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BROUWERIAN SEMILATTICES :
THE LATTICE OF TOTAL SUBALGEBRAS

PETER KOHLER

Institute of Mathematics, Justus Liebig Universily, Giessen, F.R.G.

Any Brouwerian semilattice § can be viewed as a (meet-) semilattice
acting on itself, the action being relative pseudo-complementation. This
may be formalized by congidering § as a (universal) algebra with one
binary operation (meet) and for every @ € § a unary operation. The sub-
algebra lattice of this algebra is the main topic of this paper: It is shown
that it is & maximal distributive sublattice of the subalgebra lattice of §
considered as an (ordinary) Brouwerian semilattice ; Brouwerian semilattices
are characterized for which this lattice is Boolean. The question which
distributive algebraic lattices can be represented this way is left as an
open. problem.

1. Preliminaries

A Brouwerian semilaltice is an algebra {8, A, x,1>, where {8, A, 1) is
2 meet-semilattice with the greatest element 1, and where the binary
operation * is relative pseudocomplementation, i.e. #<{o*y holds for
elements @, y, # € § if and only if 24 # < y. Following the usunal practice
we will mostly identify the Brouwerian semilattice {8, A, *, 1> with the
underlying set S.
For the basic arithmetic of Brouwerian semilattices we refer to [4], [7].
Let us recall the following rules of computation:
For all @,9,2¢8:
1) ey oy =1,
(2) 1xz =g,
(3) TxY = Y,
(4) LADRY = TAY,
(5) (TAY)*2 = ox(y*2),

[47]
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(6) % (Y A B) = Y A T*2,
(7 (wxy)xy =
(8) sy > yYrz < oxz and 2xo < 2xy,
9 (wxy)ez < (@ry)*y,
{10)

(wxy)sy)sy = wsy,
(Txy AY*@)xm = (TY A YrT)*Y .

Rules (1) through (8) may be found in [7]; the proof of (9), (10), (11) is
left to the reader. We will often use these rules without special reference.

A filter of a Brouwerian semilattice S is a subalgebra, which is also
an upper end. The importance of filters in. the theory of Brouwerian
semilattices rests in the fact that filters of § are in 1-1-correspodence
with congruence relations on §. To be more precise: It F is a filter of §,
then the relation 0, with

2 0py < aryAysz el

is a congruence relation on S and the mapping I — 05 is an isomorphism
from #(8), the lattice of filters of § onto the congruence lattice of 8,
see e.g. [6]. )

To mention an important class of Brouwerian semilattices — which
are not necessarily lattices — we refer to [1], p. 182: Let P be a poset,
define 27) o be the set of all finite antichains in P, ordered by

A<B<+VbeBlacd: b<a.

Then 2% is easily seen to be a Brouwerian semilattice; note that we had
to choose the ordering dual to [1].

An element m of a (Brouwerian) semilattice is meet-irreducible it
m = @Ay implies m = o or m = y. Obviously an anti-chain 4 in 2®
is meet-irreducible if and only if [4| = 1. Thus the meet-irreducibles
of 2 form a subposet isomorphic to the dual of P, and cach element
of 2® ig a finite meet of meet-irreducibles. Conversely if § is a Browwerian
semilattice such that every element is a finite meet of meet-irreducibles,
then § == 2, where P may be taken to be the dual of the poset of meet-
irreducible elements of S. ‘

For other notions from Lattice Theory we refer to [1].

2. Meet-irreducible elements and total subalgebras

A subalgebra T' of a Brouwerian semilattice S is called a fotal subalgebra
if sxtel for overy teT and every seS. This notion was introduced
by Nemitz [6]. More recently total subalgebrag- occurred — under the
name Brouwerian subacts —in the theory of quasi-decompositions of
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Brouwerian semilattices, as developed by J. Schmidt ([8], [9]) and applied
by the author in [2]. This connection will become more transparent in
Section 3.

Clearly every filter of a Brouwerian semilattice § is a total subalgebra
of 8. To produce a larger class of examples, we recall the following lemma:

Leyva 2.1 ([11]). Let 8 be a Brouwerian semilattice, let m e S.
Then m 48 meet-irreduocible if and only if m + 1 and for every s e 8: s+m
=m or $em = 1.

For a Brouwerian semilattice S let M (S) be the set of its meet-irreduc-
ible elements. For any subset X of M(S) let Lx(S) be the subsemilat-
tice generated by X:

Lx(8) = {\X;| X; & X, | X} < o).
In particular note that I, (8) = {1}.

Lmvwa 2.2. Let S be a Brouwerian semilattice. Then for every X < M (8)
Ly (8) is a total subalgebra of 8.

Proof. Olearly Lx(8) is meet-closed and L eLy(S). So let se &,
X, a finite subset of X. Then sxAX, = Afsxa] 2eX;} = Afo| veX,,
s < o} by Lemma 2.1. Hence sxAX;eLg(8). Moreover, since Ly (S)
c 8, we see that Ly (8) is also x-closed.

As observed in the proof of this lemma, a subset T of a Brouwerian
semilattice § is a total subalgebra of § if and only if T is a subalgebra
of {8, A, 1L, {p sy, Where for each s €8 the unary operation is given
by ¢.(@) = s*x. Consequently, the total subalgebras of § form an algebraic
lattice, which we will denote by 7 (8).

For any subset X <= § let

n
SxX = {LU{Aspa] 1<n< o, s;e8, e X}.
=1

In particular we will write S»& instead of Sx{«}. The next lemma shows
that S»X is the closure of X in the algebraic closure system 7 (S).

Lmmma 2.3, Let S be a Brouwerian semilattice, lot X < 8. Then 8+ X
4s the smallest total subalgebra containing X.

Proof. Without loss of generality we may assume X == @. Clearly
any total subalgebra containing X must contain §x X. Obviously, X < Sx X,
80 it guffices to show that S X is a total subalgebra of 8. 8*X is meet-
closed by definition. So let s, 8y, ..., 8, €8, @4, ..., @, € X. Then

n n

n
Sx A sk = N\ sx(spem) = A\ (SA8;)xa; € B+ X,
g=1

Fel =1

Thus 8% X is a total subalgebra and the lemma is proven.

4 — Banach Center Publ t. 8
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As an immediate consequence we have:

CoROLLARY 2.4. Let 8 be a Browwerian semilattice. Let T, U e T (8).
Then Tv U = {irnu] tel, ue U}

This shows that #(8) is a sublattice of 7 (8). Moreover, for total
subalgebras T, U of 8 the join in & (8) — the subalgebra lattice of § —
coincides with the join in 7 (8), so that 7 (8) is a sublattice of &#(9).
But more importantly we have:

THROREM 2.5. Let 8 be a Brouwerian semilaitice. Then I (8) is dis-
tributive.

Proof. Let T, U, V € 7(8). It suffices to show that

NTUVvT) = (TnT)v(TnT).
SoletteTN(Uv V) iet=urvforsomeneU,veV. Now ust = uxv,
hence uxt € TN V;moreover (w#t)st = (ukv)kss A (Uk0)kv = (4% ), hence
(uxt)xt e TNU. Finally t = (ust)xtawuxt, and thus te(TnT)v (TNn7V).
There are three questions which arise quite naturally in this context.
Firstly, in general the lattice of subalgebras of a Brouwerian semilattice
is highly non-distributive. So one might ask whether 7 (8) is a maximal
distributive sublattice of &(8). Secondly, for which Brouwerian semi-
lattices 8 does the equality 7 (8) = %(S) hold. The third one is much
more challenging, and we formulate it as a problem:

ProBLEM. Characterize distributive lattices which are isomorphic to
8) for some Brouwerian semilattice S.

We will answer the first two questions; to deal with the first one we
need a simple but useful lemma.

LEava 2.6. Tet S be a Brouwerian semilattice, let a, b e 8. Then
BranSxb = S«((axb)xba (bra)xa).

Proof. Let @ e 8xan8xb. By Lemma 2.3, we conclude

o = /\ 8k = /\tj*b

=1 F=1

for some L<<n, M<< @5 83yvuuy 8y tyy ooy by € 8.

Consequently, for any 4,j we have:
SALAL =8 AYAG = 5;ATAD

and therefore s; Aty < axbAbra. Moreover Sk = sxa and o = tj*b-

icm°
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This implies:

A (8:A8)x((axb)xb A (Bra)xa)= A (s;At)6DANA (3;0 %)@
(%5) ()

(4,4)
n m m n
=N\ N\ sek(xD)a A\ A tx(sixa)
fm1 =] j=li=1
~/\si*/\tj*b/\ /\t*/\s*a
i=l  j=1 §=1" i=1
n m
= N\SHTAN tro= Asi*a/\/\tj*b
gl J=1 J=1
=OAT = .

Hence @ & S#{{a*b)xd A (bxa)*a) and the lemma is proven.
Note that -equality need not hold: To see this let a,be 8, a<<b,
and assume that a is meet-irreducible. Then

Qx((axb)xb A (bxa)xa) = 8xb, but b ¢ Sxa.

However, equality has to hold as soon as @, b are disjoint in the sense
that (axb)xbA (bxa)yra = 1. This will be used to prove the maximality
of 7(8).

THEOREM 2.7. Let 8 be a Brouwerian semilattice. Then I (S) is a
mamimal distributive sublatiice of & (S)

Proof. Let U be a subalgebra of § which is not total. Then there
exist w e U, s €§ such that sxu ¢ U. Put & = s+u, b = (sxu)xu. Then
aAb = u, axu = axb = b, bxu = bxa = a. In particular, a, b ¢ U. More-
over, (axb)xbA (bxa)xa= 1, thus, by Lemma 2.6, SxanSxb= {1}, This
implies that (S*anS8+b)v U = U. On the other hand we have {a, b}
c Sxav U gince axu =b, and also {a,b} = Sxbv U since bxu = a.
This shows that {a,bd} = (Sxav U)N(Sxbv U), and hence (Sxav U)n
N(Sxbv U) % T.

Consequently any sublattice of &(S) containing 7 (8) properly is
not distributive.

We add an easy observation.

CorOLLARY 2.8. Let 8 be a Brouwerian semilattice. Then the followmg
conditions are equivalent:
(1) &L(8) is distributive.
(i) &(8) = 7(8)-
(iii) 8 is a chain.


GUEST


e ©
b2 P, KOHLER ° lm

Proof. (i) = (ii) follows from Theorem 2.7. (iii) = (i) follows from
the fact that &(8) == Z(S\{1}) in case § is a chain. So it suffices to prove
(ii) = (iii). Let a,b €8 such that e < b. Then also @ < @A b. Moreover
{,1}, {and,1}e7(8) and hence anb = ax(aAbd) = axb =b. This
shows that b< a, and so § is a chain.

Note, however, that this could have been proven without referring
to Theorem 2.7.

Now we will turn our attention to the second question. A Brouwerian
semilattice 8§ will be called a generalized Boolean algebra provided the
identity
{12) (wxy)xy = (y*@)xx
holds in 8. This definition is in accordance with the usual understanding
of a generalized Boolean algebra — sometimes the dual notion is used —
since Brouwerian semilattices satisfying the identity (12) are exactly
the relatively complemented distributive lattices with a greatest element,
axb being the complement of ¢ in the principal filter [@ A b], while the
join of @ and b is given by (axb)xb (= (bxa)xa). See also [5] for a more
general discussion.

THEOREM 2.9. Let S be a Brouwerian semilattice. Then I (8S)
= F(8) if and only if 8 is a generalized Boolean algebra.

Proof. Suppose that S is a generalized Boolean algebra. Let I’ e 7 (8).
‘We show that T is a filter.Soleta € T, b > a. Then b = (axb)xb = (bxa)xa,
and so b eT. This shows 7 (8) = F(8).

Conversely assume that 7(8) = F(8). Let a,beS. Now Sxa is
a filter, hence (axb)xb € Sxa. Thus there exist s, ...,s, €8 such that

7
(axd)xb = A spxa. As a consequence,
=l n n
1L =bxAsta = Asx(bxa).
=1 i=1

This implies that s; < bxa for 1 < ¢ < », and hence s;xa = (bxa)*a. So we
have (a*b)*b > (bxa)xa. Interchanging a and b gives the desired equality.
Thus 8 is a generalized Boolean algebra.

Concerning the open problem we can narrow down the class of dis-
tributive lattices which occur as lattices of total subalgebras: Every finite
member of it must be Boolean. In fact we prove a bit more:

THEOREM 2.10. Let 8 be a Browwerian semilattice such that every
element of S ds a finite meet of meet-irreducibles. Then I (8) is Boolean,
in fact T (8) = P(M(8)), the power set lattice of M(S).

Proof. Recall that any complete infinitely distributive lattice I
such that 1 is a join of atoms is Boolean, even isomorphic to 2 (4), where A

BROUWERIAN SEMILATTICES 53

ig the set of atoms of L. As an algebraic distributive lattice 7 (8) is clearly
infinitely distributive. Moreover {m,1} is an atom of J(S) for each
m e M (8). Since each element of § is a finite meet of meet-irreducibles,
we infer from Lemma 2.3 that 8 = \/ {fm, 1} meM (8)}. Moreover any
atom of 7 (8) must be of the form {m, 1} for some m e M(8). Thus 7 (8
= P(M(8)).

This generalizes a result of Macnab ([3], Thm. 6.8), who showed that
7 (8) is Boolean for each finite §.

In the following section we will show that the converse of this theorem
also holds.

3. Total subalgebras which have complements

We start with a lerama on the arithmetic properties of “disjoint” total
subalgebras.

Lemma 3.1. Let 8 be a Brouwwerian semilattice, let T, U be total sub-
algebras of 8 such that TnTU = {1}. Then for any t,7 e T, u,v e U:
(1) uAt = teuA uxt,
(i) unte U = urt =u,
(i) At =vAr = teu = rxo.

Proof. (i) Due to equation (11) we have
(trun uxt)xt = (Grunrurt)ru e TnT = {1}.

Hence 1w A uxt < uAt. Since tet A uxt > w At anyway, we have equality.

(i) Letunte U, then ux(uat) = uxt e UNnT = {1}, and hence u < 1.
This shows uA? = u.

(i) By (i) we have At = txun uxt = 7x0A v5r = vA 7, Thus f+u
= tx(r#0) A tx (vxr). Now ¢x(r+v) € U and t«(vxr) € T; by (ii) this implies.
t#u =tk (r*0) > r+v. The other inequality follows by symmetry.

As an algebraic distributive lattice 77(8) is pseudo-complemented —
even relatively pseudo-complemented. It follows from the lemma that.
for a total subalgebra T' of § we must have:

T* < {u| unt = txuauxt for all {eT}.

A tedious calculation shows that even equality holds. More importantly,
however, this lemma allows us to characterize total subalgebras which
have complements.

TaeorEM 3.2. Let 8 be a Brouwwerian semilattice, let T e 7 (8). Then T
has a complement if and only if for each x €8 the set {ixz] t e TN[x)} has
a greatest element.
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Proof. Suppose that T has a complement, say U. Let €8, then
there exist #,e€T, u,e U such that o =f,Au,. We claim that txx
= max {t+z| t € Tn[x)}. Clearly t,+x belongs to this set. So let » € TN [w).
Then rxo<<(rAty)xs. Moreover rAtye T and rAljAUg= rAD = g
= tyA thy. Hence by Lemma 3.1 (iil) (rAfo)#u, =to% %,, and so in pax-
ticular

(P A To)@ = (PATo)* Uy = Byiely = loxap.

This shows r+& < fpxs. . —

Conversely let j(x) = max {t«a| t e Tn[x)}. In particular j(@) = fyxz
for some %, € Tn[z). Consequently j(»)>». Moreover j is idempotent.
To see this let 7 e TN [j(m)). Then 7 > j() > #, and 5o r+» < j(x). Hence
] () = 1% (Bpr2) = bok (r42) <t (@) = j(w). This shows rxj(@) = j(x)
and thus j(j(#)) = j(2). This means that j is a weak closure operator — in
the terminology of J. Schmidt [10]. Let U =j(8) = {z] j(2) = a}.
Observe that T = {w| j(x) =1}. We proceed in a number of steps.

(i) TnU = {1} follows immediately. -

(ii) For each » € § there exist ¢ e T, w € U such that # = tA u. For
if j(#) = tox2 then & = tyAj(z).

(iif) For every se8, weU we have sxue U. Let teT, > seu.
Then ¢ > % and so t*% = 4. Thus

T (sxu) = sk (tu) = sru.

Hence j(s*%) = s%u.

(iv) Let ¥V be the total subalgebra generated by U. In view of Lemma
2.3 and (iii) we have

Vo={wan oo Aty LK< @, Uy, ey thy, € U}.

Then V e 7(8) and by (i) Vv I = 8. We claim VAT = {1}. Suppose

not, and let 4y, ..., u, € U such that us A ... A, %1, 44 ... A, e VAT,
By (i) we have n > 2. Moreover let n be minimally chosen, i.e. #yA ...
oo Aty ¢ VT, Then by (iif) :

(Ur A oon Al g)*(Ug A oon AU) = (UgA ... AUy _q ), € UNT.

Hence (i) Shows (usA ... Ath,_j)*u, =1, and 50 w,A ... Ay _y K Uy, -
In particular ;A ... A%,_; = uA ... At,. This is a contradiction.
So we have VNI = {1} and V is the complement of T.

Remark. Knowing that V is the complement of T we can even infer
that V = U, ie. U is also meet-closed, which we have not been able
to prove directly. In fact, let v eV, and let ¢ e [v)NT. Then v =tAv
= vxiAtx0=t%v by Lemma 3.1 (i). Hence j(v) = v and go ve U.
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For filters we obtain:

COROLLARY 3.3. Let 8 be a Brouwerian semilaitice, let F' be a filter
of 8. Then F has a complement in I (8) if and only if for each x & 8 the set
{fxa| f e F} has a greatest element.

Proof. It suffices to show that for a filter F the sets {f+w] fe Fnle)}
and {f+#| f e F} coincide. In fact, let f e F, then (fro)xw e T and f*o
= ((f*m)xz)m.

This result is known; see e.g. [3], Thm. 5.13. We should also point
out the connections to [8], [9]: Denote the congruence class of # modulo F
by [#lp. Then fxx e[2] for every feF, and if y e [#]s then y+w eI
and (yrx@)x@ > y. Bo max{f+s| f e F} = max[s],, ie. each congruence
class has a greatest element. Such filters arve called comonomial. Moreover
it follows that the map j as defined in the proof of Theorem 8.2 is als
an endomorphism of 8§, so that we have a split exact’ sequence: )

B} —F—>8-15U0— 1.
x 7/
U

In other words, F and U yiéld a quasi-decomposition of S.
Finally, we have collected enough to prove the converse of Theorem
2.10. .

THEOREM 3.4. Let 8 be a Brouwerian semillattice. Then the following

conditions are equivaleni:
(i) 7(8) is Boolean.
(ii) Bwery filter of S is a comonomial.

(iii) 8 22 2% for some poset P.

Proof. (i) = (ii) follows from Corollary 3.3, (iii) = (i) is Theorem
2.10. It remains to prove (ii) = (iii). We show that (i) implies that every
element of § is a finite meet of meet-irreducibles. By way of contradiction
agsume that there is some # & § which is not a finite meet of meet-irre-
ducibles. In particular # = 1 and « is not meet-irreducible. Hence there
exist — by Lemma 2.1 — acf§ such that # < a+z <1. Consequently
also o< (axw)xx < 1. Since # = axwA (axx)*®», at least one of these
elements cannot be a finite meet of meet-irreducibles. Summarizing, there
exists b, e § such that o < b2 << 1 and byx2 is not a finite meet of meet-
irreducibles. The same reasoning shows that there exists ¢ € § such that
b < ox (boxw) << 1 and ox(by#2) = (¢ A bo)xa is not a finite meet of meet-
irreducibles. Put b, = ¢Ab,. Repeating this process — with the use of
the axiom of choice — we get a decreasing sequence by, > by > b, > ... such
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that @ < bo@ < by#® < bpxx << ... < 1. Let F be the filter generated by
b i<}, ie. T ={s] Ji< w: s>b}. By (i) F is comonomial, so let
feF such that fra = max[x]p. Firstly f>b, for some i< w. Then
Fxo << bxo < by x2. On the other hand by €F and 80 by xa < fra.
This is a contradiction and so our assumption on  must be false. Thig
proves the theorem.
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PROJECTIONS OF MIXED LIE RINGS

ALEXANDER A. LAJHI

Institute of Mathematics, Georgian SSR Academy of Sciences, Tbilisi, U.8.8.R.

Introduction

The aim of this article is the study of the lattice isomorphisms (projections)
of Lie rings. We will make use of generally accepted terminology (see,
for example, [6], [2]).

Notation. 8(&) is the lattice of all subrings of %; ¢: 8(Z) — 8(Z*)
will denote a lattice isomorphism; &% = %% will denote the image of the
subalgebra & = % under ¢; N (&), [, #] will denote the normalizer
and the commutator, respectively, of & < £; Z(¥) is the centre of .%;
C4(X) is the centralizator of X in & <.; Z is the ring of real integers;
{X} denotes the subring generated by X.

An element a €.% will be called proper if aa = 0 for every a € Z (a 5 0);
otherwise, it will be called periodic. The ring & is proper it all_its elements
are proper; it will be called mixzed (or nonperiodic) if it contains both the
proper and periodic elements, and it will be called periodic if all its elements
are periodic. The set of all the periodic elements of % will be denoted
by ¢(Z). It is clear that (%) is an ideal in &£. The dims-nsion of. £, denoted
by dim, is defined to be the maximal number of linearly independent.
elements. It is clear that dim(Z/H(£)) = dimZ.

We say that the ring % is determined (strictly determined) by § g.St”)
it ¢: (&) — (&%) implies £ ~ %% (p is induced by an isomorphism
between &£ and #7). )

A lattice isomorphism ¢: 8(&) - 8(#*) is called normal if N (&)
= N(«%) for each subring & < 2. )

In Section 1 we prove an analogy of a theorem of A. S. Pekelis [1].
In Sections 2 and 3, with the help of some ideas from [1], [4], we constrgct
examples which give negative answers to natural questions in connection
with the theorem of Section 1 and theorems from [3], [4].
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