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1

In intuitionistic analysis the effect of Brouwer’s ‘historic’ or ‘epistemic’
arguments can be satisfactorily captured by means of Kripke’s Schema;
which itself can be derived straight-forwardly from Kreisel’s axioms for
the creative subject. In [1] it is pointed out that Analysis 4+ “the creative
subjeet” i3 conservative over Amalysis 4 KS.

In the same paper it is conjectured that the addition of “the creative
subject” to Heyting’s Arithmetic presents a conservative extension.

We will prove this conjecture here.

For completeness we repeat the relevant facts. Kripke’s Schema is
the following schema:

KS JE[4 < 3Tz &z 0]

The axioms for the creative subject are:
0S8,  Va(lzAv T A4),

Cs, Yoy (b A — byp 4),

(/SN e by A « 4,

where + is 8 new connective such that k4 is a formula if ¢ is 2 numerical
term and 4 a formula. CS will denote the conjunction of CS,, C8,, CS;.
HA is the first-order theory of intuitionistic arithmetic.

LeMMA. Lot A be o sentence of HA; then HA+A «dwfr £0 is
conservative over HA, where f is a unary function symbol.

Proof. We will show that a Kripke model for HA can be expanded
to a model for HA+ A4 « A fo 5 0.

[379]
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Tt is no restriction to consider only Kripke models with an underlying
tree and with the property that for cach « and g, with a < 8, D(8)—D(a)
is non-empty (even denumerable), cf. any of the Henkin-Type comple-
teness proofs, e.g. [2]. Let a Kripke model for HA be given. We define
o funetion as follows: Suppose we have defined interpretations f for
all a< B; it 7184, then we put f (1) = 0 for all e D(f); it B4, then
we put
for % € D(a),
for u ¢ D(a),

where a is the immediate predecessor of 8.
Tt is clear that A « Iz fr # 0 holds in the model.

181 —
77w 1

CoRoLLARY. HA +CS is conservative over HA.

Proof. We add a function f,, as in the previous lemma, for each sen-
tence A, and we add all the axioms 4 —3Iwf,z #0 to HA. Now we
define 4 by

Vo (z4 oIy <af,y) #0).

We observe that: (i) axioms 0S,, CS,, 0S; hold in this definitional
extension; (ii) by the lemma, HA 4-OS is conservative over HA.

Note that induction is arithmetie.

This proof was found after A. Joyal mentioned the following result
at the Mons conference, paraphrased in out terminology: Let T be o first
order theory containing HA; then T +‘‘for each formula A () with ‘deci-
dable equality’ (ie. A(x)AA(y) > =yvae #y) there is a decidable
(removable) subset 8, of N and bijection f, from 8, to the extension of
A(z)” is conservative over HA. Joyal’s theorem can also be proved by
the same techniques. Consider a denumerable Kripke model for 7' with an
underlying tree such that the domain of each a contains denumerably
many new numerical elements compared with its immediate predecessor.
Now define the bijection node-wise: assume that it has been defined
in the immediate predecessor of a, then we extend it to a by using the
‘new’ numerical elements to establish the bijection with the ‘new’ elements
of the extension of A (z). In this way we guarantee that the domain of the
bijection is decidable. It is not customary to use partial functions; one
can just as well use a relation in the above proof.

The conservative extension result concerning HA. at least suggests
that, as far as arithmetic is concerned, the creative subject must be able
to use a form of reflection, e.g.

Provg,(n, "4") >4,

or even the free variable version.
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2. Addenda and Corrigenda to ‘“An interpretation of intuitionistic analysis”, Ann.
Math. Logic 13 (1978), 1-43

4, + 9 replace ‘26’ by “27.
9, — 7 replace ‘[&] by ‘(8]
17, —13 replace line by ‘S = {n} iff a € 0"* &> and &k s 0.
18, + 2 add ‘or <0> < o’
Remark in the models the left most branch should play a special role. In
this proof the branch Zz-1 has (unfortunately) been chosen.
18, 414, +15 7 5 0 »r 3 0 (bwice).
18, +21 replace ‘au’ by 0.
19, —10 “7r; 4
20, +10 replace ‘+ by ‘x‘;’.
Remark: on second thought these principles are not that plausible at all.
After all, the evidence at stages need not be closed under such rules, it may
require some actual work to get Jw b 4 (#), given |- dz4 (z).
Of course we have b AvEB »Im > “(WAV b B), but that is a trivial
consequence of the axioms.
29, 6.3.2. The conditions, of course, have to be consistent and ‘functional’, i.e. if
@(n) =meP and p(n) = m’ eP, then m = m’.
30 After (ii) (-+5) add: ““(iii) ¢ is total”.
30, 11 add “or g(m) = n’'eP for n’ #n".
31, + 8 After ‘langnage’ add ‘and P,y; forces all (p);, i < m, to take values for
arguments in S,;. Then ¢ is total’.
32, — 6 Replace ‘m’ by ‘m+1" and ‘(p); by ‘((¢)iB)m’-
33, +13 Replace ‘10’ by ‘11°.
+14,+15replace ‘F° by ‘.
+16 replace ‘i by ‘F.
+18, replace ‘12” by ‘13’
-1 replace ‘Q"” by ‘@’
—8, —7 The argument that ¢ contains only conditions on (q:)nl, veey (rp)nk failge
The proof must De amended as follows: Let @ contain, apart from
(@ngs -5 (@Iny» also (®)mys -+ s (@h,,- The latter occur in the condition
because of the presence of guantifiers, and they can be replaced
by similar (p)u;'s which coineide with the original ones on @. We now
replace the (p)p;'s by (@)y,’s such that (p), becomes distinct from all

the (¢)y;’s (if necessary we also add extra conditions for (), to extend ).
Call the new condition Q¥ Clearly Q*-4*(...).

We now replace (), by & (@)m, such that m % ny, ..., 7 and (p)y coincides
with (qa)n1 on @* (ie. if ((;D)nl (a) = be@*, then (p),(a) = b). Hence m # wy, ..-
ey U

D
Now ‘we can follow the original argument, replacing @ by @*, since thoe extra
conditions on @)uys -+ (Pluy, are in variant under mz!.
I am indebted to Josje Lodder for pointing out the above lacuna and its
remedy.

34, — 4 Replace ‘€ by ‘g

36, —10 Replace ‘¢ by ‘a’.
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The aim of this note is a deseription of weak isomorphisms and weak
homomorphisms of distributive p-algebras and of double Stone algebras.

We shall use the notation and the terminology from [7] and [8].

1. Weak homomorphisms of unijversal algebras

Let (4; F) and {B; @& be two universal algebras. Let P™ (4) and P™ (B)

denote the sets of n-ary polynomials of <4; F'> and {B; @, respectively
(for details see G. Gréatzer [7]). Following A. Goetz and E. Marczewski
(see [6]) we can define the concept of a weak homomorphism as follows.

Let ¢: 4 — B be a mapping. If for every # > 0 and every f e P (4)
there exists g e P (B) such that

(1) G By ovey ,0) = (f(mlj reey wn))fp

and if for every # > 0 and every g € P™(B) there exists f e P™(4) such

that (1) is true, then ¢: 4 — B is called a weak homomorphism.

If ¢ satisfying the above condition is a bijection, we have a weak

isomorphism. It can easily be seen that ¢ satisfying (1) is uniquely determi-
ned by fif ¢ is a bijection. Thus we get a mapping f —g from P®™(A4)
into P™(B). (The related notions polymorphism and cryploisomorphism are
discussed by G. Birkhoff ([0], Chapter VI, and also 11

Since, by [4], Theorem 7, any weak epimorphism ¢: A — B can be

decomposed into o homomorphism p: 4 — 4 /6, and a weak isomorphism

n: A[6, — B, the study of weak homomorphisms can be confined to the

[383]
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