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that @ < bo@ < by#® < bpxx << ... < 1. Let F be the filter generated by
b i<}, ie. T ={s] Ji< w: s>b}. By (i) F is comonomial, so let
feF such that fra = max[x]p. Firstly f>b, for some i< w. Then
Fxo << bxo < by x2. On the other hand by €F and 80 by xa < fra.
This is a contradiction and so our assumption on  must be false. Thig
proves the theorem.
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PROJECTIONS OF MIXED LIE RINGS
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Institute of Mathematics, Georgian SSR Academy of Sciences, Tbilisi, U.8.8.R.

Introduction

The aim of this article is the study of the lattice isomorphisms (projections)
of Lie rings. We will make use of generally accepted terminology (see,
for example, [6], [2]).

Notation. 8(&) is the lattice of all subrings of %; ¢: 8(Z) — 8(Z*)
will denote a lattice isomorphism; &% = %% will denote the image of the
subalgebra & = % under ¢; N (&), [, #] will denote the normalizer
and the commutator, respectively, of & < £; Z(¥) is the centre of .%;
C4(X) is the centralizator of X in & <.; Z is the ring of real integers;
{X} denotes the subring generated by X.

An element a €.% will be called proper if aa = 0 for every a € Z (a 5 0);
otherwise, it will be called periodic. The ring & is proper it all_its elements
are proper; it will be called mixzed (or nonperiodic) if it contains both the
proper and periodic elements, and it will be called periodic if all its elements
are periodic. The set of all the periodic elements of % will be denoted
by ¢(Z). It is clear that (%) is an ideal in &£. The dims-nsion of. £, denoted
by dim, is defined to be the maximal number of linearly independent.
elements. It is clear that dim(Z/H(£)) = dimZ.

We say that the ring % is determined (strictly determined) by § g.St”)
it ¢: (&) — (&%) implies £ ~ %% (p is induced by an isomorphism
between &£ and #7). )

A lattice isomorphism ¢: 8(&) - 8(#*) is called normal if N (&)
= N(«%) for each subring & < 2. )

In Section 1 we prove an analogy of a theorem of A. S. Pekelis [1].
In Sections 2 and 3, with the help of some ideas from [1], [4], we constrgct
examples which give negative answers to natural questions in connection
with the theorem of Section 1 and theorems from [3], [4].
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1. Projections of mixed 2-nilpotent Lie rings

TuBOREM. Let @: S8(%) - 8(£?) be a lattice isomorphism between
2-nilpotent Lie rings. If & contains a proper non-abelian subring, then ®
8 induced by an isomorphism.

It is clear that for the proof it is sufficient to consider only the
case where % is finitely generated. The lattice isomorphism ¢ is induced
by the one-to-one mappings ¢, and @, = —p,, which are isomorphisms
on any abelian subring & = .2, and &% < #°.

The proof of this fact is the same as the proof of & similar fact in the
group case (see [5]); we must only remark that ¢ is normal [3] and that
this fact implies that ¢ preserves the nilpotency class of subrings [1].

Note that from the condition of theorem it follows that there exist
elements w,, %, €% such that

{Edn{m} =0,  nww, 0,
for every integer m 0. Clearly, dim.% > 3. On the subring {#,, @,} the
projection ¢ is induced by only one isomorphism [3].
Of two mappings ¢, and g, let us take that one which coinecides with @
on {z;} and let us denote it by ¢. Let (@) =y in Z° for each o € . It is

clear that ¢(kw) = kp(x) for any = e 2.
Let us show that for each €%

(A) ?(@:4+2) = p(2)+o(@).
Consider the following cases:

1. & is a proper element and {w}N{&} = 0, k2> £ 0 for each ke Z ;

2. @ is a proper element and {s,}n {w} =0, kox = 0, nwm =0
for each n e Z;

3. @ is a proper element and {ein{s} =0, kow =0, ke = 0;
4. # i3 a proper element and {m}N {w} 5 0;

B. @ is a periodic element.

We shall prove (A) for each cage.

1. In this case the subring {z,, #} is proper and (A) iz evident [3].
2. It n(z,4o)w, =0 for a certain n> 1, then

0 = kn(zy+a)2; = knwyw, %0 = W(By+ o)y # 0
for each » > 1. On the other hand, if
{wn{m+a} #0, -
then
ky(01+2) = Fyty = 0 = Tyl + @)y = kolowymy 0.
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Consequently, if n(z,42)z, # 0, we have
Ploi+ (@ +2)] = @lwo+(214+2)] = Yo+ (2,4 3) =93+, +y = (A).
If Eo(wy+2)my =0 (%> 1), then n(z+ koxs) e, %0 because
0 = kn(w-+kyw,) 2, = knkgz,w, 0.

Consequently, we have

P&+ 1) + kool = @ [(@ + koy) + @] =y -+ Ty + §1 = @ (@1 +2) + hoya = (A).
3. In this case n(w,+2)ky®, 7 0 for each n € Z because

| 0 =n(v,+2) kg, = nkww, #0.

On the other hand, n (2 -+ k\2,)2, = 0 because knz@ +-Fnwyw;, = 0 otherwise.
As in the previous case, we conclude that (A) is true.
4. Blement # = &, is proper and zeZ(%¥). Then

plet+(@+o)] =2+o(m+2) (FeZ(¥)).
On the other hand, 24-=, is a proper element and
{fetain{m} =0, n(etz)z, #0.
It {s+a30{z} =0, then using case 3 we get
plletz)+a] =z+m+y = (4).

5. Tt is clear that there is an integer k, > 1 such that kz, € Oy ({z}).
On the other hand, {w;+a}n{kew,} 0 and n(2,+2)kw, % 0 because
0 = hyneyws+nkyre, # 0 otherwise.

Similarly, nw, (@ %ew,) 5= 0. From this we find (as in case 4) that
(A) is true.

Proof of the theorem. Suppose that », and ; are arbitrary elements
of . F'rom the previous considerations we conclude that it is sufficient
to consider the situation where there exists an element x €.% such that
nxw # 0, mow % 0 for each m, n € Z.

Suppose that for some %, &y, k., ks € Z we have

kxps =0, koo =0, Toww =0, knx, =0.
Then for & = k&, we have & € Oy ({&,, 25}). If 0 (ka;, +o,) @, 7 0 for each
n =1, then .
@ (-, -+, +a55) = @[k, +m,) + @] = Fy +Yo+¥s

= ’E711+‘P(m4+975) = @@ +a5) = Y3+ Ys.
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To end the proof we must show that
o(mws) = o(@)p(zs), Vo, o6,
It & is 2-nilpotent and ¢ is normal, we have
@ (y75) = ap ()@ (@),
where a is an integer. The ring {®,, #,+,} is proper.
Consequently, from the previous considerations we have
Pl (@ +2)] = (2@ + 5:@0) = (1) P( @y +25)
= @(®1) (%) -+ @ (B1) @ (%2) = @(@12a) -+ P (1) 0 ()
= @ (@a,) = @(21) P (%) = p[2,(2, -+ 25)]
= (@30 + ,05) = @ (@) P(@1) + @ (8,05) = () (@, +@5)
= @ (2) 9 (@1) + @ (2) 9 () = (0,85) = @ () (5).
This completes the proof of the theorem.

2. IIS-isomorphisms of 2-nilpotent Lie rings

The following questions arise naturally in connection with the theorem:
of Section 1 and Theorem 6.2 from [3].

1. Is every normal lattice isomorphism of a 2-nilpotent Lic ring
Z (dim % > 2) induced by an isomorphism?

2. I £ is a mixed n-nilpotent (n > 3) Lie ring which contains a proper
n-nilpotent subring, then is every normal lattice isomorphism of .Z induced
by an isomorphism?

On the other hand, one might consider a more rich lattice than §(%).

A subset %, of & ring & is called subsemiring if

@y, @y €Ly > B+ 0y, €5, Ty, € F,.

It is clear that the collection JIS(Z) of all subsemirings of % is a lattice
and that §(%) < IIS(#). An isomorphism
@: II8(%) - I8 (%7)

is called a IIS-isomorphism. Isomorphisms of a subsemiring lattice are
analogous to IIS-isomorphisms for groups. From group theory we have
the theorem of M. N. Arfinov [1]: Every IIS-isomorphism of a non-
periodic nilpotent group is induced either by an isomorphism or by an
anti-isomorphism.

It is therefore natural to pose the question:

3. Is an analogous theorem true for Lie rings?

icm
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Below we give examples which answer all these questions in the
negative. In constructing these examples we use some ideas from [1], [4].

ExAmprE 1. Let the Lie ring & = {1, @2, ¥} have the defining
relations

%y =k, kvy=0, Fkwy=0, pk=0

{p is a prime number different from 2). The elements #, and @, are proper.
It is clear that & = {w,, 25}, [, #] = {k}, L isa 2-nilpotent ring
and dim« = 2. Bach element I of .« has 2 unique expression in the form

U=aw+am+pb  (0<B<p).
Define a one-to-one relation f: o — o as follows:

, 7 if a0, = 0 (mod p)

1 V= = 172 ?

@ o {l-{-sk if aya, = 0 (mod p),
where 0 < s<<p, and s+ a;+a, = 0 (mod p),

and let us show that f induces a I7S-automorphism of 7 , i.e., that for
each 1,1, e &

Fli+1) = o(f(l), f(1.),

where w i3 a two-variable polynomial with positive coefficients. This
fact implies that f associates a subsemiring with a subsemiring and f
induces a JIS-automorphism.

There is no need to check the same fact for the product because

Weelo, ] ={k} = a; =ay =0 =f(lly) =flL)fl) =ll.
The subsemiring generated by the set X < =7 we shall denote by {X},.
Now suppose that

Iy = ay@+ oty + Bk (0 By < p),
Iy = an® +ags+ ok (0K Bo<< ).
Consider two sitnations:
(a) Suppose that
a; «a
A =" " o 0 (mod p).
Ogy Cgy #0( ?)

In this case
Uly = (a13%1 -+ 015 + f15) (0211 + a20®y+ Bak)
= 01 Qg+ a0y By = Ak.

If 4 s£ 0 (mod p), then it is clear that % e {f(Iy),f(ls)},. On the other


GUEST


62 A. A. LASHL

hand,
Fl+T) =L+l +sk = (I 80) + (B 80%) + 8% — (8, 8,) k
=f(l)+f () +5k e {f(l), Fl)}e (B =8—81—82)-
(b) Suppose that

Q11 O3

(2) 4 = = 0 (mod p).

Ogy Oggp
Let us show that

) Fl+1) =F(l)+F (1)

The proof of this fact we shall split into a few steps.

(by) If apays =0 (modp), then either a;; =0 (modp) or a;, =
(mod p). I a; =0 (mod p) (i =1,2) for only one of the a,;, then
we have ay; =0 (mod p) (i =1, 2) for one of the a,; then we conclude
from (1) that (3) is true.

Now if

o =0 (modp), a5 =0(modp), anu, #0(modp),
then we have
Fl) =1, fl) =Tl+sk, oantants, =0(modp).

S0 (agg+ agy) +(a1p+ ag) + 8, = 0 (mod p), and consequently (3) is true.
(b,) Suppose that ayya;, % 0 (mod p). Then, if all the considerations
of the previous case are true, only 7, and I, change their parts.
(bs) Now if apayp 5 0 (mod p) and agay, # 0 (mod p), then

(4) F) =lL+sk, an+ap+s; =0 (modop),
(6) Fl) = lats5k,  apn+0g+8, =0 (mod p).
From (4) and (5) we find that s; = s;¢4 (mod p). So
(@11 0a1) +(@10F @20) + (81+8,) = 0 (mod p).
On the other hand,
(@11+ an)(a+ az) = 0 (mod p) < (1+4¢)%ay0,; = 0 (mod p)
<142 =0 (mod p).

Thus 8;-+ 8= 0 (mod p). Consequently, (3) is true. We have shown that
f induces a IIS-automorphism on «/ and it is clear that f is neither an
automorphism nor an anti-automorphism.

Example 1 gives negative answers to questions 1 and 3.
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3. Answers to questions 2 and 3

Now we give an example of an n-nilpotent Lie ring which contains a proper
n-nilpotent subring and the IIS-automorphism of which is not induced
either by an automorphism or by an anti-automorphism.

Exawrin 2. Let the Lie ring

B = {my, @y, ..., Bpgay Boyy gy ooy Ty, k}
have the defining relations
Byly = Bypyy Wy =hy, phk =0, i=1,2,..,n,
bymy = Topyyy Ty gy =, Pl =0, §=1,2,...,n-8

(> 3 and p is a prime number different from 2). We agsume also that the
relations which we have not written are trivial. All elements &; are proper.

It ig clear that # is an m-nilpotent ring, and {»;, pz,} is a proper
n-nilpotent subring of %.

Each element I of # has a unique expression in the form I = oy -
+ag,+y, where y € [#, #]. Define a one-to-one mapping f: & - &

by formula (1), and let us show that f induces a JZS-automorphism of 2,
i.c. let us check that for each I,,l, e %

fl+1) = w(f(ll) y f(lz)):

where o is 2 two-wariable polynomial with positive coefficients. This
fact implies that f associates a subsemiring with a subsemiring, and f
induces a JIS-automorphism.

As in the previous example, there is no need to check the same for
the product, because

Uls € [, #] = f(l) = fI)f () = Wa.
Suppose that

ly = ag +ogete+91, Y1€[%, £,
by = ay® -+ oyt -+%, Y& [F, B].

The situation where 4 = a0y, — 05905 = 0 (mod p) is the same as situ-
ation (b) in Example 1, and in this cage

) f(ll+lz) =f(ll) ‘|‘f(lz)'
Now consider the situation where

Q11 Gz
Qg Qap

4 = = 0 (mod p).



GUEST


64 A. A, LASHI Im

Let us consider n-products (%)

0r = Llgly . 1y = (ay®; + 0155+ Y1) (Ga1®1 + Gaala +¥2) X

-

X (g3 + 1@+ Y1) « oo (@011 + Cya®a+Yy)
= (04300901 ¥ + Q120asa®y) (0121 + ‘112972)( v (0@ + alzwz))
= (07, Gaflyy, — Qya@an0iy oy~ Oyo@y1 0110y +- Cygly; 0 aafby) X
X (Qay + 0a) « o (GgaPy + aya®y)
= —dy 10‘22%“ — 0g3@9005 Ko g+ auana;‘fzwn“ + 01903105,y
= —aPAm, p, + a2 Ak, .
0y =iy ...y
= (01 + 01005+ ¥1) (0 + Caaa ) + oo (Cax®s + Cas®s +Us)
= O Uy Wy g1 — 05 Oy g + O oy + O Ry Ty
= ’_agl_zAmn+1 - agz_zdkn——z .
Let us consider the determinant

n-2 -3
a5 " O
Al =| n-2 _n-a|*
Og1 ~ Qgy

If 4, s 0 (mod p), then
~eay® = A o, 1 s 2%, ),
—6aft =4 (7% 0 4 + oy 20, ),

aaf —gal? = A(aﬁ—za;’é_z _a?z—zagl—z)kn—z = Adyk, .

Using the anticommutativity of a Lie ring we have —¢,, —¢, € {I{, I} -
Consequently,

Ak & {f(ly), f ()}
Because the order of %,_, i3 a prime number, we have

bp_y € {f(ll):f(lz)}+ .
On the other hand,

FOAL) =4l s,_,
= (ll + 31kn—2) + (lz -+ Szlcn—z) +[s— (81 +85)] kn-—z
= f(t) +f(L) +5k, s,

where 5,8, 8,8, €{0,1,...,p—1}, 5 =[s—(s;+8,)] (mod p).
() The brackets are omitted.
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Now let 4; =0 (mod p). Then
oy E0(modp) ((=1,2;k=1,2).-
In fact, let a;; = 0 (mod p). From (7) we have
Aoy — 10 # 0 (Mod p) = ayas, 7 0 (mod p) = ay % 0 (mod p),
ay, % 0 (mod p).
On the other hand,
o 2ol —ap el =0 (mod p) = a2l = 0 (mod p).

So we get a contradiction.
Let us consider the n-product

€ = Llgly oo  Lgly
= (@11 + 01y + Y1) (O2®1 F Aoaa +95) X ...
eoe X (@11 Qoo+ Yo) (Caay + Q1a®a + 1)
= Oy Oaa 0 Oy Wy 1 — G110 Caaky g+ 03a0f P 0n @y 1+ 010000y Pk,
= an gy Awy y + oy oy A,
Let us consider the difference
o0 — o a6
= o (gt A, 0 4 0 P ARy ) — ofi g (082 Ay gy + o5 AR, )
=y oy, A,y — i o Ay
= ol Ak, .
Consequently, k,_, € {¢,, ¢;}, and moreover
Fys € {f (1) F(la)}4 -
In a similar way we conclude that
Flla+T) =F(l) +F(la) +80,, 0<3<p.

So f associates each subsemiring with a subsemiring, i.e., induces a IT8-
automorphism, and it is clear that f is neither an automorphism nor an
anti-automorphism.
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We call a lattice L simple if |L]| > 1 and L has no nontrivial congruence
relations.

For which partially ordered sets P is there a simple lattice generated
by P? There is, for instance, precisely one simple lattice generated by
the two-element chain, namely, the two-element chain itself. This is the
smallest simple lattice. On the other hand, the lattice generated by an
n-element chain is not simple if » > 3. 8till, a partially ordered set consisting
of n elements pairwise noncomparable can generate a simple lattice just
as long as n = 3 (for example, the (% +-2)-element modular lattice of length
two). : .
Let P be the partially ordered set consisting of pairwise noncomparable
elements a, b, ¢ and let I be a simple lattice generated by P. If a <L bv ¢,
say, then I is the disjoint union of {x e L| 2> a} and {xreL| s < bvd},
whence L has a homomorphism onto the two-element chain. It follows
that a<bve. By symmetry and duality L must be the five-element
modular lattice of length two. This observation, first recorded by R. Wille
[14], shows that there is precisely one simple lattice generated by a three-
element unordered set (antichain).

Interest in simple lattices generated by an antichain was revitalized
by H. Strietz [12] who showed that every lattice of partitions on a finite
set with at least four elements is generated by a four-element antichain.
There are then at least countably many simple lattices generated by
a four-element antichain. Actually there are more.

* This work was supported in part by N. R.C. Grant No. A4077.
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