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By means of the concept of Baer lattices we shall be able to begin a unified
treatment for three classes of lattices, namely AC-lattices, primary lat-
tices and modular lattices satisfying the descending chain condition.
We note that R. Baer [1] did the first step in developing a unified theory
of projective spaces (the subspace lattices of which are AC-lattices) and
finite Abelian groups (the subgroup lattice of which are primary latitices);
in view of this pioneering paper we think that the term “Baer lattice”
employed by us is justitied. Here we sketch some of our results. Detailed
proofs will be published elsewhere.

DrerFINIrioN. A lattice L with 0 will be called a Baer lattice, if the
following three conditions are satisfied:

(i) Every element of L is a join of join-irreducible elements of I;

(ii) For every join-irreducible element # of I the interval [0, u]
is a modular sublattice of finite length;

(iii) For an arbitrary join-irreducible element % and for an arbitrary
element b of L the intervals [bau,u] and [b, bv w] are isomorphic (an
isomorphism being established by the mutually inverse canonical map-
pings).

In fact, the concept of Baer lattices can be defined in a somewhat
more general framework which is, however, too technical to be reproduced
here.

From the above definition it is immediate that AC-lattices (see [51),
primary lattices (see [4]) and modular lattices satisfying the descending
chain condition are Baer lattices. Moreover, it is easy to construct examples
of Baer lattices belonging to none of these three classes.

We have proved, among others, the following results:

(1) In a Baer lattice the following implication holds: if the interval
[#Ay,a] is a chain of length #, then the interval [y, z v y] is also a chain
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of length #. From this we obtain, in particular, that a Baer lattice is
upper semimodular,

(2) Every interval and every principal dual ideal of a Baer lattice
are likewise Baer lattices.

(3) In a Baer lattice the following exchange property holds: if u, v
are join-irreducible elements, b an arbitrary element and v << bvu but
v<L bvu (u denotes the uniquely determined lower neighbor of ), then
% < bvo. In the special case of AC-lattices we get from this the Steinitz—
MacLane exchange property in its lattice-theoretic form.

(4) In a Baer lattice the Theorem of Kurosh—Ore holds: if an element
b can be represented as a join of finitely many join-irreducible elements,
then two minimal representations of b as a join of join-irreducible elements
have the same number of components.

(5) Calling the number of components in a minimal representation
of an element b ag a join of join-irreducible elements the rank of b we can
show: For a Baer lattice L the subset F(L) of all elements of finite rank
is an ideal. Using this notion of rank, a simple necessary and sufficient
condition can be given for F(L) to be a standard ideal in the sense of [2].
For the special case of finite-modular AC-lattices we obtain ag a corollary
that F(L) is always standard (see [3]).

The above-mentioned results suggest that it might be possible to
prove many results of [5] on AC-lattices also for Baer lattices.
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Herrlich-Strecker ([6], p. 151, Def. 22.1), defines “direct limits” as special
cases of “filtered colimits” in the sense of MacLane ([8], p. 207). Here
we show that the two concepts are strongly equivalent: i.e. every filtered
diagram (of any category) can be transformed into a directed diagram,
in a rather natural and constructive way, so that the same objects and the
same arrows are used and not only the colimit objects but also the co-
limiting cocones of the two diagrams coineide (if any of them exists). This
implies that the images (1) of the two diagrams coincide. In other words,
the two diagrams will be “cofinal” (or, more categorically, final).

We use the word “diagram” as a synonim for “functor”. We shall
refer to the monographs by Herrlich~Strecker [6] and by MacLane [8]
as “Herrlich-Strecker” and “MacLane”.

DerinrTioN 1 (Herrlich-Strecker, Def. 22.1). A directed partial order
is a pair (R, <) where R is a class such that any finite subset of B has an
upper bound in (R, <). (Note that this implies that R is nonempty!) Partial
orders are considered to be categories.

A directed diagram is a functor (B, <) Lo from a directed par-
tial order into a category 4.

A direct Timit is a colimit of a directed diagram.

DrriNiTION 2 (MacLane, p. 207)., A category I is filtered if any finite
diagram ¥ A | (i.e. any functor V: ¥ — I such that ¥ is finite) has an
upper bound in I. (By an upper bound of V we understand a cocone
(f:)icony cOmpatible with V, i.e. “commuting over ¥”). (This implies that I
is nonempty since & L | (cf. MacLane, p. 229) is a finite diagram.)

(1) Image: cf. Mac Lane, p. 243, Ex. 4. (The image of a functor need not be
a category but only a partial category.)
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