{lk) = Uy, '“szi) = '“’(Hl); i = 1’ ce k_l’
_——i —“-1:-—— -
o0 4 =, t=1,..., k.

Compute u; € 8, v, e ( xX)* according to
2,...

wDw: vu,, 4 s B—1.

Then it holds

v’ = o057 = vz — o 4Dz
= W“gl)w = 77(()1) WG = 'Df,l]izﬂg = ”9_)"’;@2:
50, = D uPg = o uflp = 0P ul% = o5z,
53, =201 =P uPw = 1P s = g,
o6y, @, = o DDy = oyl — Pam = o,
Hence

i
§ it
kS|

=

{B4qym4d> is a unital X A-system. Indeed, let e

ma(%, (xp)(®@) =, ww =77,

mA(ﬁ,7 ( X?’)('W_’)) 255’?7;’ =?F’

)) —_ MI!I

o III

ma(%, (Xo) (@0 Zww ="

We claim that «” = w/”. This is a consequence of

VU =W’ =Tuw = 0w = o .
00n51der the action of the identity 1*4 =

%ef,: Tt holds

(X @)(AXV%) on an element

FLOEN(R) g7 — 1 X(xx)g
and 10X g ( x X)*|( xx), hence m (@, 1%4) = 7.
We describe the construction of E,. Motivated by the expressions
my (@, (xXp)(®) =%,

we consider the congruence relation 7 on ( xX)*/( Xx) generated by the
Ppairs

W = U,

T

with wofuu = U0 U and

for suitable ', u, u", u, € 8%

Tylly = Vy0,

e (xX)*.

@, 0>

* 7
’vﬂ} 7;0
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By = (Xo)((xX)*[(xx)) [(( x0) X (x0))1 = £((( XZX*/( xx) ),

where y: ((XX)*/( ><x)) /r — B4 is a suitable isomorphism such that the
following diagram is commutative (|, » map induced as a restriction
of map &):

r (XX)* [(x5) = (( XX x8)) fr
[(xox x9) I(x9) %
Y
(Xpx xg)r  (X9)((xX)*/( xx)) > By
We define
Tar 84 % (x4) > H,, ZA(ﬁﬂ ( Xq))(@?)) =10,
if exist ' € 8¥%  and 7 e(xX)*/( xx) such that 7T — 7u’.

Here v denotes the congruence class mod » containing the element
e ( XX)*/( xx), and so on.

It is clear that 1, is everywhere defined. We show that I 4 13 uniquely
defined. Indeed, let

La(uy (xo)()) = 45, @w =ou’
La(Uos ( X9)(®)) = 489, Wi = Tyu,

and w = %,. Because of % = %, there are U, ud e 8%, o), of e ( xX)*
such that

W=, uf =y, WP =y g o 2,0 k—1
0B = o@D, i =1,... k.
Compute u; & 8, v, e (xX)* according to
W =ou, i =2,..., k1.
The same formulas as above yield

=y =V = .., =0y =

<
=l

In order to prove that s(A4)

or is & monoid automaton we have to show the
validity of the axioms

La(®; (X 0) (@) La(m 4 (%, ( x9)(w)), (X0)@") = U4(%, ( xp) (@),
La(, 1%4) = 174

©
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The second of these axioms follows from
FLHXN) — 77 (D=
We prove the first of the axioms mentioned above. Let be
m (%, ( x ) (@) =u’,
La(®, (X0)@) = 48, uw =0’

(E’, (Xo) (W))=x7, J'E;’=vu,

La(t, ( %) (ww) ) ", Tww’ = v u'".
The validity of the equation % =12 follows from
VU =T =W =50 4

We consider the congruence in ( XX*)/( xx) generated by r and denote
it by the same letter . Then we have a natural homomorphism

»: (( X X)* |( XK))/T -—>(( XX Xx)}/’r‘
which induces a homomorphism
va: By~ (XA)2qy, 4= (( X@) X ( X!”))":
where one has to take into consideration, that
By = (xo)(( xX)*[( xr)}(( x0) X ( Xp))7,
X A = (xp)(( xX*)( xx)).
‘We define
v(A) =

> (X A)[Ay.
*AlE 4

Levma 3.1. The maps & u, v, constructed above satisfy conditions
&l, &2, &3, ul, u2, u3, v1, 42, ¥3.

4. Heterogeneous monoid automata

By means of the auxiliary maps &, , », introduced in Section 3 we are
able to give a general definition of a heterogencous monoid automaton
(h.m.a.):

A h.m.a. is a sequence of the form

@) (8) =<[4], 4, R, XR,,%*XB,E, [B]>: [4]1~[B],
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where
A=<A11-":An>’ E=<R1,"'7Rn>7

R =(By,...., B, R Z(XRi)MRi’ EA,: =ERi7
§=<B1,"'7Bk>? B=<Bl7-'-:Bk>7 Bj:MBjy
ji=1,..,F,
and where XR Z-‘L x B is an ordinary (= homogeneous) monoid auto-
M
maton.

Two h.am.a (8) (ef. (1)) and (8’) (cf. (2) below):
@) (8 =<4, A, R, xR ;- xB',B', [B'): [4] > [B],
where
é' =<A;7'-~’A;;'>’ §'=<R;y"',R;u>a
R ={(R,,..,R,>, R; =(><R;)/ZR,‘, E.=F_

T T T

B’ =<B,...,B.>, B =(Bj,...,B, B =MB}’

i=1,...,¥%,
are said to be equal, if
@) 4] =[4"], [B]=[B]
and

(4) (s(Al)v(Rl)x Xs(An)v(Rn))-
-(xR%» XB)(u(B) X ... xp(B)
= (e(A)P(R]) X ... xe(4,)v(Ry)):
-(xR’%» XB') (B X .. Xpu(B})).
The composition of two h.m.a. (8), (§') (ef. (1), (2)) is defined if
[B] =[4'].

The compositum (8) (8') of (8) and (§’) is again a h.m.a. which is computed

in the following way. By definition, (S) and (§’) are respectively cqual to
N

() <[4}, 4, R, (xR > xB)(s(B)x ... xu(By), [B], [B]),

(6) {LA] TA] [AD, {e(A)v(RY) X ... Xa(A,)»(R,))-

’ s, r ’ i’
{(XR' > xB'), B/,[B]).
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In (6) [A’] at the second and third place is considered as a sequence
(of the same length as [A4'] at the first place, but) of sequences of length
one (rather then of elements). The compositum (S8)(8’) is given by

(1 (8)(8) =<[4]1, 4, R (XR*-—>><B)~
(B(Ba) X .. xu(By))(e(AD)y(B) X ... xe(4,)9(RL)).
(x4 5 xB), B, [BT): [4] > [B'].

As easily can be seen the composition of h.m.a. is compatible with the
equalify of h.m.a. as parallel connection ((8)) does.

LemmA 4.1. With the composition defined above the h.m.a. form a
category Set-Mauth™ én which parallel conmection of two h.m.a. (8) and (8')
(cf. (1), (2)) is again a h.m.a. which is defined by

(8) (8)x(8) =([{A4,A4']],[4,4],[R,R'], ( XR;} xB)x
x (XR'» xB), (B, B', [[B, B'])>:

[ta, a7 ~[B, B,
where

E
IS
il
Py
'S

* An) A’i? "o A;L'>7

N
1N

']] = [Al’ ey Am Al’: ety A;;‘]:

and so om.

The expression (1) is called a representation of (S) of type (n, k).
Obviously the h.m.a. having a representation of type (n, %), ¥ =1, 2,
for fixed » form a subcategory Set-Mauth, of Set-Mauth™ .

In Set-Mauth;” we define a new kind of parallel connection, which
is only a partial binary nondeterministic operation and which will be
denoted by [ x]. Let be given representations

(9)  (8) =<4,<4), <R, (XR)/lR—S-* XB,_IE, [B]}: A —[B],

(10) (8) =<4, (A%, <R, (xR') llx'

> ><1.}/ BI [BI]> A > {_B_']

of two h.m.a. of type (1, k) and (1, %) respectlvely. Then the “paralle-
loidal” connection (S)[ x](8’) is defined if

(11) Braan = Bia,myy
12) . PREYS T -
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If this is the case then (8)[ x](8’) is a h.m.a. which is given by the re-
presentation of type (1, k+K%')
(13)  (®[x1(8) =<4, 4,4, AD,<[R,R'],
(« xR)/zx% X B) % (( XR')[Ags %> XB),
[B,B'],[[B,B]>: [4, 41 ~[[B, B.
From (12) it follows the equality
(14) ((XR)/ig) X (( XR') A = (X[R, R']) | 2p,m
and
(« xR)/le% xB) x ((xR')/xR,l% x B/)

Sxg
=(x [R7R'])M[R,R'] ad

~ X [B, B']

', m

is the ordinary parallel conneetion of homogeneous. monoid automatsa.
Since paralleloidal connection of h.m.a. is not compatible with equality
of h.m.a. it is & nondeterministic operation.

THEOREM 4.2. The instruction

Fh: Set-Auth™ — Set-Mauth;
preseribed by

(X, ><X1%> XY, ¥>
8
= (X XD, U EPDD, F(XX s XT), %, T
carries over parallel connection to paralleloidal connection.

Proof. Let be given two h.s.a.
(8) =<X, xxh% XY, ¥,
(8 = ¢x/, XX%» XY, ¥,

Then one has the formulas

(8) % (8) = (X, X', (XX 2o XT)X (XX 72r X¥), [¥, ¥'D),

FR(8) = CX', XD, KUXXY, B(XX o x¥), 5, T,

Fh(S) = X%, X, KUXXNY, BXX s XY, (™, TP,
(18)  Fh((8)x(81) = ([X*, X*1, <IX*, X"*]y, (XX, XD,
F((xX 2> xX) x (XX 2 x¥), (v, v, w*, v,

©
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Moreover, it exists

(16)  Fh(S)[xIFh(8) = {IX*, X*], <[X*, X*D, (L XX)*, (XD,
F(xxl%xmx F(XX'% X¥), T, ¥, [V, 7],

Indeed, E3 implies

E((xX)‘,(xX')‘) = ( XX X XX’)* = ( X[X: X,])* = E[X‘,X"]}

ie., (11) is true.

»2 implies A, xy, = A(xx)y == 0 (the least congruence),

o1 and »3 imply A, xs (xxpy = 0; hence (12) is true. We claim that
(15) and (16) are equal. The verification of this assertion rests upon Lemma
1.2 which implies the equality

e(IX, XN F((xX rf,? XY) % xX’ li> XY u( X¥, X ¥) (3(¥) X (X))

= o([X, X'Dp( XX, xX)(F(XX 2> X¥)x F(xX’ = XY)) (4(T) X

x u(¥)).
The assertion now follows from the equalities
(7) B(XY, X¥)(0(X) X (¥} = p((¥, ¥'])
and (cf. »3)

B(XX, xX) =»[{(xX)*, (xX)V5).

5. Heterogencous admissible bisystems

A heterogencous admissible bisystem (h.a.b.) is a sequence of the form

*B% XB,B, [BI): Eé] - [B],

) <[], 4, R, xR

where i
é =<A1,...,A">, _E=<R1:"';Rn>;

R =<{Ry, ..., R, RE,=(XR)[lg;, Hy =Eg,

E :<B15 "‘7Bk>7 B = (Bu "'!Bk>! Bj = MBji .7 =17 ey 7‘7:

and where xR-Z5. B is an ordinary (= homogeneous) admissible
bisystem.
Two h.a.b. (1) and

2) (A1, 4", R, xR' 25, xB, B ,[B']>: [A'] > [B']
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are said to be equal, if
(3) [4]1 =[4'], [Bl=I[B'],
(4)  condition 4. (4) is satisfied, where

XRZ> xB =67 (xR XB),
xR S xB' = 67 (xR 25 xB)

are the homogeneous monoid automata which by Theorem 2.1 correspond
to the homogeneous admissible bisystems oceurring as the arguments
of @1. Composition and parallel connection of h.a.b. can be defined in
accordance with composition and parallel connection of h.m.a. (applying
@ to h.m.a. occurring in the sequences (7) and (8)). In analogy with The-
orems 2.1, 2.2, 2.3 we get

LeMMA 5.1, With respect to the composition just defined the h.a.b.
in Set form a category Set-Abih™. There is a functorial isomorphy

Gh: Set-Mauth™ — Set-Abih™
given by

([A], 4, R, xB;—> xB, B, [B])

~<[A], 4, R,G(xR > xB), B, [B]>
which is compatible with parallel connection.

We are now in the position to establish the instruction

Set-Auth™ 2 Set-Mauth™ % get.Abik™

8
and call (FhGh)(<X, xX w x¥,Y)) the heterogeneous characteristic

. 8
bisystem of the h.s.a. (X, xX e xXY,Yy. Its behaviour at least with

respect 1;0 a suitable defined modified parallel connection (e.g. paralleloidal
connection) seems to be a little more convenient than the ordinary
(= homogeneous) characteristic bisystem.
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REGULARITY IN p-ALGEBRAS AND p-SEMILATTICES

J. C. VARLET

University of Liége, Lidge, Belgium

1. Introduction

An algebra is called regular if any two of its congruences having a class
in common are equal. It is well known that a p-algebra is regular if and
only if it is Boolean. A similar property holds for p-semilattices, implicative
semilattices and Heyting algebras. Therefore it might seem uninteresting
to focus our attention on the concept of regularity when dealing with
the aforementioned classes of algebras. However, if one defines regularity
not only for classes but also for subsets, congruences and algebras, it
appears that p-algebras and related structures constitute a nice domain
for investigating the notion of regularity. We consider the following three
problems:
ProeiEM 1. How to detect & regular congruence?

PrOBLEM 2. Where are the regular congruences located in the con-
gruence lattice?

PrOBLEM 3. What are the extremely irregular algebras, that is, the
algebras in which the universal congruence t is the only regular one?

We have a very satistactory solution of the first problem when the
p-semilattices and p-algebras L are distributive: a congruence @ of L
is regular it and only if I, = D(L), where I =ker®, I, = {pel: a>d
for an ¢ e I} and D(L) is the dense set of L.

The second problem is answered without any restriction: for all
the algebras we deal with, the regular congruences form an increasing
subset of Con(L) contained in [@g), where O denotes the Glivenko con-
gruence.

Tinally, under an assumption of distributivity somewhat slighter
than in Problem 1, we show that extreme irregularity is equivalent to
any of the following conditions: no +.maximal filter is maximal; every
minimal prime ideal I satisfies I, = L—I; every 2-clags congruence
covers a 3-class congruence.

[369]
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