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We call a lattice L simple if |L]| > 1 and L has no nontrivial congruence
relations.

For which partially ordered sets P is there a simple lattice generated
by P? There is, for instance, precisely one simple lattice generated by
the two-element chain, namely, the two-element chain itself. This is the
smallest simple lattice. On the other hand, the lattice generated by an
n-element chain is not simple if » > 3. 8till, a partially ordered set consisting
of n elements pairwise noncomparable can generate a simple lattice just
as long as n = 3 (for example, the (% +-2)-element modular lattice of length
two). : .
Let P be the partially ordered set consisting of pairwise noncomparable
elements a, b, ¢ and let I be a simple lattice generated by P. If a <L bv ¢,
say, then I is the disjoint union of {x e L| 2> a} and {xreL| s < bvd},
whence L has a homomorphism onto the two-element chain. It follows
that a<bve. By symmetry and duality L must be the five-element
modular lattice of length two. This observation, first recorded by R. Wille
[14], shows that there is precisely one simple lattice generated by a three-
element unordered set (antichain).

Interest in simple lattices generated by an antichain was revitalized
by H. Strietz [12] who showed that every lattice of partitions on a finite
set with at least four elements is generated by a four-element antichain.
There are then at least countably many simple lattices generated by
a four-element antichain. Actually there are more.

* This work was supported in part by N. R.C. Grant No. A4077.
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TEEOREM 1. There are 2% mnonisomorphic simple lattices generated
by a four-element amtichain.

The proof of this result relies on an embedding theorem which seems
to be of independent interest.

THEOREM 2. Every countable lattice is embeddable in a simple lattice
generated by a four-element antichain.

‘While our proofs are almost elementary the results themselves stem
from and, in turn, bear upon several important facts.

First of all we shall make use of at least one nontrivial fact: every
countable lattice is embeddadle in o lattice generated by a three-element anti-
chain (R. A. Dean [8], Ju. I. Sorkin [11]). Secondly, we shall require
a companion result due to P. Crawley and R. A. Dean [1]: there are 2%
nowisomorphic lattices generated by a three-element amtichwin. We ghall
supply an alternate proof of this fact, indeed, a proof whose simplicity
is rather unexpected.

Interest in lattices of partitions originates, of course, in P. M. Whit-
man’s pioneering work in the 1940s [13] (see also [7]). Hle showed that
every countable lattice is embeddable in the lattice of partitions on a countable
set and conjectured that every finite lattice is embeddable in the lattice
of partitions on a finite set. Since any lattice of partitions on a finite set
is simple [7] and generated by a four-element antichain [12] it was of
some interest to prove at least that every finite lattice is embeddable in
a finite, simple lattice generated by a four-element antichain. This result
was established by W. Poguntke and I. Rival [8] whose proof, in fact, pro-
vides the main ideas for our proof of Theorem 2. Of course, more recently
this result, as well as several related ones (cf. [2], pp. 125-131, [6], [6]),
has been superseded by the deep results of P. Pudlsk and J. Tama [9]
who settled Whitman’s conjecture in the affirmative. However, neither
the affirmative solution to Whitman’s conjecture nor Whitman’s original
embedding theorem accounts for Theorem 2. While the one is concerned
with finite lattices the other is concerned with the lattice of partitions
on a countable set which, though simple, is uncountable, whence not
even countably generated.

Proof of Theorem 2. Let L be a countable lattice. We may assume
that L is bounded (for otherwise we would just adjoin universal bounds
0 and 1 to L).

First, we shall embed L into a simple, countable, bounded lattice L',
If I has length at most two then either L is simple, in which case we may
choose L' = L, or else L consists of at most four elements, in which case
we take L’ to be the five-element (modular) lattice of length two. Let L
have length at least three and let @ (L) denote the set of all quotients of L
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which are disjoint from 0 and 1:
QL) = {wlyl 2,y eL and 1> o>y > 0}.

In all, there are countably many such quotients in L, for Q(ZL) is itself
embeddable in L x L. Hence, the members of Q(L) may be enumerated:
@3 [Y1s BafY 3y «-- Lot {ag, by, 1, di}, {62, bs, ¢5, do}, ... be a sequence of quad-
ruples of distinct elements such that {a;,b;, ¢;, 4} {a;, by, 05, d,} =G
if ¢ 5% j and, {a;, b;, ¢;, &}NL =B for each i. Let

L' =1Ly L>J1{“iy bys ¢y i}

have the partial ordering induced by I and the comparabilities 1> a,
>, 1>0>y, v,>6>0, and 4,> d;> 0 for each w,fy; QL)
Evidently, L' is a lattice; moreover, it is an easy matter to verify that L’
is simple. Hence, we have embedded L in a simple, countable, bounded
lattice L. (%)

In the next step we embed L’ in a subdirectly irreducible, bounded
lattice L’ generated by three elements. According to the Dean-Sorkin
Embedding Theorem, L’ is embeddable in a lattice K generated by three
elements. Now, K is a subdirect product of subdirectly irreducible lattices
K,,aecl, and each K, is generated by three elements. In particular,
L' is embeddable in the product of the K, ’s. As L’ is simple, it is, a fortiori,
subdirectly irreducible, whence there is a K, such that L’ is embeddable
in K,.Weset L'" = K,.Insummary, we have embedded L in a subdirectly
irreducible, bounded lattice L'’ generated by three elements.

In the final step we embed L' in a simple lattice generated by a four-
element antichain.

To this end let 6 be the minimum nontrivial congruence relation of L.
Unless L" has length two and is already simple there is a/b e @ (L") satis-
fying a = b(0). Let ¢, d be distinet elements each disjoint from L and let

L' = L”U{C, d}

be partially ordered by the induced ordering of I’ and the compara-
bilities 1 > ¢ > b and ¢ > d > 0. Then L' is a lattice generated by a four-
element antichain: the three generators of L/, and d. Moreover, L'’ is
still subdirectly irreducible (its minimum nontrivial congruence relation ¢
satisfies a = b(0)).

‘We shall show that L' is simple. (?) Specifically, we shall prove

(*) Actually, the substance of this construction shows that every lattice is
embeddable in a simple lattice (cf. [4]).

(3) Our construction shows, in fact, that every m-generated subdirectly irre-
ducible lattice I is embeddable in a simple (n-+1)-generated lattice with precisely
two more elements than L.
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that 1 = b(0) and b = 0(6). For arbitrary quotients »/y and u/v of L'
we write z/y 2 ufvif avo =u and sAv=y, and afy N ufvif yauw =0
and yvu < @ Note that 4 = o(0(x, y)) it either @fy 7 ujv or @fy ™ wfv.
Since L’ is subdirectly irreducible and finitely generated there exist
noncomparable elements e,, ¢, of L with ;v ¢, = 1. Then

afb 2 Lje eyfe;Ab # e,vb(b.

It follows that e;vbh = b(6) and similarly e,v b = b(0), whence b = ¢,V e,
=1(6).

Now, choose noncomparable elements fy, f, of L satisfying f1 A f, = 0.
Then

16 @j0 7 fuv dlf,

g0 fyvd =f,(0) and similarly fv d = f,(0). Now, 0 =fiaf, = (fivd)a
A(fovd)(0) and since both fivd>=c¢ and f,vd=>=¢ we conclude that
0<b<e<(fyvaa(fyvd). In particular, b = 0(6). This completes the
proof of Theorem 2.

Proof of Theorem 1. We require the result, due to Crawley and Dean [1],
that there are 2% nonisomorphic lattices generated by a three-element antichain.
Let L be the lattice illustrated in Fig. 1. Evidently, L is gencrated by the
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three-element antichain {a, b, ¢}. Note that, for each positive integer %,
the smallest congruence relation 0, prescribed by u, = v;(0;) has exactly
one nontrivial block, namely, {u;, v;}. Moreover, if I and J are distinct
subsets of the set of positive integers then it is easy to see that L/0; = L/6;
where 0; = \4 0, and 6, :j\ée,.. In particular, L has 2% nonisomorphic
1€, €.

homomorphic images (1), each, of course, generated by a three-element
antichain. (%)

Let (L,) be a family of 2% nonisomorphic lattices each generated
by a three-clement antichain. Aceording to Theorem 2 each I, is embedda-
ble in a simple lattice generated by a four-element antichain. If there
were less than 2% gimple lattices generated by a four-element anitchain
then one of them, §, say, contains uncountably many distinet L’s. As §
is countable, S contains only countably many triples whence S can contain
only eountably many distinet lattices each generated by three elements.
It follows that there are 2% non-isomorphic simple lattices generated
by a four-element antichain.

Added in proof. Recoently R. Freese (Some order theoretic questions about free
lattices and free modular lattices, in Ordered Sets, D. Reidel, 1982, 855-377) has improved
Theorem 1 by showing that there are 2N nonisomorphic simple modular lattices
generated by a four-element antichain.
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ON THE THEORY OF BAER LATTICES
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By means of the concept of Baer lattices we shall be able to begin a unified
treatment for three classes of lattices, namely AC-lattices, primary lat-
tices and modular lattices satisfying the descending chain condition.
We note that R. Baer [1] did the first step in developing a unified theory
of projective spaces (the subspace lattices of which are AC-lattices) and
finite Abelian groups (the subgroup lattice of which are primary latitices);
in view of this pioneering paper we think that the term “Baer lattice”
employed by us is justitied. Here we sketch some of our results. Detailed
proofs will be published elsewhere.

DrerFINIrioN. A lattice L with 0 will be called a Baer lattice, if the
following three conditions are satisfied:

(i) Every element of L is a join of join-irreducible elements of I;

(ii) For every join-irreducible element # of I the interval [0, u]
is a modular sublattice of finite length;

(iii) For an arbitrary join-irreducible element % and for an arbitrary
element b of L the intervals [bau,u] and [b, bv w] are isomorphic (an
isomorphism being established by the mutually inverse canonical map-
pings).

In fact, the concept of Baer lattices can be defined in a somewhat
more general framework which is, however, too technical to be reproduced
here.

From the above definition it is immediate that AC-lattices (see [51),
primary lattices (see [4]) and modular lattices satisfying the descending
chain condition are Baer lattices. Moreover, it is easy to construct examples
of Baer lattices belonging to none of these three classes.

We have proved, among others, the following results:

(1) In a Baer lattice the following implication holds: if the interval
[#Ay,a] is a chain of length #, then the interval [y, z v y] is also a chain
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