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are said to be equal, if
(3) [4]1 =[4'], [Bl=I[B'],
(4)  condition 4. (4) is satisfied, where

XRZ> xB =67 (xR XB),
xR S xB' = 67 (xR 25 xB)

are the homogeneous monoid automata which by Theorem 2.1 correspond
to the homogeneous admissible bisystems oceurring as the arguments
of @1. Composition and parallel connection of h.a.b. can be defined in
accordance with composition and parallel connection of h.m.a. (applying
@ to h.m.a. occurring in the sequences (7) and (8)). In analogy with The-
orems 2.1, 2.2, 2.3 we get

LeMMA 5.1, With respect to the composition just defined the h.a.b.
in Set form a category Set-Abih™. There is a functorial isomorphy

Gh: Set-Mauth™ — Set-Abih™
given by

([A], 4, R, xB;—> xB, B, [B])

~<[A], 4, R,G(xR > xB), B, [B]>
which is compatible with parallel connection.

We are now in the position to establish the instruction

Set-Auth™ 2 Set-Mauth™ % get.Abik™

8
and call (FhGh)(<X, xX w x¥,Y)) the heterogeneous characteristic

. 8
bisystem of the h.s.a. (X, xX e xXY,Yy. Its behaviour at least with

respect 1;0 a suitable defined modified parallel connection (e.g. paralleloidal
connection) seems to be a little more convenient than the ordinary
(= homogeneous) characteristic bisystem.
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1. Introduction

An algebra is called regular if any two of its congruences having a class
in common are equal. It is well known that a p-algebra is regular if and
only if it is Boolean. A similar property holds for p-semilattices, implicative
semilattices and Heyting algebras. Therefore it might seem uninteresting
to focus our attention on the concept of regularity when dealing with
the aforementioned classes of algebras. However, if one defines regularity
not only for classes but also for subsets, congruences and algebras, it
appears that p-algebras and related structures constitute a nice domain
for investigating the notion of regularity. We consider the following three
problems:
ProeiEM 1. How to detect & regular congruence?

PrOBLEM 2. Where are the regular congruences located in the con-
gruence lattice?

PrOBLEM 3. What are the extremely irregular algebras, that is, the
algebras in which the universal congruence t is the only regular one?

We have a very satistactory solution of the first problem when the
p-semilattices and p-algebras L are distributive: a congruence @ of L
is regular it and only if I, = D(L), where I =ker®, I, = {pel: a>d
for an ¢ e I} and D(L) is the dense set of L.

The second problem is answered without any restriction: for all
the algebras we deal with, the regular congruences form an increasing
subset of Con(L) contained in [@g), where O denotes the Glivenko con-
gruence.

Tinally, under an assumption of distributivity somewhat slighter
than in Problem 1, we show that extreme irregularity is equivalent to
any of the following conditions: no +.maximal filter is maximal; every
minimal prime ideal I satisfies I, = L—I; every 2-clags congruence
covers a 3-class congruence.

[369]
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2. Preliminaries

A p-semilattice 8 = (S; A,*,0,1) is a meet-semilattice in which every
a € 8 has a pseudocomplement o* defined by aA 2 = 0 iff 2 < a*. A bound-
ed implicative semilattice S = (8; A,*,0,1> is a bounded meet-semi-
Iattice in which for any two elements a, b € § a relative pseudocomplement
axb exists (aAz<<b iff o <<axd).

A p-algebra LI = (L; v, A,*,0,1> is a p-lattice. A Heyting algebra
L =<{L; v, Ar,* 0,1>is a bounded implicative lattice. It is known thab
implicative semilattices as well as Heyting algebras are distributive.

We shall denote the equational classes of p-semilattices, distributive
p-semilattices, implicative semilattices, p-algebras, distributive p-algebras
and Heyting algebras by S, DS, 1, P, DP and H respectively. As a refer-
ence for all the results on these classes the reader is referred to [1], [3], [5]
and [7]. Clearly, one hat Hec I« DSc S, Hc DPc P< 8 and DP
< DS, where < stands for “is a proper mention subelass of”; hence those
of our statements which are applicable to H and I are obvious and we will
not them, explicitly.

The words ideal and filter will retain their usual meaning when L
is a lattice, but we warn the reader that we adopt the following convention
when 8 is a meet-semilattice: a filier ¥ is a non-empty increasing subset
of § which is closed for finite meets (just as in a lattice), whereas an ideal T
is a non-empty decreasing subset of § such that for all @, b e I there is a
cel satisfying ¢>a and ¢>b. For any ideal I of Le S or P, let
I, = {z e L: x> * for an i eI} (see [2]); clearly, I, is a filter. We shall
use the notion of *-maximal filter we introduced in [9], a notion which
makes sense in S: a filter T of L € S is *-mawimal if it is generated in L
by a maximal filter of 8(L) = {# e I: # = «*}. Various characterizations
of *-maximal filters can be found in [9].

Two subsets of the carrier L (lattice or meet-semilattice) play a
crucial role: the skeleton 8(L) and the dense filter D (L) = {xel: o* =0}

The word congruence will have its usual meaning. Tf the unary oper-
ation™ is deleted, we sometimes use the expression semilattice or lattice-
congruence. The congruence lattice of L is denoted by Con(L); its
least and greatest elements are w and ¢ respectively. For overy
0 e Con(L) let ker® = [0]0 and cok® = [1]0; they are an ideal and
a filter respectively. For every L e S or P, the Glivenko congruence Og
is defined by (2, ) € O it #* = y*; the quotient-algebra L /@4 iz Boolecan;
kerOy4f = {0} and cok®yf = D(L).

A subset O of the carrier of an algebra A will be called a regular
congruence-class if € is the class of exactly one congruence (such subsets
are said to be well-behaved in [61). A. congruence @ is regular if all @-classes
are regular. An algebra is regular if all its congruences are regular. Finally,
a class of algebras is regular if all its members are regular.
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‘We use the symbols =, « and — for set inclusion, proper inclusion
and set difference respectively; moreover, alb means 4 non-comparable
with b (with respect to the ordering <).

3. Characterization of the regular congruenees

In a lattice bounded below L = <{L; v, A, 0>, two congruences having
a class in common may have different kernels. The same holds true in
a p-semilattice, despite the unary operation of pseudocomplementation.
An easy example is provided by the pentagon, i.e., the non-modular 5-ele-
ment poset {0,a,b,c¢,1} in which 0 <<a<<b<<1, 0<<e¢<1, alec and blle,
considered as an algebra of S: the congruences w and @ = {{0, ¢}, {a},
{p,1}} have {a} as 2 common class but have different kernels. Such a
situation is not allowed in an algebra of P or DS, as shown by

TEBOREM 3.1. In an algebra of P or DS the kernel of a congruence is
determined by any of ifs classes.

Proof. Let C be a congruence-class of the algebra L € P (resp. of the
algebra L € DS) and let @ be any congruence having ¢ as a class. We
shall show that the kernel I of 6 is given by the following rule: an element
a of L belongs to I iff there are elements ¢;, ¢, in € satisfying ¢;aa =0
and ¢,V @ = ¢, (Tesp. ¢, == a, ¢;), thus proving that I is independent of €.

The condifion is obviously sufficient since (¢y, ¢;) € @ implies (¢, A a,
¢, A a) €@, that is (0, a) eO. Conversely, (0,a)c® implies (1,a*)cOd
and, for any ¢ € C, (¢, a*A ¢) € 0.If L € P, the elements a*Acand (a*Ac)v a
both belong to € and, since a*Acaa =0, they can play the roles of ¢,
and ¢, respectively. If I e DS, since ¢>> a*A a, there are elements d, e
in T such that d> a*, > a and dA e = ¢. From (d, 1) € O follows (dA e,
1A¢6)e®, that is (¢, ¢) € O, and ¢ € C. The elements a*Ac and ¢ can be
chosen for ¢, and ¢, respectively.

COROLLARY 3.2. In an algebra of P or DS, if two congruences have
a class in common, then they have the same kernel.

CoROLLARY 3.3. Let L be an algebra of P or DS. For any 6 e Con(L),
cok @ determines ker® but not conversely. More precisely, if cok® = F,
then ker® = {z e L: « < f* for some feF}.

COROLLARY 3.4. In an algebra of P or DS, a congruence is regular
if and only if its kernel is regular.

The last corollary shows that in P and DS the regular congruences
are in a 1-1 correspondence with the regular **-closed ideals. We remind
the reader that an ideal I of an algebra of P or S is said to be **-closed
it e I implies z** € I. The latter condition is obviously necessary for I
to be a congruence-kernel. But it is also a sufficient one. This was proved
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by W. H. Cornish, [2], Theorem 1.5, but only for L e DP. Taking into
account that, for any algebra L of S or P, L/@4 is Boolean and the **-closed
ideals of L are in a 1-1 correspondence with the ideals of L /@4, one readily
sees that in such algebras an ideal is a congruence-kernel iff it is **-closed.
Consequently, it should be interesting to characterize those **-closed
ideals which are regular. The general problem seems rather difficult but
we have a good solution in the distributive case. We first recall two re-
sults of [2].

For any **-closed ideal I, let us denote by O (I) and D(I) respectively,
the least and the greatest congruences possessing I as a kernel. If L ¢ DP,
then by Theorems 1.5 and 1.6 of [2]

(i) (z,y) eO) iff sAi* =yai* for an iel;
iff aAf =ynaf for an fel,;
(i) (w,y) e O(I) iff zAdAri* =yAdnai* for a d e D(L) and an
1el;
iff eAg =yAg for a ge D(L)v .
We are going to show that equivalences (i) and (ii) remain valid in S
and DS, respectively.

LevmA 3.5. Let I be a **-closed ideal of L € S. Then ©(I) is defined by
(i). If, moreover, L e DS, then D(I) is defined by (ii).

Proof. Firstly, let L eS. For every @ e Con(L) having the ideal I
as a kernel, cok® = I,.. Moreover, for every filter F of L, the least congru-
ence ¥ with cokernel F is defined by (z,y)e ¥ iff aaf =ynaf for
an feF (see [8], Lemma 2.10). Recalling that I is **-closed and taking
F =1,, one sees that ker¥ = I; hence O(I) = ¥ iy defined by (i).

Secondly, let I € DS. The relation @(I) defined by (ii) is & congruence
possessing I as a kernel since (z, 0) € @(I) iff A dA i* = 0 iff a** A d¥* A d*
=g ATk =0 iff o* i iff o <o, that is w eI, It is also the only
congruence with cokernel D(L)v I, since every filter containing D (L)
is the cokernel of exactly one congruence. It remains to show that &(I)
is the greatest congruence with I as a kernel. Otherwise we have o ¢ D(L) v
v I, (,1) € ® for some congruence ® having I as a kernel. Then z* e I
and z** € I, . Since L is distributive, there is a prime filter P separating
(#] and D(L)v I,. The filter P is maximal because it contains D (L).
Then z ¢ P implies 2** ¢ P, in contradiction with a** e I,. Therefore we

may conclude that the largest congruence with kernel I has D(L)v L«
as a cokernel and so is @(I).

THEOREM 3.6. If L s an algebra of DP or DS, then a **-closed ideal I
of L is regular if and only if I, = D(L).
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Proof. 1) if: let us suppose I, o D(L). Then D(L)vI, =1,, O(I)
= @(I) and I is regular.

2) only if: let I be a regular **-closed ideal. By Corollary 3.3 any
congruence @ having I, as a cokernel is such that ker® = {r e L: 2 < f*
foranfel,} = {#eL: # <i**for an ¢ e I} = I. We have already proved
that the (unique) congruence having I,v D(L) as a cokernel has also I
a§ a kernel. Since I is regular, I,v D(L) = I, and I, 2 D(L).

Remark. The pentagon described at the beginning of this section
shows that I, = D(L) is not sufficient for I to be regular, either in P
or in S (take I = {0}); on the contrary, the same condition is necessary
in S (the proof uses only the fact that every filter is the cokernel of at
least one congruence!) but not in P, as shown by the lattice depicted in
Figure 1 (take I = (d], I, = [¢) € D(L) = [¢) and yet I is regular).

0
Fig. 1

CoROLLARY 3.7. Let L be an algebra of DP or DS. If a **-closed ideal 1
is regular, then every **-closed ideal comtaining I is also regular.

Let L € DP. A **-closed ideal I of L can be regular in {L; v, A, *)
but not in {(L; v, A, as shown by the ideal (a] of the lattice L = {0, a, b,
¢,1} in which 0 <a<e<1, 0<b<e¢<1land afp. This eannot occur
in a Stone lattice, i.e., in a lattice L € DP satisfying a*v o** =1 ident-
ically.

TEEOREM 3.8. Let L be a Stone lattice. If I is a regular ideal in (L; v,
A,*>, then it is also a regular ideal in {(L; v, AD.

Proof. Let I be a regular (**-closed) ideal of the Stone algebra L
= (L} v, A,*). The least lattice-congruence having I as a kernel will
be denoted by O (I) and is defined by (z,y) € Or,(l) iff 2vi =yvi
for an ¢ € I. Hence # € cok O, (I) iff # vi =1 for some i € I. Since i* v i**
=1 and i** eI for all ¢ e I, we have cok@y, (I) 2 I,. By Theorem 3.6,
1, = D(L). Tt follows that eok@p,(I) 2 D(L) and Op,(I) isa {v, A,")-
congruence. Consequently, all lattice-congruences with kernel I are
{v, A, *}-congruences and T is a regular ideal in <{I; v, A).
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4. Localization of the regular congruences in Con (L)

Generally, the regular congruences of an algebra A do not constitute
a eonvex subset of Con(A4). For instance, the algebra L = (L; v, A)
depicted in Figure 2 is subdirectly irreducible, has two regular congru-
ences, o and i, whereas the other three are not regular.

1

@
Con(L)
Fig. 2

We shall now define a condition which is sufficient for the subset
of regular congruences of the algebra 4 € 4, A a variety, to be convex
(even increasing, since it contains ¢), and we ghall prove that it is satisfied
in P and S. We point out that we only require that all homomorphie
images of A should belong to A.

Conprron (0): 3% e Con(4) and da e A such that 4 /¥ is a regular
algebra and [#]@ =) {{#]¥: # € [a]®} for every
0 eCon(4).

Of course, for Condition (C) to be satisfied it is necessary that |[a]¥|
= 1.

LEmMA 4.1. Let A be an algebra of the variety A. If A satisfies Condition
() and if Oy, O, are two distinct congruences of A such that O, < ¥P< 0,
or 0, %, 0,> Y, then 6, and 0, have no class in common.

Proof. In the first case, it O, and O, have a class in common, then ¥
and 6, enjoy the same property and, on 4/¥, v and @,/¥ have a class in
common, which contradiets the regularity of 4/%. In the second case,
the same reasoning can be applied to 6,/% and 6,/¥.

Lmvwia 4.2. Let A be an algebra of the variety A. If A satisfies Condition
(0) and if @ 2k ¥, then neither © nor 6 vV are regular.

Proof. It @ 22 7, then @ @ v ¥. These two congruences have o class
in common, namely [a]6@. '

Z.EZF:IEOBEM 4.3. Let A be an algebra of the variety A. If A satisfies
Condition (C), then the regular congruences of A form an increasing subset
E of Con(A) contained in [¥). More precisely, R < [¥) if and only if ¥ # o.

©
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Proof. Let O be a regular congruence of 4. By Lemma 4.2, 0 > ¥.
Let us suppose @ > O is not regular. Then there is a I'e Con(A4) having
with @ a class in common. By Lemma 4.1, I'|%P. Without loss of generality,
we may take I'<< @. Clearly, I # 6. Since I" and @ have a class in com-
mon, I'n@ (# @) and @ A0 (= 0) enjoy the same property, which contra-
dicts the regularity of ©.

The following proposition generalizes Corollary 3.7 and shows that
it is true without any restriction of distributivity.

THEOREM 4.4. Let L be an algebra of P or S. The regular congruences
of L form an increasing subset E of Con (L) contained in [Ogz). More precisely,
R < [Bg) if and only if Of # w.

Proof. It suffices to observe that Condition (0) is satisfied in I by
¥ =04 and o = 0 since x €[0]0, O € Con(L) implies (#**, 0) € O, that is
o** c[0]0; hence [0]0 = | J{[#]04: © € [0]0}.

COROLLARY 4.5. Let L be an algebra of P or 8. Ail © > O4 are regular
if and only if B4 is a node of Con(L). Moreover, L is regular if and only
if Og = w.

Proof. If @4 is a node of Con(L) and @ > @, then, by Lemma 4.1,
@ is regular. Conversely, if 0||Og4, then, by Lemma 4.2, OvOy4 (> O4)
is not regular. The last part of the statement is obvious and well known.

5. Extremely irregular algebras

Clearly the only regular algebras of P and S are the Boolean algebras.
The dense p-algebras of cardinality at least 3 (and particularly the bounded
chaing) are, in a sense, the p-algebras which are “most unlike” the Boolean
algebras with respect to regularity: they are extremely irregular, i.e., every
congruence other than ¢ shares a class with another congruence. A nice
example of an extremely irregular algebra is provided by the lower semilat-
tices 8 of cardinality at least 3. Indeed, for any congruence @ = : with
no class reduced to a singleton, congider a proper filter of 8/@; if F ig
the filter of § which is agsociated, define ¥ by (z, y) e ¥ iff (» = y) or
(z and y are in §—F and (2, y) € ©): © and ¥ have at least one clags in
common.

Let us go back to the algebras of P and S. For every L of P or S,
Con (L) is coatomic, the coatoms are the @,’s (that is, the congruences
with two classes only) and have & minimal prime ideal as a kernel, Hence
by Theorem 4.4 and Corollary 3.4 it is clear that an algebra of P or DS
is extremely irregular iff every minimal prime ideal is the kernel of at
least two congruences. Figure 3 presents an extremely irregular p-algebra
and its congruence lattice.


GUEST


376 J. C. VARLET

Fig. 3

The preceding remark shows the interest of investigating the con-
gruences whose kernel is a minimal prime ideal.

Levva 5.1. Let L be an algebra of P or S. If P is a prime ideal of L,
then:

() PUP. 2 8(L);

(i) Py is @ *maximal filter if and only if P is a minimal prime ideal.

P?'oof. (i) If o* ¢ P, then x € P and z* € P,.

A (ii) If P is a minimal prime ideal, then P, is contained in a maximal
fﬂter am'i for every # € P, there is a y* € P, such that y* < z. Hence P,
is *maximal. O9nversely, let us assume that P, is a *-maximal filter and
P o> @, ¢ a minimal prime ideal. For any ideal I of L, if In I, &, then

I, = L. Hence we have PnP, = @.If a € P —@Q, then a* € P,, a* ¢ @ and
ana* =0 e@, a contradiction.

LeyvmA 5.2. Let L be an algebra of P or S. For o minimal prime ideal
P, the following are equivalent:

(1) Py is a mawimal filter;

(2) Py =L~—P;

(8) L—P is a *-mazimal filler.

LeywA 8.3. Let L be an algebra of P or 8. If @ is a 2-class congruence

of L and if ker ©= J, then each of the following conditions implies the next
one:

(1) L—J is a *mavimal filter;
(2) @ is regular;
(3) in Oon(L), © does not cover a O, (i.e., a 3-class congruence).
If LeDP or S, then the three conditions are equivatent.
Proof. (1) = (2). Since L—J is a maximal filter, it is the cokernel

of exactly one congruence, namely @. It remains to show that J is the
kernel of no congruence distinet from 6. Let @ € L —J. By the very defi-
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nition of a *-maximal filter, there is a y* e L—J such that y* < ®; hence
y** € J. Then, for every congruence ¥ with kernel J, we have (y**, 0) € ¥;
hence (y*,1) eV, (z,1) e ¥ and ¥ = 6.

(2) = (8). Let us suppose that @ covers ¥ e {0,}. Clearly, [010 = [01¥
and @ is not regular.

Tt L e DP or L € 8, then (3) = (1). Let us suppose that L—J is not
*maximal. Then J, ¢ T —J. By the definition of &(J) in DP and S
(Lemma 3.5) we have cok@(J) = J.. Consequently, @(J) has at least
3 classes. Theideal J is an A-irreducible element of L/6(J), whence L)
is a dense algebra of DP or S whose cardinality is greater than 2 and
L|O(J) has at least a 3-class congruence with kernel {J}. Coming back to L
itself, we exhibit a @, which is covered by @, in contradiction with the
hypothesis.

Remark. In the last part of Temma 5.3 the assumption of distributi-
vity cannot be deleted. In fact, the pentagon shows that in P (2) does
not imply (1); the p-algebra of Figure 4 has no @, and nevertheless the
unique @, with kernel {0} is not regular, showing that in P (3) does not
imply (2).

1

0
Tig. 4

The following characterization of the extremely irregular algebras of
DP and S is then immediate:

THEoREM 5.4, Let L be an algebra of DP or S. Then the following are
equivalent:

(1) L is extremely irregular;

(2) no *-maximal filter of L is maximal ;

(3) every minimal prime ideal J of L satisfies Jx < L—J;

(4) in Con (L), every @, covers a 0.

COROLLARY 5.5. Let L be an algebra of DP or S and let L be atomic.
Then L is extremely irregular if and only if no atom of L belongs to S(L).
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1

In intuitionistic analysis the effect of Brouwer’s ‘historic’ or ‘epistemic’
arguments can be satisfactorily captured by means of Kripke’s Schema;
which itself can be derived straight-forwardly from Kreisel’s axioms for
the creative subject. In [1] it is pointed out that Analysis 4+ “the creative
subjeet” i3 conservative over Amalysis 4 KS.

In the same paper it is conjectured that the addition of “the creative
subject” to Heyting’s Arithmetic presents a conservative extension.

We will prove this conjecture here.

For completeness we repeat the relevant facts. Kripke’s Schema is
the following schema:

KS JE[4 < 3Tz &z 0]

The axioms for the creative subject are:
0S8,  Va(lzAv T A4),

Cs, Yoy (b A — byp 4),

(/SN e by A « 4,

where + is 8 new connective such that k4 is a formula if ¢ is 2 numerical
term and 4 a formula. CS will denote the conjunction of CS,, C8,, CS;.
HA is the first-order theory of intuitionistic arithmetic.

LeMMA. Lot A be o sentence of HA; then HA+A «dwfr £0 is
conservative over HA, where f is a unary function symbol.

Proof. We will show that a Kripke model for HA can be expanded
to a model for HA+ A4 « A fo 5 0.

[379]
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