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The present paper continues the study of projectives in products of varieties
of groups began in [1]-[4]. Throughout the paper by a rank of a projective
group P we mean a rank of the Abelian group P/P'. Let A4,,n >0, be
a variety of all Abelian groups with identity 2™ = 1. In particular, A, = A
is o variety of all Abelian groups. Tt was shown in [1] that all projectives
in 4,4 of finite ranks are free. Moreover, in virtue of [2], if P is a retract
of a A,A-free group ¥ of finite rank with a projection f: F — P, then
there exigts in F o free generating seb 2y, ..., 2 such that Kerf as a normal
subgroup is generating by 2.y, ..., % and

2l ey 7L

is a free generating set for P. In [4] A. McIsaac proved that A A -projectives
of rank 2 are free. On the other hand, for any pair of integers r,n > 2
with 4% > 4 in [3] it was congtructed an example of & nonfree 4 4,-pro-
jective group of rank # with #--1 generators. In this paper we show that
for any locally finite variety of groups V and any integer r>2 there
exists a nonfree .4.V-projective of rank » with r--1 generators, except
the case r =2, V = 4,. The existence of these projectives has been
conjectured by A. L. Smelkin.

Let V be a variety of groups in which a V-free group G of rank r > 2
is finite. Without loss of generality we can assume that V' is nonabelian,
and hence expV = n > 3. Let d = |@| and let X = {&y, ..., #,} be a free
generating set for @. Consider the augmentation

e: 2@ ~ 17, 8(2a09)=2aa.
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Obviously, ¢ is a ring epimorphism and its kernel p is called the augmen-
tation ideal. Let

N = deZG.

75G
It is easy to see that ZN is a trivial ideal of ZG. The triviality means that
9N = N for all g € @ The augmentation ¢ induces a ring homomorphism
&'y ZG|N —~ Z/d,
and therefore a homomorphism of groups of units
e*: (ZG|N)* — (Z]d)*.
TemorEM 1. If r22, n = exp V = 3, then & is not surjective.

Proof. Put H =G/@, b = |H|. Then H is a A,-free group of rank »
and therefore b = »". Note that each prime divisor of d divides n. Thus
% ring homomorphism

n: Z|d —~Z|[h

induces an epimorphism of groups of units
' (Z2]A)* — (Z]h)*.

Let 2: @ — H be a natural epimorphism. It determines a commutative
diagram
(ZG|NYy* =,

v
(ZH|N,,)*

(Z/a)*

i
> (Z[h)*
0

()

where as in [3]

N,

n

=2yeZH,

yel

and &y fgr H i defined in the same way as ¢* for @. According to Theorem 1
in [3), &, is not surjective. Since 7* i epimorphie by (1), the map e*
18 not surjective.

THEOREM 2. Let V be a variety of groups of exponent n > 3 and SupPpose
that a V-free group G of ramk v > 2 is finite. Then there emists AV-projective
nonfree group of rank v with r+1 generators.

Proof. Following Theorem 1 there exists an integer % such that
(2) k € (Z/d)*\Im s*
In this case,

and even k& (Z/h)*\Ime,,.

by [6] the left ideal T generated in Z@ by k and NV is a pro-
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jective nonfree left ZG-module. Put
T =I10Z61,® ... ®Z6f,.
LummA 1. T' is a projective nonfree ZG-module.
Proof. Suppose T ~ (ZG)"*'. Then
(ZH)y™! _N_ZII%T :_J(ZB,’%I)@ZH]}@ ... ®ZHf,,

and by Lemma 7 of [3]

ZHQI ~ZH.
76

Let now p: I - Z6 be a natural embedding, Im g a left ideal generated
by &k and N. Then we have a homomorphism of left ZH-modules

{ =1Qu: ZH =ZHRI -~ ZHRZG = ZH.
za

zc

The imago of { is a left ideal in ZH generated by % and |¢|N,,, = db~'N, ..

Since (%, d) = 1, the image of { is generated by % and N, ,. Hence, by (2)

and [6], Ym¢ is a nonfree projective ZH-module of rank 1, and therefore

it is a dircet summand of ZH. But this is impossible gince ZH hag the

same rank 1 and Im¢ is nonfree. The proof of lemma iy complete.
Since (k, d) =1, there exist integers %', d' such that

(3) Tk =1+ dd .

Let J be a loft ideal in ZG generated by &' and N. By [3], p. 107-108,
there is an isomorphism of ZG-modules,

fr (22 —~Jol,

for which the basis ¢, == (1, 0), ¢, = (0, 1) € (ZG)? maps onto

(4) Jo = fley) = (', dd'v),

that the projection ¢ of
.
W =dJ ol =@ 2Z6f;

im0

onto T with the kernel J maps

18 = (0, dd'v) = —dd'Nf,+ dd'%'Nfy,
J3 == (0, u) = —kfo+{1+dd'N)fy,
fi=rf iz2.
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Using (3), we can choose in W a new base
Uy = —kfo+fy,
u; =f;, 1#1L.

An easy computation shows that modulo d¥

1 k|| —dd'N —& |[1 & |0 0]

0 1}|@awy 1+dan|jo 1] |o1]
This consideration shows that in the new base uy, ..., %, the projection ¢
has the form

u§ = daNuy+bdbNu,,
(8) Ui = dotg+ (1+pN)u,,
uj o=u, t=2,
where a, b,¢,p e Z+ZN.
Let now G, be a V-free group with free generators o, ..., #,. Denote
by 6: Gy -G a natural projection which sends @, -1 and x, - x; for

4>1. We shall also denote by 6 its extension to a ring homomorphism
0: 26, —~ Z@. Put

.
M =26,0W = ® 26y,
za =0

and denote by I: M —wm, m the augmentation ideal of Z&,, a homo-
morphism of left Z@-modules for which (%) = #,—1, 0 <4 < r. In virtue
of [5], a .AV-free group F of rank »-+1 is a group of all matrices

(6) [(g) 1{], gely, velM, l(v) =a—1

with the usual matrix multiplication. A free generating set in F can be
chosen in the form

Ly Uy
0 1

Consider now a 6-semilinear endomorphism 7 of M for which ]
are defined by columns of the matrix

(67 yi=[ J, o<igr.

| Mad(@q) od(w,) |

A LE sl 1 o A(@) =L14@p+ ... +af
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Note that this (r-1) X (r+1) matrix is congruent of the matrix of o

modulo z,—1.
AN N
01| jo 1

is an endomorphism of the group I.

LevMA 2. A map ¢

Proof. We need only to show that the images of free generators y;
belong to F. In fact,

1 aNd(2)we+bNu, |
yzl = ’
|0 1
and y§ € F, because following (6)
1{aN d (o) o+ bNw;) = aNd () (wo—1) 4+ bN (2, ~1) = 0.
Similarly, y? ¢ F. The proof is complete.

Since ¢ in (B) is idempotent, it follows that m = ¢?, is idempotent,
that is, P = Ima is a AV-projective group with »--1 generators. The
rank of P equals r since P/V(P) ~@. Thus we have only to prove

LeMMA 3. P is not free in AV.

Proof. Suppose that P is free in AV with free generating set

9; My
2 = y €@, hyelM, I(h)=g;—1,

0 1
i =1, ..., r. In this case, g, ..., ¢, is a free generating set for ¢. By Lemma
2 we have
el
5 o = [gi LM
i = o 1

Suppose that
he = D hig(@ay ooy @)1y
Then by 6-linearity j
By =1 = Y by, 00, ey 8)8 = B+ X ity

where 7, belong to the ideal in Z&, generated by », —1. Here g is & 6-semi-
linear endomorphism of M with the matrix ¢ from (5). Note that &, ...
v, B eT =« We M. Let B be a ZG-submodule in T generated by these
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r elements. It T = B, the T has r generators which is not the case sinee '

is nonfree. Thus to prove this lemma we have to show that T = B.
Elements g;—1 generate an augmentation ideal p in ZG as a left

ideal. Sinee g;—1 = I(h;), we need to verify that B containg each element

g eT with I(g) belonging to the left ideal generated by #,—1. Let

r

(7 4= 0@, 2)uel,
=0
By (6),

D (@ —1) = 0.

gma ]

-, -
1 Zfli“t T
H

i=1

0 1

and therefore by Lemma 2,

_ . -
1 =
. 4%,
§ = im1

0 1

$ =

_ H gj hj +1
o 1| °
This implies that

j qui e B.
i=1

So without loss of generality we can assume that

r
2‘1@‘“5= 0,
=1

that is, go= ... = ¢, =0, qu = 0 by (5). Hence, again by (5), we have
(7)

Note that N belongs to the center of Z¢ and Ng, = Ng,(1, ..., 1). Thus
in (7)

Qb+t = § = §°= gy = dNqoau,+ Ngghu, .

¢ = Nadgy(L,...,1) = Na*dq,(1, ..., 1),
and since d>1, we have ¢y(L,...,1) = ¢, = 0. Hence, in (7) we have
q =0, T = B which iy impossible.
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