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In our definition of the Griss algebra, we can replace condition (8)
by the following equation:

(@vy)xz = (@x2)V (Y*2).

PrROBLEM 8. Discuss the relationship between a Griss algebra and an
algebra satisfying (1), (9), (10) and (zv Yr{rve)<yve.

Many results on BCK-algebras and Griss type algebras are found in
papers inserted into Mathematics Seminar Notes, Kobe University.

Added in proof. Problem 1 has been solved by Professor A. Wrongki.
He proved that the class of BOK-algebras is not a variety.
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The topic of this paper is to show that Kripke semantics and algebraic
semantics for intermediate predicate logics are incomplete.

Then we prove @ weaker version of the converse theorem to the
following one:

Let K be a class of intermediate logics such that for every L e K the formula
of the form Vu(a(x)Up) = (Vwa(z)Up), where x does not appear in f
is provable in L.

If L e K and L has & characteristic Kripke model, then L has a charac-
teristic set of algebraic models.

First of all, we describe a language % in order to define intermediate
predicate logics. Liet # consist of a countable infinite set ¥ of individual
variables @, y, 2, ...; a countable infinite set of n-ary predicate variables
™, g™ ™ and a countable infinite set of constants. 0-ary predicate
variables are identified with propositional variables. The logical symbols
of £ are N, U, =, |, ¥, 3. The set of formulas F is defined in the usual
way and elements of F we denote by a, g, y, ...

We will identify a logic with the set of formulas provable in it. Thus,
by LK we mean the set of all formulas provable in the classical predicate
caleulus and by LI we mean the set of all formulas provable in the intuition-
istic predicate caleulus. Let o be a formula provable in LK. Then by
LI+ a we denote an intermediate predicate logic obtained by adding an
axiom scheme o to LI.

DErINITION 1. A set of formulas L is said to be an intermediate
predicate logic if it satisfies the following conditions:
@) LIc L c LK,

[431]


GUEST


432 H. ONO AND O. RAUSZER

(2) L is closed with respect to the same rules of inference as LI.
Let D, B, K, @, (%), N, be defined as follows:

D =( wla(z)Up) > (Voa(@)

={(7713x a(w) = da T a(®),
E = (aU™a),
Q1(2) = a1(#),

Quin(@) = ([ A @) apa@)  (m>0),

Uﬂ)), where & does not appear in g,

N, = ( ;{Hin(m) => Vw(‘q}lei (w)))a
i=1 i=

where a, f, a(z), a;(») are formulas of £.

The logics LI+D, LI+H, LI+Kv XN, (m>0) are examples of
intermediate logics. In the sequel LI+4D and IJ -+ we will denote by
LD and LE.

DEFINITION 2. A pair (T, D,) is said to be a Kripke structure if

(i) T is a nonempty ordered set (with the order relation <),

(i) for every t e T, D, is a nonempty countadle set such that if t< s,
then Dy < D,.

Let F be a subset of T x ( U D)V x F such that (to simplify the nota-

tion we shall write ¢k, a 1nsteac1 of t,v,0) ek for tel,ve UD, ,
ael):

(1) for any propositional variable p, tk,p iff o(p) =1, where 1 i3
the element of the set of truth values {0, 1} and if ¢ < s and tk, p,
then sk, p,

(2) for every m-ary (m > 0) predicate p

t,pa; . a, HE p(ay, ..., a,) = D}, 0(o) = ;e D,
(3) tky(aupB) iff tk,a or iF,B,
(4) thy,(ang) iff ¢k, o0 and tk, B,

(8) thy(a = f) if A (s, if sk, a then sk, f),
sl
(6) tk, "o iff A (f< s, non sk, a),
sel
(7) tk,Aw a(x) iff ¢k, a(a), for some a €Dy,

(8) te, Yo a(w) it A (t<s, A sk, a(a),

sel’ agDg

icm
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where
v'(y) = a ¥ y=u,
v(y) =0y i yska.
In the sequel if tis a Kripke strueture and F is a relation such that
conditions (1)-(8) are fulfilled, then we call F a forcing relation in IN.
DEFINITION 3. A formula a of & is said to be valid in M if for every
forcing relation F in 9 and for any teT tk,a, where ve(l)D)".
teT
Denote by L(t) the set of all formulas valid in 9.

DEFINITION 4. We say that an intermediate logic L has a charac-
eristic Kripke model N if L = L(M).

We mention that LJ, LK, LD have characteristic Kripke models.
The fellowing thecrem is well known.

THEOREM 1. If Mt = (T, D) is a Hripke struciure with constant
domains, i.e. D, = Dy, for every t,s e T, then D e L(M).

LEvma 1 [1]. Let M be a Kyipke structure. Then there exists a family
of Kvipke stmciwes {M}icr, M; = (T°, DY), such that

(i) L ﬂ L(Mm,),

(i) every M; has the base point, i.e. T has the least element.

Levwma 2. If M has the base point and o formula of the form B is valid
in I, then M has constant domains.

Proof. Let M have the base point (denoted by 0) and let a formula
of the form F be valid in 9. Thus

(%) 0k, ("1 32 a(2) > Iz T a(s))
for every forcing relation in 2t and every valuation v.
By the definition of k, (%) is equivalent to

(%) AV A A nonwk,aa) or V AV wk,a(b)).

el t<<8 s<u ael)y, beDy t<s s<<w

Suppose that M has no constant domaing, i.e. for some r,eT, D, —D,
s . Define o forcing relation F in the following way:
For any r e T and a formula §

re,f it w(B)eD,—Dy #0,
non vk, if  v(f) e Dy.

Then it is easy to observe that (s+) does not hold, a contradiction which
proves Lemma 2.
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TeEoREM 2. LE has no characteristic Kripke model.

Proof. Suppose that LE has a characteristic Kripke model 9. Then
LE = L(M). On account of Lemma 1 there exists a family {M},, of
Kripke structures 9t; such that

= QL(%)

and each 9, has the base point. By Lemma 2, each M, has constant domains.
So by Theorem 1 we infer that, for every ¢ € I, D € L(I;), i.e. the D e LE.
But Umezawa proved in [4] that D is not provable in LE. 8o we have
a contradiction which completes the proof of Theorem 2.

DEFINITION 5. Let 4 be a pseudo-Boolean algebra and let J be
a non-empty set. Let R be a realization of the language & in J and 4.
For any formula « we define the mapping ag: J V — A as tollows (cf. [2]):
for any valuation v e J”,

1) (p®y .. n)R( = pR(”(wl sy 'U(xn)) (),

(

(2) (BUY)r(v) = Br(V)VUyR(),
(3) (ﬂﬁ? ( ) = Br(¥)Nyr(v),
4) (B = ”) = fz(») = yr(v),
(5) ('Wﬂ = T1Bg(?)

(6) (Elw a(® ) (v) = g aR('uj),
(M |

Vo a(@))p(v) = QaR(vj),

where v; is the valuation such that

J it y=u,
oY) iy #a.

In the sequel we call the pair % = (4, J) an algebraic structure and B
a realization in W.

%(y) =

DeriNiTIioN 6. Let U be an algebraic structure and R a realization
in %. A formula a of & is said to be wvalid in R it for every valuation
v, ag(v) =V, where \/ is the greatest element of A. Denote by L(Ug)
the set of all formulas vahd in R. A formula a is valid in algebraic structure
A if for every R in U ag(v) = V. In this case we shall say that % = (4, J)
is an algebraic model for a or o is valid in UA.

Denote by L(A) the set of all formulas valid in .
The following lemma shows a difference between algebraic seman-
ties and Kripke one.

Levma 3. The set of formulas provable in LI+ (aU TlaUN,) i equal
to the set L(Ug) N L(,), but it is not equal to L(N) for any algebraic structure U,
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where Wy = (A, Jo) 18 an algebraic structure such that A, is a Boolean
algebra, |Jol <N, Wy = (44,J,) is the algebraic structure such that Ay
is the Lindenbaum algebra of LY, J, = {a}.

This lemma suggests the following

DEFINITION 7. A set of algebraic structures {¥;},; is said to be
a characteristic set of algebraic models for an intermediate predicate logic
Lit L = (N L)
iel .
THEOREM 3. LI-+KUN,, (m > 1) has no characteristic set of algebraic
models.

Proof. Suppose that {(4;, J;): 4 eI} is a characteristic set of algebraic
models for LI+ K UN,,. Since EUN,, € L(4,, J;) for every i e I we can
show that either |J,| < m or 4; is Boolean algebra. In either case D ig
valid in (4;, J;) for any ¢ € I. Thus D must be provable in LI+ KUN,,.
Let (T, D) be the Kripke structure such that

(1) T is the set {0,1} with the order relation defined as follows:
0<0,0<1,and 11

(2) DY = {0} and D = {i: 0 <<i< m}.

Then it is easy to verify that KUXN,, is valid in (T, Di*) but D is
not valid in (T, D). This is a contradiction which proves Theorem 3.

Theorem 3 can be easily extended to any intermediate predicate
logic of the form LI+ {F;: i eI}+CUN,, (m>1), where each F; is
a formula of propositional logics which is valid in the 3-valued linear
psendo-Boolean algebra and ¢ is any formula provable in LK such that D
is provable in LI+ C. Thus there exist 2% intermediate predicate logics
having no characteristic sets of algebraic models. By Theorem 2 and
Theorem 3 we know that for intermediate predicate logics the power
of Kripke semantics and the power of algebraic semantics are incom-
parable.

THROREM 4. Let D e L. If I has a characteristic Kripke model, then
L has & characteristic set of algebraic models.

Proof. Let L have a characteristic Kripke model M = (T, Dy) and
let D e L. Then 9 has constant domains.

Now we will construct an algebraic structure (4, J) in the followmg
way. Put J = D,. We take for a psendo-Boolean algebra 4 the algebra
of all open subsets of T (@ = T is open if t € , then for every s such that
1<, s also belongs to ). It is well known that the operations = and -
in A are given by the formulas

a=b={zT At<s,if sea then acb},

sel’
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Tla = {teT: N1<s, s¢a},

sel’

where @ and b are open subsets of 7.
Now let R be any realization in the algebraic structure ¥ = (4, J)
defined above. Then for ved”

ap(v) = {teT: tk,a}, where F is any forcing relation in IN.

It is easy to observe that L(¥) = L(M) = L.

THEOREM 5. Let L be an intermediate predicate logic such that the
formula of the form D is provedle in L. Let A = (4, J) be an algebraic
struciure and R o realization in N such that L = L(Wg). Then there exist
a Kripke structure M = (T, D,) and a forcing relation k in I such that
for any a e ¥

a e L(WUg) if and only if for every teT, tF,a,
where ve( | D).

tel’
Proof. Suppose that % = (4,J) is an algebraic structure and R
is a realization in 2 such that I = L(¥g). By our assumption D e L.
Thus in the pseudo-Boolean algebra A both the infinite distributive laws
are satisfied.
To construct the required Kripke structure M = (T, D;) we use the
following

LeMMA 4 [3]. Let A be a D-pseudo-Boolean algebra, i.e. in A both the
infinite distributive laws are fulfilled. Let (@) e the set of infinite joins
and meets in A:

aﬂn = U a’7
g
@ feden
bsn+1 = m b,
beBap .11

where A,,, By, < A for neow.

Let ®, y be the elements of A such that the relation x <y doos not hold.
Then there exists a prime filter [7 such that yp preserves joins and meets in
(@) and zep and yéy.

By this lemma the set of all prime filters in 4 preserving all joing
and meets in @, i.e. the set of all Q-filters in 4, is non-empty. We take
for T the collection of all @Q-filters in 4.

Now we observe that by Theorem 1 the required Kripke model
must have constant domains.

Let us put for every p e T D, =J.
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So M = (T, D), where T and D, are defined above, is the re-
quired Kripke structure.

We define a forcing relation F in 9% as follows: for any atomie for-
mula pz, ... 4,

n

VFE, 9% ..., if and only if pgplay,...,a)ep,
where a@; = v(#;), © = 1,...,m, ved’.
We show that for any formula a
FEy,a ifand only f egz(v)ep.

We prove this fact by the induction on the length of a. We check only the
case where a is of the form (f = y). The remaining cases are left to the
reader.

Assume fiz{v) = b and yg(v) = ¢. By Definition 2 (5) it is sufficient
to show:

b=>cey iandonlyif A pop’, bép orcep’.

p'el
Suppose that b =cep. Let for any ' eT such that p = p’, bep'.
Then b = cep’ and it is obvious that cep’.

Suppose that p €T and b = ¢¢p. Thus in the quotient algebra
Alp the inequality |b| < |e] does not hold. It is obvious that 4/p is a
D-pseudo-Boolean algebra. Let h be the natural homomorphism from 4
onto A4 /. For simplicity we denote the set (@) by @. By the lemma there
exists a Q-filter 7 in A/ such that |b| e and || ¢ .

Let p' = {aeA: lal e} 7’ is not empty as |b] ey’ and it is easy
to check that ' eT. Moreover, c¢p’ and p c p’. Indeed, let aep;
then |a| =V,,. Thus |a] e, 5o @ e’ which proves the existence of
v’ €T suchthat p « ', b ey’ and ¢ ¢ p’. This proves that condition (5)
is satisfied.

Now, let a e L(Uz). Then ax(v) =V, i.e., for every p e T ag{v) e p
which proves that for every y e T, pF,a.

Let pF,a. Then ag(v) ey and |ag(v)] = V4, . Leb k be the natural
homomorphism from Ay onto A. Then agx(v) = h(laR ('o)l) =\/ which
completes the proof of Theorem 3.
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This paper contains a few new results but, as the title suggests, itis pri-
marily a discussion of various possibilities for further research in the theory
of semigroups of continuous selfmaps. Most of the problems discussed
here are natural developments from three lectures I gave at the Stefan
Banach International Mathematical Center and I would like to take this
opportunity to thank everyone there for their kind hospitality.

The problems fall within four different topics: dense subsemigroups
of §(X), congruences on S(X), homomorphisms on §(X) and Green’s
relations for §(X).

1. Dense subsemigroups of S(X)

Throughout this paper, S(X) will denote the semigroup, under composition,
of all continuous selfmaps of the topological space X. For general infor-
mation about S(X), one may consult [4] and [8].

It has been known for quite a long time that if & Hansdorff space X
is locally compact, then S(X) is a topological semigroup when given the
compact-open topology. The converse is not true. That is, there exist
Hausdorff spaces X for which §(X) is a topological semigroup under the
compaet-open topology and yet X is not locally compact. In fact, they
are as far from being locally compact as they can be. J. de Groot [6]
proved the existence of 2° 1-dimensional connected locally connected
subspaces of the Buclidean plane with the property that the only contin-
uous maps from one space into another are the constant maps and for
any such space X, §(X) consists entively of the constant maps together
with the identity map. Thus, §(X) is a left zero semigroup with identity
and is therefore a topological semigroup for any topology whatsoever on

[139]
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