e ©
438 H. ONO AND C. RAUSZER Im

[3] C. Rauszer and B. Sabalski, Notes on the Rasiowa—Sikorski lemma, Studia
Logica 34 (1975), 225-228.

(4] T. Umezawa, On logics intermediate befween intuitionistic and classical predicate
logic, J. Symbolic Logic 24 (1959), 141-153.

Presented o the Semester
Universal Algebra and Applications
(February 15— June 9, 1978)

UNIVERSAL ALGEBRA AND APPLICATIONS
BANACH CENTER PUBLICATIONS, VOLUME #
PWN—~POLISH SCIENTIFIC PUBLISHERS
WARSAW 1982

SOME OPEN PROBLEMS AND DIRECTIONS FOR FURTHER
RESEARCH IN SEMIGROUPS OF CONTINUOUS SELFMAPS

K. D. MAGILL, JR.

Department of Mathematics, State University of New York af Buffalo, Buffalo, N. ¥.
14226, U.S.A.

This paper contains a few new results but, as the title suggests, itis pri-
marily a discussion of various possibilities for further research in the theory
of semigroups of continuous selfmaps. Most of the problems discussed
here are natural developments from three lectures I gave at the Stefan
Banach International Mathematical Center and I would like to take this
opportunity to thank everyone there for their kind hospitality.

The problems fall within four different topics: dense subsemigroups
of §(X), congruences on S(X), homomorphisms on §(X) and Green’s
relations for §(X).

1. Dense subsemigroups of S(X)

Throughout this paper, S(X) will denote the semigroup, under composition,
of all continuous selfmaps of the topological space X. For general infor-
mation about S(X), one may consult [4] and [8].

It has been known for quite a long time that if & Hansdorff space X
is locally compact, then S(X) is a topological semigroup when given the
compact-open topology. The converse is not true. That is, there exist
Hausdorff spaces X for which §(X) is a topological semigroup under the
compaet-open topology and yet X is not locally compact. In fact, they
are as far from being locally compact as they can be. J. de Groot [6]
proved the existence of 2° 1-dimensional connected locally connected
subspaces of the Buclidean plane with the property that the only contin-
uous maps from one space into another are the constant maps and for
any such space X, §(X) consists entively of the constant maps together
with the identity map. Thus, §(X) is a left zero semigroup with identity
and is therefore a topological semigroup for any topology whatsoever on

[139]



GUEST


440 K. D. MAGILL, JR.,

§(X) and for the compact-open topology in particular. With the latter
topology, 8(X) is simply a copy of X together with an isolated poins.
However, X is not locally compact at a single point. Suppose it is. Then X
would contain a nondegenerate Peano continuum and it would readily
follow that §(X) would contain a nonconstant map other than the identity.
But these examples are pathological and if one requires that §(X) have
a sufficiently rich supply of functions, then the converse does hold. 8. Sub-
biah [26] has produced an extensive class of spaces with the property
that for any space X of the class, S(X) iy a topological semigroup it and
only if X is locally compact.

Throughout this section, the topology on §(X) will be the compuact-
open topology. In 1934, J. Schreier and S. Ulam discovered @ remarkable
fact about the semigroup of all continuous selfmaps of the Fuclidean
N-cell I¥. They showed that §(I) contains a dense subsemigroup which
is generated by five functions. Specitically, the proved the following

TeEEOREM 1.1 (J. Schreier and 8. Ulam [23]). There ewist three con-
tinuous selfmaps fi, fay fs of IN¥ and a homeomorphism b from IV onto IV
such that the subsemigroup generated by {fy, fa, fs, by B2} is dense in S(IY).

Here, of course, the compact-open topology coincides with the topology
of uniform convergence. When one thinks about the diversity of the
functions in §(I) alone, the result is surprising. There are those functions
which are mnot injective on any mnondegenerate subinterval (e.g., the
continuous nowhere differentiable functions) on the one hand and the
homeomorphisms from I onto I on the other. These are essentially two
very different types of funetions and yet they can all be approximated to
any desired degree of accuracy by finite compositions of five functions.

Once we know that there are finitely generated dense subsemigroups,
it is only natural to try to determine the least number of functions needed.
Let us note first that if X is locally compact and Hausdorff and has more
than one point, then at least two functions are needed. Suppose, to the
contrary that §(X) contains a dense subsemigroup A which is generated
by one element. Then 4 is commutative and since S(X) is a topological
semigroup this would force cld = §(X) to be commutative which is
a contradiction since X has more than one point.

So we see right away that we need at least two functions in order
to generate a dense subsemigroup of S(IY). The question ig, ean it be done
with two functions? In the same issue of the Fundamenta Mathematicae
which carried the paper of Schreier and Ulam there also appeared a paper
by W. Sierpitiski (in fact, his paper is the ome immediately following
the paper by Schreier and Ulam) in which he was able to reduce the number
of functions in the case of S(I).

icm

©

OPEN PROBLEMS IN SEMIGROUPS OF CONTINUOUS SELFMAPS 441

TrEOREM 1.2 (W. Sierpitski [24]). S(I) contains a dense subsemigroup
which is generated by four functions.

The following year in 1935, V. Jarnik and V. Knichal completely
settled the problem in the case of S(I).

TEEOREM 1.3 (V. Jarnfk and V. Knichal [7]). 8(I) contains a dense
subsemigroup which is gencrated by two functions.

Nothing further was done with this problem for the next thirty-four
years. Then in 1969, H. Cook and W. Ingram completely settled the
problem for a class of spaces which properly includes the Euclidean N-cells.
Six years later in 1975, 8. Subbiah befing unaware of the result by Cook
and Ingram proved a similar theorem. What we now state is actually
a corollary of either result.

TaeoreEM 1.4 (H. Cook and W. Ingram [3], 8. Subbiah [25]). Let X
represent amy Buclidean N-cell the Camtor discontinuum, the countably
infinite discrete space, the space of rational numbers or the space of irrational
numbers. Then S(X) has a dense subsemigroup which is generated by two
functions.

S. Subbiah also proved

TerOREM 1.5 (S. Subbiah [25]). S(BY) contains a dense subsemigroup
generated by three functions.

PrROBLEM 1.6. Determine if S(RY) has a dense subsemigroup generated
by two functions. We conjecture mo.

The results we discussed above suggest several avenues for further
research. In order to discuss it further, it is convenient o introduce some
terminology.

DEFINITION 1.7. The density indez D (S) of a topological semigroup §
is oo if § has no finitely generated dense subsemigroup. If § does have
such a gemigroup, D(8) is the smallest integer for which § containg dense
subsemigroups generated by that number of elements.

In this terminology then, previous theorems tell us that D (S (1)) = 2
and D(8(EY)) < 3. Problem 1.6 is to determine whether or not D(S(EY)
= 2.

ProsrEM 1.8. Characterize those spaces X for which D (8 (X)) is finite.
Related to this is

PrOBLEM 1.9. For each positive integer N, characterize those spaces X for
which D(8(X)) = N. The case where N =2 is of special interest.
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H. Cook and W. Ingram [3] and S. Subbiah [25] actually proved
more than the fact that D{S(IV)) = 2. They proved that each countable
subset of 8(IV) is contained in a subsemigroup generated by two elements
and since §(IY) is separable it readily follows that D (8(I¥)) = 2. This
leads us to.

DrrFiNiTIoN 1.10. If there does not exist a positive integer N such
that each countable subset of a semigroup 8 is contained in a subsemigroup
generated by N elements, then define the countability indew of 8, denoted
by G(8), to be co. Otherwise, define C(8) to be the least positive integer ¥
such that each countable subset of § is contained in a subsemigroup
generated by N elements.

Note that the countability index is defined for any semigroup while
the density index makes sense only if the semigroup is endowed with &
topology. Any time X is separable and metrizable S(X) will be separable
so that for such spaces X, we have D(8(X))< C(8(X)). However, it
can happen that 0(8(X)) is finite while D(8(X)) is infinite. For example,
if X is discrete and uncountable, then D(§(X)) is certainly infinite but it
follows from results in [3] and [25] that G(S (X)) =2, There also exist
nondiscrete spaces for which this is true. Examples of spaces X for which
D(8(X)) = O(8(X)) = oo are provided by the following

THEOREM 1.11. Let 8~ be any Buclidean N-sphere. Then
D(8(8Y)) = O(S(8Y)) = oo.

Proof. Since 8% is separable and metrizable, D(S(SY))< O (8(8%)
so it suffices to show that D(S(SY)) = co. Let {f}, be any finite col-
lection of funetions in §(8¥) and for each f;, let n;= degf; (where deg
denotes degree). Choose any positive integer ¢ which is not the product
of powers of the integers #;,4 =1, 2, ..., M and then choose any function g
such that degg = ¢. Finally, choose a neighborhood @ of g small enough
so that 7 e@ implies degh = ¢. Since deg(vow) = (degwv)(degw) for all
v, w e §(SY), it readily follows that if & is any function in the subsemi-
group generated by {f;}},, then degk # ¢ and hence & ¢ ¢ which in turn
implies that the subsemigroup generated by {f,}22, is not dense in §(S¥).
Thus, D(S8(8V)) = co.

Following are some problems and conjectures which involve C(S(X )).

PrOBLEM 1.12. Determine C(S(RY)). We conjecture that O(8(RY)) = oo
for each N.

We know that D(S(R)) < 3 so that if the latter conjecture is valid,

we would have gpaces with infinite countability index but finite density
index.
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ProBrEM 1.13. Characterize those spaces X or which C(8 (X)) is finite.

PrOBLEM 1.14. For each positive integer N, characierize those spaces X
for which C(8(X)) = N. The case where N = 2 is of special inlerest.

PrROBLEM 1.15. Characterize those spaces X for which D(s (X))
= 0(8(X)).

2. Congruences on S (.X)

This is an important area in the theory of semigroups of continuous self-
maps about which we have very little information. Recall that for any
semigroup S, a congruence on § is any equivalence relation 6 on § such
that for any (a,b) €6 and ce S, we have (ac, bc) €6 and (ca, cb) e 8.
One can define o binary operation on S§/6 the collection of equivalence
classes by 6(a)6(b) = 0(ad), where for any ¢ € S, 6(¢) is the equivalence
class containing ¢. Then §/0 is a semigroup (called a factor semigroup)
which is a homomorphic image of § and, up to isomorphism, one gets
all homomorphic images this way. The problem this leads to can be stated
quite simply (if somewhat vaguely) but it is likely to be very difficult
to solve.

ProBrEM 2.1. Determine all congruences on S(X).

This was completely solved in the case X is diserete by A. I. Malcev
[21]in 1952 and this turned out to be quite a formidable task. He showed
that when X is discrete, the complete lattice of congruences on §(X)
is generatecd by three types of congruences. A very readable account of
Maleev’s result can be found in the second volume of the well-known
treatise The algebraic theory of semigroups by A. H. Clifford and G. B. Pres-
ton [2]. Among other things, they have filled in some gaps which appear
to have been present in Malcev’s original paper.

So what about 8(X) when X is not discrete? If X has more than
one point then X has a proper two-sided ideal (e.g., the collection of
all constant functions) and one can get a nontrivial congruence by iden-
tifying all the functions in that ideal. Of course, this sort of thing can be
done for any semigroup whatscever. Such a congruence is called a Rees
congruence and the corresponding factor semigroup is referred to as a
Rees-factor semigroup.

The next reasonable thing to do is to look for congruences on S(X)
which are not Rees-factor congruences. We do have one type of congruence
which is not a Rees congruence and we describe it. The credit for the
basic idea belongs to BE. G. Sutov [27] who described the maximal proper
congruence on S(I). Define two functions in S(I) to be equivalent if
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any time one of them iy injective on a nondegenerate subinterval then,
the other function agrees with it on that subinterval. One easily verifies
that the equivalence relation just described is a congruence and Sutov
proved it is the largest proper congruence on S(I). That congruence iden-
tifies all functions which are not injective on any nondegenerate subinterval
(this includes all of the continuous nowhere differentiable functions).
This collection of functions is the maximal two-sided ideal of S(I) and
serves af the zero element for the factor semigroup. Now we expand on
Sutov’s idea to describe a whole class of congruences.

DrrFINITION 2.2, Let X be any topological space. A collection of
subsets % of X is said to be a unifying family it for any 4 e % and fe (X )y
f[A] also belongs to % whenever f is injective on A.

Examples of unifying families are the power set of X, the collection
of all finite subsets of X, the collection of all compact subsets of X, the
collection of all connected subsets of X, the collection of all compact
N-dimensional subsets of X, and so on.

Now for each unifying family % of X we define a binary relation
o(%) on 8(X) by requiring that (f, g) € (%) if and ouly if any time one
of the funetions is injeetive on some 4 €%, then the other function agrees
with it there. One easily verifies that o(%) is a congruence on 8(X). From
all these congruences, we choose one and look at it in a bit more debail.

DErFmviTIoN 2.3. Let X be any topological space. The family %,
of all subsets of X which are images of continuous injections mapping X
into X will be referred to as the family of replicas of X. 4y, is a unifying
family and the corresponding congruence will be referred to as the replica
congruence.

For a number of X, the replica congruence holds a distinetive position.

TaEOREM 2.4 ([4]). For any clonable space X, the replica congruence
is the largest proper comgruence on S8(X).

We recall that clonable spaces were defined in [12] and that all
Euclidean N-cells as well as the Cantor discontinuum are clonable. The
fact that the replica congruence is the largest proper congruence on 8(X)
when X is clonable plays a crucial role in the proof of Theorem 3.4 of [12].

The replica congruence o(%y) is not the largest proper congruence
on §(RY). The replica congruence never identifies distinet homeomorphisms.
Consequently, the congruence w on §(RY) obtained by identifying all
homeomorphisms from §(EY) onto S(R¥) to a point and identifying all
other functions to another point, is a congruence which is strictly larger
than the replica congruence. It is quite casy to see that o is 2 maximal
proper congruence on §(RY). It turns out that more is true,  is actually
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the largest proper congruence on S(RY). We verify a more general result
from which this will follow. But first we need the following

DEFINITION 2.5. A semigroup with identity which is the union of a
proper ideal and its group of units is referred to as a separated semigroup.

The ideal referred to above must necessarily be the largest proper
ideal of the semigroup. Now let § be any separated semigroup with largest
proper ideal M and group G of units. Define a congruence w on § by

o = (M xM)V(GdxG).
THEOREM 2.6. w s the largest proper congruence on S.

Proof. Suppose 8 is a congruence on S which is not smaller than w.
That is, 6 & w. Then (a,b)c d—w for some a,beS. Since (a,d) ¢ w,
one of @, b is in M while the other is in ¢. We may assume ¢ € M and b € G-
Let ¢ be the canonical homomorphism from § onto §/6. Then [I]
is the largest two-sided. ideal of §/6 and ¢[@] is its group of units. Conse-
quently, ¢[M]Ing[G] = 3. However, (a,b) € 5 means g(a) = p(b) and
this is a contradiction since a € M and b €G.

COROLLARY 2.7. The congruence o on S(RY) which is obtwined by
identifying oll homeomorphisms mapping RY onto RY to a point and then
sdentifying all other functions to another point is the largest proper congruence
on 8(RY).

Proof. 8(R") is a separated semigroup ([8], p. 244).

We remark that just because a congruence on a semigroup results in
only two congruence classes, it need not be the largest proper congruence
though it will be a maximal proper congruence. For example, let 4 and
B be two disjoint semigroups and let § = AUBU{0}. Define a multi-
plication on S by letting the product of two elements in 4 be as before,
and also letting the product of two elements in B be as before. For a € A and
b € Blet ab = ba = 0 and finally, let 0z = 20 = 0 for any # € §. Now set

a = ((4U{0}) x (4U{0}))u (B x B)
and
y = (4 x 4)U((BU{}) x (BU{0}).

The relations a and y are congruences on S. Clearly they are not compa-
rable and 8o ~ S/y is the two-element semigroup consisting of zero and
unit.

Suppose we return now to our discussion of congruences on §(X).
If X is any Huclidean N-cell or any Euclidean N-space, we know what
the largest proper congruence is because of Theorem 2.4 and Corollary 2.7.
It is quite easy to determine the smallest proper congruence as well.
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This is simply the Rees congruence which identifies all constant funetions.
In fact, this congruence will be the least proper congruence if X i any
space with more than one point and §(X) is doubly transitive on X.
Let X be such a space and denote the congruence by «. We suppose that ¥
is any other nontrivial congruence and we show that o < y. Since y iy
nontrivial, there exist (f, g) ey with f # g. Thus f(x) = g(x) for some
€ X. Now let any a, b e X be given and denote the corresponding constant
functions by <{ap and <b) respectively. Since §(X) is doubly transitive
on X, there exists a ke S8(X) such that k(f(#)) =a and k(g(@)) = b.
Thus (f, g) € y implies thiat ({a), <b)) = (kofo (@), kogo<{w)) e y. That is,
a sy

Incidentally, the congruence o may be regarded as a congruence
arising from a unifying family. Simply take the unifying family to be all
two-element subsets of X. At any rate, all this leads us to suggest the
following

ProJecr 2.8. Investigate conmgruences arising from wunifying families.

‘With the exception of what is covered in [8], p. 260-264 nothing has
been done here. This is an area which is almost certainly laden with results
which are interesting, nontrivial, and at the same time, not impossible
to prove.

3. Homomorphisms from §(X) into S(Y)

‘We know quite a bit about isomorphisms from §(X) into S(Y). Papers
[9], [10], [11], [16] are all concerned with this problem. We know consid-
erably less about homomorphisms but in [12] we did produce two classes
of spaces such that if X is from the first and ¥ is from the second then
any nonconstant homomorphism ¢ from §(X) into §(¥) is necessarily
injective and there exists a unique idempotent v in §(¥) and a unique
homeomorphism % from X onto the range of v such that ¢ (f) = hofoh ™ 0w
for all f in §(X). 16 is likely that theorems of this sort can be proven for
other spaces in addition to the ones we considered in [12]. Specifically,
we state the following

CoNJECTURE 3.1. Let X be any Buclidean N-cell and let ¥ be a conmected
subspace of any Buclidean M-space. We conjecture that homomorphism
Jrom 8(X) into S(X) either maps everyihing into a single idempotent or it is
injective.

It would then follow from Corollary 3.5 of [16], p. 36, that if the
dimension of ¥ does not exceed that of X then any nonconstant homo-
morphism ¢ from 8{(X) into 8(X) is given by ¢(f) = hofoh 'ow for

appropriate idempotent v and homeomorphism k. In particular, this
would imply
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COoNJECTURE 3.2. Let IN denote the Buclidean N-cell and let ¢ be any
endomorphism of S(IN). Then either p maps everything into a single idem-
potent v or @ is injective and there exists a unique idempotent v in 8 (IV)
and a unigue homeomorphism h from I¥ onto the range of v such that ¢(f)
= hofoh™'ov for each fe S(IY).

It is already known that this conjecture is valid for IV when N = 1.
This fact is an immediate consequence of Theorem 3.2 of [12], p. 620.
The conjecture is definitely false if one replaces IV by either the Euclidean
N-space or the Buclidean N-sphere. For the Euclidean N-space we take
the space B of real numbers. Let » and w be any two idempotents of
S(R) such that vow wowv =v. For example, we could define » and w
by

¢z for —1<<2<L1,
v (%) =‘ 1 for 1<,
-1 for o< —1,
r for —2<<2<2,
w(x) =[ 2 for 2<u,
-2 for r<< —2.

Then define ¢(f) =w if fis @ homeomorphism from B onto R and ¢(f)
= v otherwise. One shows that ¢ is an endomorphism of 8(R) by appealing
to the fact that the composition of two functions in S(R) is a homeomor-
phism from R onto R if and only if each of the two functions are homeo-
morphisms.

For still another example, define

—x  for —2<2<?,
2 for z< —2,
-2 for 2<

u (%)=

and note that vow = « and uow = w. Now define 0(f) =w if f is an
increasing homeomorhism from R onto B, 6(f) = u if f is a decreasing
homeomorphism from R onto R and 6(f) = v otherwise. One can verify
that 6 is also an endomorphism of S(R). It is known that for any Euclidean
N-space RY, there is no isomorphism from S(R¥) onto a proper subsemi-
group ([16], p. 32) which, we should mention, is in considerable contrast
to the case for S(IV). These considerations all lead us to

CoNJECTURE 3.3. Let ¢ be any endomorphism of S(BY). If ¢[S(RY)]
contains more than three elements, then ¢ is am automorphism of S(RY)
and there is a homeomorphism & mapping RN onto RN such that ¢(f)
= hofoh™! for each f in S(BY).
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If the first part of the conjecture is valid the latter part will follow
easily, since it is well known that all automorphisms of S(RY) (indeed
of most §(X)) are inner. Conjecture 3.3 fails badly if one replaces RY
by the Buclidean N-gphere 8¥. I{ N > 1, the semigroup S§(8¥) has many
endomorphisms ¢ such that ¢[§(SY)] has more than three elements but
is still finite. In fact, we have the following

THEOREM 3.4. Let N > 1 and let T be any finile commutative semigroup
with zero and identity. Then there exists an endomorphism ¢ of S(SY) such
that @[8(8¥)] is isomorphic to T.

We can actually prove something stronger but we first need some
notation. For each positive integer =, let

I, ={@,y) eB: y =an, 0<o<l, s*+y2<1}.

Detine W = | {L,}2, and let it have the topology it inherits from R
We now prove a result which has Theorem 3.4 as a special case.

TrEOREM 3.5. Lot 8Y be any Buclidean N-sphere, let ¥ be any completely
rogular Hausdorff space which contains a copy of W and let T be any finite
commutative semigroup with zero and identity. Then there exists a homomor-
phism ¢ from S(8Y) into S(X) such that o[8(8™)] is isomorphic to T.

Proof. In view of Theorem 3.3 of [11], p. 358, any finite semigroup
can be embedded in S(Y) since ¥ containg a copy of W so we let 8 be
any isomorphism from T into §(X). Now let ./ the semigroup of all non-
negative natural nombers under ordinary multiplication. Define a map o
from 4" onto 6[T'] as follows: send 0 into the zero of 6[7T] and send 1 into
the unit of 6[T]. Map the primes onto 6[7] in any manner whatsoever
and then extend ¢ to the composite integers so as to make it a homo-
morphism. We can now define the homomorphism ¢. For any f e §(8V),
let

(35.1) ¢(f) = oldegfl,

where degf is the degree of f. It is well known that D is & homomorphism
from S(8¥) onto the multiplicative semigroup of integers so that @ is
a homomorphism from §(S%) onto 8[T].

4. Green’s relations and related topics

In 1951, J. A. Green published a paper [5] in which he defined five equi-
valence relations on an arbitrary semigroup §. These have subsequently
come to be known as Green’s relations and they have had considerable
impact upon the development of the theory of semigroup. They have
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been extremely useful in studying the algebraic structure of semigroups
in general. Chapter 2 of [2], Vol. 1, is devoted to a discussion of these
and related concepts. We recall briefly the definitions.

Two elements a and b are said to be L-equivalent if they both gen-
erate the same principal left ideal, #-equivalent if they both generate the
same principal right ideal and #-equivalent if they both generate the same
principal two-sided ideal. The relations %, # and ¢ are all clearly equi-
valence relations. The relation 52 is defined by o# = £ Z%.1t so happens
that the composition of % with £ commutes. That is, Lo % = Zo L
so that Zo# is also an cquivalence relation and this relation is denoted
by 2. One observe that

HcLcDc §
and
HcRARc P < g

For finite semigroups, 2 and # coincide. Infact, more is true. They coincide
for any compact topologieal semigroup.

Let us recall that an element @ of a semigroup § is said to be regular
if ara = a for some x € 8. This ig, of course, just von Neumann’s definition
for a regular element of a ring [22]. It so happens that if one element
of a P-class is regular then all elements in that same 2-class will be regular.
Accordingly, such a Z-class is referred to as a regular 2-class and those
with no regular element are called drregular 9-classes. Some very familiar
topological spaces X are characterized within fairly extensive classes of
gpaces simply by the number of their regular Z-classes. For example,
we have

THEEOREM 4.1 ([15]). Let X be any Peano continwum. Then S(X) has
exactly two regular 2-classes if end only if X is an are.

THEHEOREM 4.2 ([20]). Let X be any Peano continuuwm with no cut points.
Then W (X) has exvactly three regular D-classes if and only if X is a simple
closed curve.

TEEOREM 4.3 ([20]). Let X be any mondegenerate Peano continuum
which contains at least one cut point. Then S(X) had ewacily three regular
D-classes if and only if X is a triode.

This immediately suggests

ProBLEM 4.4. For each integer N > 3, characierize within the Peano
continua those spaces X for which S(X) has exactly N regular Z-classes.

Related to the latter problem is

PROBLEM 4.5. Characierize within the Peano continua those spaces X
for which 8(X) has only a finite number of reqular D-classes.

29 — Banach Center Publ. t. §
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We mention that among all the Buclidean N-cells IV, the Euclidean
N-spaces RY and Buclidean spheres 8V, only S(I), S(R) and S(8") have
finitely many regular Z-classes. The semigroups of all the other spaces
have infinitely many regular 2-clagses. This is a consequence of Theorem 3.3
of [15], p. 1490.

The problem of describing Green’s relations for regular elements of
8(X) has been completely solved in a satisfactory manner [15]. In fact,
the results in that peper are sufficiently general to apply to all sorts of
endomorphism semigroups. As for §(X), two regular elements f and g
of §(X) are L-equivalent if and only if the decompositions they induce
on X are identical. They are #-equivalent if and only if their ranges
coincide, P-equivalent if and only if their ranges are homeomorphic and
F-equivalent if and only if range of each contains a retract of X which is
homeomorphic to the range of the other.

For elements of S(X) which are not necessarily regular, the problem
is far from being solved and we propose as a general

ProJECT 4.6, Determine Green’s relations for elements of S(X) which
are not mecessarily regular.

Some work has been done in this direction ([13], [14], [17], [18]1)
but the surface has barely been scratched and there is much yot to do.

Again, let 8§ denote an arbitrary semigroup and let #(8S) and #(8)
denote respectively the collections of all #-classes and #-classes of S.
These collections can be partially ordered in & natural way. The same sort
of thing can be done for the £-classes but we won’t be concerned with that
here. For any two Z-classes L, and L, define L, < L, if the principle left
ideal generated by @ is contained in that generated by b. Detine B, < R,
in an analogous manner. It is natural to try to determine if these things
are lattices and if not, how close are they to being lattices. Before we
diseuss (S (X)) and 2(8(X)) we will say just a few words about £ (L(V))
and 2(L(V)) where L(V) is the semigroup of all linear operators on the
vector space V. The results here are about as nice as one could expect
and we state them formally as

TEROREM 4.7. % (L(V)) is dual isomorphic to the partially ordered family
of all subspaces of V and Z(L(V)) is isomorphic to that partially ordered
family. Consequently, both %(L(V)) and #(L(V)) are complete lattices
and if V is finite dimensional over the reals they are isomorphic to each
other.

I have never seen the latter resnlt stated formally before. It follows
rather easily from general results in [15] and the fact that any finite
dimensional veetor space over the reals is selfdual ([1], p. 3). One reason
we have stated the result is that it provides considerable contrast to the
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situation for #(8(X)) and #(8(X)). For one thing, £(8(X)) is not even
a lattice if X has more than one point and only in this trivial situation
can £ (8(X)) and £(8(X)) be isomorphic. We do have a few results about
2£(8(X)) and £(8(X)) which we will mention and they will lead naturally
to some further conjectures. Our first result is concerned not with £{S (X))
but rather with #5(S(X)) the partially ordered family of all regular
Z-classes of §(X).

THEOREM 4.8 ([19]). Z5(8(X)) is a complete upper semilattice and a
conditionally complete lower semilatlice when X is a 0-dimensional metric
space.

CONJECTURE 4.9. 2(8(X)) is a complete upper semilattice and o condi-
tionally complete lower semilattice when X is a 0-dimensional meiric space.

THEOREM 4.10 ([19]). The following statements are all equivalent for
any Peano continuum X:

(4.10.1 (8(X))
(4.10.2 %5(8(X)) is a complete upper semilattice.
(4.10.3) Ry (S (X))
(4.10.4)
(4.10.5)

Zg(8(X)) is an upper semilattice.

)
)
is @ conditional lower semilatiice.

R5(8(X)) is a conditionally complete lower semilattice.

X is a dendrite.

ProBLEM 4.11. Determine if Theorem 4.10 remains true when .%R(S (X))
is replaced by Z(8(X)).

Although #(S(X)) eannot possibly be a lattice if X has more than
one point, the partially ordered set #{8(X)) can be. For example we have
the following

TuEoREM 4.12 ([14]). Let X be either the Hilbert cube or discrete or a
compact O-dimensional metric space. Then .Sf(S (X)) is a complete lattice.

ProJecT 4.13. Try to get more information about precisely what spaces
X have the property that J(S(X)) is a complete lattice or even just a lattice.

CONJECTURE 4.14. % (§(X)) is not a lattice X is any Buclidean N-space
or Kuclidean N-cell.

Our final result and subsequent conjecture relates the Z-classes and
the Z-classes

THEOREM 4.15. The following statements about any two compact 0-di-
mensional metric spaces X and Y are equivalent:
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(4.15.1) 25 (8(X)) and Az (S(X)) are order isomorphic.

(4.15.2) The complete lattices £{8(X)) and £(8(X)) are order iso-
morphic.

(4.15.3) The semigroups S(X) and S(X) are isomorphic.

(4.15.4) The space X amd Y are homeomorphic.

Theorem 4.15 is an immediate consequence of Theorem 2.2 in [14]
and Theorem 3.4 in [19].

CONJECTIURE 4.16. The four statements in Theorem 4.15 are also ogui-
valent to the statement that % (S (X)) is order isomorphic to #(S(X)).
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Added in proof.

Since this paper was written, some progress has been made with sev-
eral of the problems and conjectures. 8. Subbiah and the author were
able to show that C(S(R")) > 4. A proof of this fact can be found in [28],
Corollary 1.8. 8. Subbiah has settled Problem (1.6) in the case N = 1 [32].
Specifically, she has shown that there exist two functions in S (R), the
semigroup of all continuous selfmaps of the reals, which generate a dense
subsemigroup. Unfortunately, her techniques do not at all carry over
to the higher dimensional cages. Nevertheless, in contrast to what we
previously supposed, there is now reason to suspect that D (S (BY)) =2
for all W.

P. R. Misra, U. B. Tewari and the author were able to make a little
progress with Project (2.5) [31]. They were able to defermine all the con-
gruences on §(I), the semigroup of all continuous selfmaps of the closed
unit interval, which arise from unifying families. There are precisely
four such congruences. The next step would be to look at dentrites and
the triod in particular.

Problem (4.5) has been completely settled in [29]. Tt turns out that
if X is any Peano confinuum, then §(X) has only finitely many regular
Z-classes if and only if X is a local dendrite which satisfies an additional
Property. In that same paper, ancther result appears which has some
bearing on Problem (4.4) of this paper. Those Peano continua X which
have the property that 8(X) has exactly four regular Z-classes are charac-
terized. Up to homeomorphism, there are two such spaces. Finally, Con-
jecture (4.16) has Dbeen settled in the affirmative [30].
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