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of length #. From this we obtain, in particular, that a Baer lattice is
upper semimodular,

(2) Every interval and every principal dual ideal of a Baer lattice
are likewise Baer lattices.

(3) In a Baer lattice the following exchange property holds: if u, v
are join-irreducible elements, b an arbitrary element and v << bvu but
v<L bvu (u denotes the uniquely determined lower neighbor of ), then
% < bvo. In the special case of AC-lattices we get from this the Steinitz—
MacLane exchange property in its lattice-theoretic form.

(4) In a Baer lattice the Theorem of Kurosh—Ore holds: if an element
b can be represented as a join of finitely many join-irreducible elements,
then two minimal representations of b as a join of join-irreducible elements
have the same number of components.

(5) Calling the number of components in a minimal representation
of an element b ag a join of join-irreducible elements the rank of b we can
show: For a Baer lattice L the subset F(L) of all elements of finite rank
is an ideal. Using this notion of rank, a simple necessary and sufficient
condition can be given for F(L) to be a standard ideal in the sense of [2].
For the special case of finite-modular AC-lattices we obtain ag a corollary
that F(L) is always standard (see [3]).

The above-mentioned results suggest that it might be possible to
prove many results of [5] on AC-lattices also for Baer lattices.
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DIRECT LIMITS AND FILTERED COLIMITS ARE STRONGLY
EQUIVALENT IN ALL CATEGORIES

H. ANDREKA and I. NEMETI

Mathematics Institute, Hungarian Academy of Sei , Budapest, Hungary

Herrlich-Strecker ([6], p. 151, Def. 22.1), defines “direct limits” as special
cases of “filtered colimits” in the sense of MacLane ([8], p. 207). Here
we show that the two concepts are strongly equivalent: i.e. every filtered
diagram (of any category) can be transformed into a directed diagram,
in a rather natural and constructive way, so that the same objects and the
same arrows are used and not only the colimit objects but also the co-
limiting cocones of the two diagrams coineide (if any of them exists). This
implies that the images (1) of the two diagrams coincide. In other words,
the two diagrams will be “cofinal” (or, more categorically, final).

We use the word “diagram” as a synonim for “functor”. We shall
refer to the monographs by Herrlich~Strecker [6] and by MacLane [8]
as “Herrlich-Strecker” and “MacLane”.

DerinrTioN 1 (Herrlich-Strecker, Def. 22.1). A directed partial order
is a pair (R, <) where R is a class such that any finite subset of B has an
upper bound in (R, <). (Note that this implies that R is nonempty!) Partial
orders are considered to be categories.

A directed diagram is a functor (B, <) Lo from a directed par-
tial order into a category 4.

A direct Timit is a colimit of a directed diagram.

DrriNiTION 2 (MacLane, p. 207)., A category I is filtered if any finite
diagram ¥ A | (i.e. any functor V: ¥ — I such that ¥ is finite) has an
upper bound in I. (By an upper bound of V we understand a cocone
(f:)icony cOmpatible with V, i.e. “commuting over ¥”). (This implies that I
is nonempty since & L | (cf. MacLane, p. 229) is a finite diagram.)

(1) Image: cf. Mac Lane, p. 243, Ex. 4. (The image of a functor need not be
a category but only a partial category.)

[75]
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A filtered diagram is a functor I 2 ¢ from a filtered category I.

A filtered colimit is a colimit of a filtered diagram.

Notation. The symbol (f;)s denotes a mapping with domain 4
correlating with each i € 4 the value f; (Herrlich-Strecker, p. 10, “family”).

The colimit of a diagram I 2. ¢ is denoted by Colim.D. That iss
ColimD is a cocone (f;)eopr Of arrows of #. Therefore ColimD: Obl
— Mor# is a mapping; and, given another functor K | , the com-
posite mapping T'o ColimD: Ob K — Mor# is a new cocone (actually com-
muting over the composite diagram 7' o D, cf. MacLane, p. 43).

Composition is written in the order:

2

Remark. It is true that to every category I there is a fairly obvious
final (2) functor R %I whose domain R is a partial order, but this con-
struction does not preserve important properties of I e.g. filteredness is
almost always lost: there is a filtered category I such that the correspond-
ing Ris not filtered (not directed). (Moreover, to every regular cardinal «
there is a filbered category I such that R is not even a-filtered (a-directed).)

In contrast, the construction of the present paper is intended to be
“natural”; at least it preserves filteredness.

TEEOREM 1. To every filtered category I there is a directed partial
order (R, <) together with o final (%) functor (R, <) 51
By finality, for any diagram (functor) F: I - & the colimits of F and

ToF coincide. More precisely, T is such that the properties (i)~(v) below
hold for any F: I —¢4:

(i) F has a colimit iff ToF has one.
(i) The colimit objects coincide.
(iif) Colim(ToF) = ToColimF, i.e., if the colimiting cocone of F' is
OolmF = (f;)iconzs then
Colim(T'o 7y = (fT(r))reR
(which means that the colimiting cocones coincide via T).

(%) “Final”: cf. MacLane, p. 213; “Final” = “Kofinal”: cf. Gabriel-TUlmer [51,
Def. 2.12.

(%) Cf. MacLane, p. 213.
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(iv) For any choice function T™': ObI — R such that T~*0T = Td,; we
have:

ColimF = T~" o Colim(T'o F).

(v) (B, <), T and & T~ can be defined constructively without using
the axiom of choice.

Proof. The idea of the proof is the following: Let I be an arbitrary
filkered category. Why not take all finite subcategories of I together
with the “subecategory of” relation? Will this be directed? Now, the
union of two finite subcategories might generate an infinite subeategory.
To avoid this, we use finite diagrams of I instead of finite subcategories.

Let R consist of all finite diagrams over I. Let the ordering < be
the “subdiagram of” relation. Such an (R, <) is a “typical example”
of directed preorders. Since I is filtered, all these diagrams have upper
bounds (in I). Therefore, let the functor R-E+T correlate with each
diagram V' an upper bound of V.

Now, how are we to prove that T' is a functor? There is an easy way
out: Let B consist only of those finite diagrams which have a colimit.
Let T correlate with a diagram its colimit. (This modification does no
harm since each finite diagram having an upper bound can be extended
to & greater one having a colimit. Therefore the new R is “cofinal” in
the old one and remains directed.) 7' can be defined on the morphisms
in this spirit: If V is a subdiagram of V, then there is a unique arrow
from the colimit of V to the colimit of V,. Let this be the image of the
arrow V — V; of R. T i3 easily checked to be a functor, surjective, final,
ete.

The following proof consists of nothing but a detailed and precise
execution of the above plan. There is only one problem which forces
us to make some rather carcful definitions, namely: If we understand
“subdiagram of” strietly, then (R, <) is not directed. If “subdiagram of”
is meant up to isomorphisms, then (B, <) is directed, but the uniqueness
of the arrow from “a smaller colim to a greater colim” is lost. There is
again & way oub: restricting ourselves to the so called “coequalised”
diagrams (cf. Def. 4). (Roughly: a diagram is coequalised if its colimiting
cocone containg no parallel arrows. Thig restores uniqueness of induced
maps.)

The following remark (together with Definitions 3—4) is a concise
version of the proof, relying heavily on constructions from MacLane.
The detailed proof beginning with Definition 3 can be understood without
reading it.

Remark. The functor Colim: (FinCat| I) —I is only partial (cf.
MacLane, p. 111, BEx. 5a). Let Ter be the full subcategory of Cat consisting
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of finite categories with terminal objects. Now, Colim: (Ter | I)—~1I
is a (total) functor. But (Ter | I) is not a preorder. Let Monter be the
subcategory of Ter consisting of all the isomorphisms of Ter together
with all monomorphisms ¥" %", of Ter whose images do not contain
the terminal object of 7, and no other morphisms. Now, Colim: (Monter |, I)
— I is still a functor and (Monter | I) is “almost” a preorder. Now, if
Coe is the full subecategory of (Monter | I) consisting of its coequalised
(Det. 4) objects, then Colim: Coe — I is the required final functor in the
following sense: The functor Colim factors through (admits) the congruence
~ which makes Coe into a preorder: Colim/~: Coe/~ — I i3 a functor.
f I is filtered, then this functor is final and Coe/~ is directed.

DzerNiTION 3. Let ¥” be a category. The terminal reflection ¥ of v
is obtained from ¥~ by adding to ¥ a new formal terminal object v. Le.

Ob¥ 2 0b¥U{s} where v¢ObY
and

Mory (i, v) = {h,} for every i eOb ¥,

Mor, (v, %) L0  for every ieOb ¥,
and

¥ is a full subcategory of 7.

(Note that ¥" is nothing but the reflection of the object ¥~ of Cat
in the (non-full) subecategory of Cat consisting of the categories with
terminal objects and terminal object preserving fumctors, cf. Herrlich—
Strecker, p. 179; see Fig. 1.)

ity

®

Fig. 1

Conventions. The new (terminal) object in ¥ is denoted by ». The
new arrows are denoted by iﬂ—»'o (if e Ob¥).

icm
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DEFINITION 4. A functor ¥ —— I is coequalised iff
(Vi,jeOb¥)  [V(E) =V(j) = V(k) = V()]

(Le. coequalised functors preserve the propérty of the set {#;};opy Of
containing no parallel pairs of arrows.)

Oonventions. The restriction of a functor &~ & to a subcategory
% < & is denoted by F | #. (That is, denoting the inclusion functor
by € -2 o, the restriction of F is FI¥ & inoF.)

The letters ¥*, V', V' will be used consistently to denote things related
to each other in the following way:

¥ LI, V' =Tiv.
Sometimes indices will be used, e.g.
vy, Vi, Vi, and B (i eO0bvy).

LevMA. Let I be a filtered category amd let ¥ be a finite category to-
gether with a funcior v L. I. Now, there exists a coequalised extension

V¥ >Iof V', ie.
AV) [VI¥ =V and V:¥ —1I is coequalised].

Proof. V' has an upper bound since it is a finite diagram of a filtered
k,
category I. Denote this upper bound by (V’(i) s 6)icony -

To rule out parallel pairs of arrows from the set {k;},.ony We would
like to take an upper bound of it considered as a diagram. But this set
of arrows is not necessarily a subcategory of I; moreover, it may generate
an infinite subcategory. All the same, it can be considered as a diagram
by an appropriate choice of the index category . (The parallel arrows
of {#;};cony- Should also be parallel in 2. Consider the graph @ = ({§:}iconys
dogz, cod;) as an object of the category of all graphs. The coreflection of
this graph G into the full subcategory consisting of those graphs which
are categories (contain no composable edges) is a graph-homomorphism

K
A » @ which is also a functor # -=— I. This K is the functor we are
now going to construct.).

Define a new eategory X" together with a functor 4 £ 1 as follows:

Ob o £ (V'(3): i e Ob¥}Ufw}
where w is a completely new object (w ¢ ObI). For every ¢ € Ob¥:
Moz, (V' (i), w) = {k : V'(j) = V'(4), j e Ob ¥},

and & contains no other morphisms except the identities. Now, E(V' (1))
L v'(4), E(k) 2k, for every icOb ¥, and K(w) = c.
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K is a funetor. 2 is finite gince ¥~ is such and therefore K has an
upper bound (sinee I is filtered). Denote the uwpper bound of K by

{E () 2 ) oz~ See Figure 2. Now define an extension V: R |
of V' as follows:

and V(v) Lo

Vf"/f =V
Vn)

for every i€ Ob ¥ .

/\\

k,%

= gV(’b)

Fig. 2

V is easily seen to be a functor. It is obviously coequalised as the
following argument shows: Let ¢, j € Ob ¥". Now, since V(h;) was defined
to be gpy i V(i) = V(j), then also V(k) = V (k). m

We now turn to defining the directed partial order (R, <). From now
on I iy a fiwed filtered category. First we define a directed preorder (P, <).
P congists of the finite coequalised diagrams of I:

pl {"l} L>T: ¥ is a finite category and V is coequalised}.

Recall the conventions that the letters ¥*, ¥V, V' and v belong to
each other. (This means, e.g., that V always denotes a functor whose
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domain is a “terminal reflection” of some category which is always denoted
by #". Note that ¥ and v are uniquely determined by V.)

Two elements V, V; e P of P are said to be ¢somorphic (in notation
V =2 V,) if they are isomorphic objects of the comma category (Cat| I).
Le., V, V, are isomorphic if there is an isomorphism-functor 4 such that
V =ioVy.

The preorder < on P is defined as:

V<L V,iff in the comma category (Cat | I) either V is a subobject
of Vior V= Vy, ie.

V<V, ift (V<V, or V=V,

where V < V, iff there is a commutative

7

A
v

(Note that in order that V<V, the image of ¥~ along the mono-
functor m should mot contain v,. Therefore < is antireflexive and anti-
symmetrie.)

Recall that a functor is mono in Cat (as well as in (Cat | I)) iff it is
one-one on the objects and on the morphisms.

It is easy to check that (P, <) is a preorder indeed.

Since =~ is an equivalence of P, we can form the factorsiructure “(or
gquotientstructure) :

(B, <) = (P, %)=
The equivalence-clags of an element V eP is denoted by [V]. (vv
P) [V]eR.) Obviously [VI<[V,] iftf V< V;.

Clearly (B, <) is a partial order.

We now show that it is also directed:

R is nonempty (since by the lemma the empty functor @: @ — I
hag an extension in P). Let [V], [V,]eR be arbmrary We construet

Ly,
an upper bound for them (in R). Consider the coproduct 'V L"// 1 1T,
{This is the disjoint union of the categories ¥ and ¥ 1 together with the

6 — Banach Center Publ. t. 9
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original functors.) Since VAV, is finite, we can apply the lemma to obtain
a coequalised functor
TS g,
(v Ly —1I
such that
Vst?v', = V,.

Vil¥ =V and

Now, it is easy to check that [V;] is an upper bound for [V,] and [V].
So far we have proved that (R, <) is a directed partial order.

We now define a functor (R, <) L I, the existence of which was
claimed in the theorem.

The peculiarities of the definition of (R, <) (to consist of terminal

reflections ¥ , coequalised functors, and [V < V; = V can be embedded
not only into Vy but also into ¥;]) have not been used so far. They will
be needed in the construction of 7.

Recall that ¢ X, v denotes the unique arrow of ¥ from the object ¢
to o.

DrpiNtrioN. The object part of T:
T([V]) L ¥(v) for any V e P.
The morphism part of T': for any V,, VeP if V, < V then
T(V3], (VD) = V (e,

where m: ¥ 17 is any embedding for which V, = mo V.
First we have to check that this was a definition.
Note that for any isomorphism ¥~ we have

i(hy) = hy,y for any aeOb ¥ .

(2) T is a function on E: Let [V] = [V,], i.e., ¥V =40V, for some
isomorphism 4. Now,

T([V] = V(o) = Vai(v)) = Vi(o)) & T([V,)).

(b) I'is a function on “<” (= Mor (B, <)): Let Wyt W< V = Vi
be arbitrary elements of P. By definition of < there are two monofunctors

i(v) =v, and

m: %}HV; W =moV’,

Mt Wy Wy =m0V,

Let m and m, be two arbitrary such funectors.
We have to show that V (k) = V(W) in order to prove
that T([W], [V]) is uniquely defined. See Figure 3.
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V(v) & T(qVD

Vihmey) & TQW,1VD

Ww) = T(W)

Fig. 8

Let i: ¥ =¥, be an isomorphism such that ¥ = ioV,. (It exists.)
V(hm(w)) = Vl(”’(hm(w))) = Vl(h:(m(w)))'

Since V, is coequalised, to prove Va(Figmew)) = V(b ) it is enough
to show that v, ¢ {i(m(w)), my(w,)} and that Vy(i{m(w))] = Vy(my(wy).
Now, my(wi) # v, by definition of m,. Similarly m(w) % », which
implies i(m(w)) 5= v, since ¢ is an isomorphism. (Clearly: i~(v;) =
#= m(w).) Also:
Vafi(mw))) = Wiwy) =
V=0

Wi=m0V}

VV(m('w)) = Ww) = V(i (w05)) -

W=mOv’ WesWy
mw) =Y

By this T is indeed a function.

Next we show that (B, <) Lorisa Sunctor:
We have to show that '

Z([V]1, [VaD) T([V4], [Ve]) = T([V, [ VD),
or arbitrary elements V' < V,< V, of P.
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Let m: 1;»7/1 and my: "//A']L ¥, be such that
V=moV, and V,=moV;.
Clearly (momy): ¥ ¥, is such that 7 = (momy)o V.
Therefore
I(V1, (Vi) = Va(hingw),
T([Va], [Va]) = Vally),

T(LV], [Va)) = Valli, uy) -
‘We have to prove:

Vz(hznl(m(v))) = Vl(h:n(u))ova(hfnl(vl))‘
By V, =m0V, also
LAES Vz(m1(7"1ln(v)))-
Since the arrow

my (o))
ml(””f("’)) My (Vy)

is in ¥, and v, is terminal in ¥7,, we have

hfnl(ul)ml(h:n(u)) = hinl(m(v)) .
Since V, i3 a functor, this completes the proof.

T obviously preserves domains, codomains and identities; therefore,
by the above argument it is a functor.

Now we show that the functor (R, <) 2L I g final (in the sense
of MacLane, p. 213, which is a generalization of “cofinal”).

T is said to be final iff for any object & of I the comma category
(k| T) i3 nonempty and connected. To show this, let k e ObIL; V, WeP
and k-2~ T([V]) , k=1 [W]) be arbitrary. We have to prove the exist-
ence of a “good” path between V and W in P.

To this end, we shall construct an upper bound Z of V and W (i.e.
a coequalised extension of V | W, where [ is understood in (Cat}I))
such that p and ¢ will be in the image of Z, i.e. the diagram

z Z(2)
V N Z(V ‘Y(hn)
) z
w = Z(2) Z(w)

x / Z(p’):\ /Z((«') =q
¢

Z(K)=k
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will exist. This diagram obviously commutes (if it exists), which implies
the “goodness” of the path V —~Z<« W in P.

Construction of Z. Define a new category 2 by adding to (“/}_ﬂ_ v )
a new object % and two new arrows k"4 and kL w (Fig. 4).

. » ”
;.. A~
4 Zz
b g
k

Fig. 4

That i8, & contains ¥ and # as disjoint full subcategories, and one
additional object ¥ not contained in either of them.

Define the functor & -Z— I by:
ZVEV, ZIWEW ad ZMmIk, Zmip, z@le.
Since £ is finite, by the lemma this Z’ has a coequalised extension & 2+ I
(such that Z | & = Z').

“2” denotes the terminal object of &. Clearly Z eP.

By the definition of Z it is an upper bound of V and W and “V — %
«~ W?” is a “good” path because the diagram

T(zp
biiggles) T(W)z)
44 iy
F4 q
k

commutes (in I). To check this, observe that T'([V], [Z]) = Z(h,), T([W],
[Z]) = Z(h,,), where 2o, 2 and w —hﬁ-»z are the ;unique arrows of &
into its terminal object 2. m

‘We have seen that T is final.

(It is easy to see that T is, in addition, surjective, e.g. for every i e ObT
the one-element diagram

S SR } ¥
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is a coequalised extension of the empty diagram @. Similarly for the arrows
of I.)
MacLane, p. 213, Th. 1, proves the following:

For any functor # —E-»L, T is final iff for any diagram L2 %,
(i)-(v) below hold:

(i) Colim.D ewists iff Colim(ToD) ewists.

(ii) Colim (ToD) = ToColimD. o

(ii) For any right inverse T~ of the object part of T (i.e. for any map T—;
ObL —Ob & such that T~'oT = Tdgyz) we have (%)

Colim D = T'oQolim(T o D).
(iv) For every wpper bound B of D:
ColimD =B iff Colim(ToD) =ToB.

(v) B is an upper bound of D iff ToB is an upper bound of ToD.

The category of upper bounds of D is isomorphic to the category of
upper bounds of ToD, and (To—) is their isomorphism.

In the present case T~ for (iii) can be given constructively, e.g.
for every ¢ ObI let T7!(i) be a one-element diagram

i )1,

Since @ is a one-element category, T~*(i) as defined above ig in P.

Remm"_k..The above theorem is only partially formulated in Mac
Lane but it Is actually proved there completely (cf. also p. 214, Ex. b).
By the finality of T the above theorem completes the proof of The-
orem 1.m
] ’I.‘heorem 1 sts-»tes that the structure of the index categories of filtered
colimits can be simplified. The guestion arises: can they be simplified
even further?

DEFIN.ITI(.)N..A partial order (R, <) is a tree iff no nontrivial lower
bounds exist in it. More precisely, it is a tree iff for every a, b &R the
set {a,b} has a lower bound iff its elements are comparable, i.e. iff

a<b or b< a. (Notice that a tree can be disconnected.)

PROPOSITION. Thererz's & directed  partially ordered set (R, <) such
tha;t for any fumctor # —— (R, <), if T is final in (R, <) then 2 i3 not
a ree.

(%) Such a T-! exists iff T is surjective on the objects. Therefor i
. . N e the foll
(iv), (v) are not needed in the present paper. ! o
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Proof. For any final functor, if its codomain is connected then its
domain is also connected. Any connected tree is also directed. Every
directed tree contains a final and totally ordered subelass. (Namely,
any right segment {geP: p < g} is such if (P, X) is a directed tree
and p e P.) But it is well known that direct limits cannot be reduced to
totally ordered ones, i.e.: there is a directed poset (R, <) such that if
2L (R, <) is final then £ is not a total order (e.g. (Finite subsets of
4, <) is such iff 4 is not countable.) m

Compare this with the fact that for any countable filtered category I
there is a final functor T': (w, <) — I, where o is the set of natural num-
bers and < has the usual meaning.

Remark. In the present paper stress has been laid on translations
of a kind of colimit into another kind in which repeated computation
(iteration) of the first kind is mot allowed (i.e., computation of partial
results is not allowed).

If we allow iteration, then:

Bvery filtered colimit can be obtained by iterating well-ordered
colimits, if the latter exist in the category.

The point of the present paper is that we can do things without
“computing partial results”. E.g. there are filtered colimits which cannot
be obtained by iterating well-ordered colimits. In other words, there is
a category ¥ and a subcategory & < ¢ such that & is closed w.r.t, well-
ordered limits but is not closed w.r.t. filtered limits. This is possible because
the “partial results” needed to compute a final result may not exist while
the final result exists. Namely, & is closed w.r.t. well-ordered limits
because they do not exist, but there is a filtered limit which does. (Consider
e.g. a collection of finite and uncountable sets.)

Some consequences

w-presentable objects of Gabriel-Ulmer [5], p. 63, Def. 6.1, Diers [4]
Day [3] coincide with strongly finitary objects of Herrlich—Strecker (22E)
and also with strongly small objects of Matthiessen [9], Banaschewski—
Herrlich [2], John [7], Németi-Sain [10], Andréka-Németi [1] in every
category.

a-presentable objects coincide with strongly a-small ones of Ban-
aschewski~Herrlich [2], [12]-[14].

But “w-presentable” does not coincide with the “finite” of Smyth
[11] because in the latter case only limits of chains have to be preserved
by the hom(a, —) functor.

Also, the filtered limit closed subcategories investigated by Diers
and Day coincide with the direct limit closed subecategories investigated
by Banaschewski, Herrlich and others.
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1. Introduction

In [6] Smullyan gave an elegant development of recursion theory based
on elementary formal systems. These dealt directly with words over
a finite alphabet, and only indirectly with numbers, via “names” for them.
We generalize the notion of elementary formal system, by separating
“structural properties” from “subject matter.” The result provides a
natural “recursion theory” for any structure, words and numbers being
particular examples.

Our notion of recursion theory over the natural numbers can be
turned into hyperarithmetic theory by the addition of a simple infinitary
rule (an w-rule) [1]. We formulate the rule so that it applies to all our
recursion theories, turning them into what we call w-recursion theories.
For both recursion and w-recursion theories we define a natural general-
ization of enumeration operator. We investigate the structural charac-
teristics of these operators, and prove an analog of the First Recursion
Theorem for them.

2. Elementary formal systems

Let o/ be an infinite set, and let %, ..., %, be relations on /. We cal
k-+1 tuple (o, By, -.., By @ structure. We allow trivial structures (/)
'We set up a simple logical calculus relative to a particular structure, so for
the rest of this section, let U = (&, %y, ..., %> be a fixed structure.

‘We suppose available an unlimited supply of n-place predicate sym-
bols for each n > 0. We informally use P, @, B, ete. to represent them.
The other two symbols of our alphabet are an arrow and a comma. We will
use axiom schemas, so variables are not needed in the language itself,
and we need no rule of substitution.
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