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1. Introduction

In [6] Smullyan gave an elegant development of recursion theory based
on elementary formal systems. These dealt directly with words over
a finite alphabet, and only indirectly with numbers, via “names” for them.
We generalize the notion of elementary formal system, by separating
“structural properties” from “subject matter.” The result provides a
natural “recursion theory” for any structure, words and numbers being
particular examples.

Our notion of recursion theory over the natural numbers can be
turned into hyperarithmetic theory by the addition of a simple infinitary
rule (an w-rule) [1]. We formulate the rule so that it applies to all our
recursion theories, turning them into what we call w-recursion theories.
For both recursion and w-recursion theories we define a natural general-
ization of enumeration operator. We investigate the structural charac-
teristics of these operators, and prove an analog of the First Recursion
Theorem for them.

2. Elementary formal systems

Let o/ be an infinite set, and let %, ..., %, be relations on /. We cal
k-+1 tuple (o, By, -.., By @ structure. We allow trivial structures (/)
'We set up a simple logical calculus relative to a particular structure, so for
the rest of this section, let U = (&, %y, ..., %> be a fixed structure.

‘We suppose available an unlimited supply of n-place predicate sym-
bols for each n > 0. We informally use P, @, B, ete. to represent them.
The other two symbols of our alphabet are an arrow and a comma. We will
use axiom schemas, so variables are not needed in the language itself,
and we need no rule of substitution.
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By an atomic formula wa m3an an exprassion of tho form Pvy, ..., o,
where vy, ..., v, € & and P is an n-place predicate symbol. For convenience
we may write Pv for Poy, ..., v,. We also define a pseudo-atomic formula
to be anything of the form Pu,, ..., #, where each &, is in &7 or is a variable.
Pseudo-atomic formulas are expressions of the metalanguage only.

The notion of formula is definad by the following rules:

1) an atomic formula is a formula,

2) it X, X,, ..., X, areformulas, sois X; -~ X, - ... - X, . Formulay
are to be thought of as being associated to the right. Thus A =B -0 - D
should be read as if it were 4 — (B - (0 — D)) and thought of as saying 4,
B and 0 together imply D.

The metalinguistical notion of pseudo-formula ig defined analogously,
being built up from pseudo-atomic formulas. And the notion of an instance
of a pseudo-formula (over &) also has an obvious definition. Any instance
of a psendo-formula is a formula.

By the conclusion of a (pseudo) formula wa mean the final (pseudo)
atomic part of it. Thus if 4 is (pseudo) atomie, A is the conclusion of
X — A, and also of 4 itself.

Let By, ..., B, be distinet predicate symbols parmanently assigned
to the relations £, ..., &%, such thab B; is n-place if £, is an n-ary relation.
Let %] consist of all atomic formulas of the form R where % is true.

We say a pseudo-formula X is allowabls if none of R,, ..., B, occurs
in the conclusion of X.

Let {Al, «vey Ay} be some finite set of pseudo-formulas, each allowable.
By a derivation from {A,, ..., A,} (over %) we mean a finite sequence of
formulas, X, ..., X; such that each term of the sequence either

1) is & member of #{U... UZ; or
2) is an instance of somas 4, or
3) comes from two earlier tarms by the rule

XX

MP iprowded X {is atomic.

If there is a derivation ending with X, we say X is derivable from
{41, ..., 4.} (over ).
{41, ..., 4,} determines, relative to A, a simple deductive system,

called an elemmtary formal system (over ). Bach 4, is an awiom for that
elementary formal system. | ‘

Let P be a p-place predieate symbol, and # < P, We say P represents
P in the elementary formal system determmed by {Ay, ..., 4,} if vePiff
Py i derivable from {4,,..., 4,}. E :
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We say 2 is representable in the elementary formal system determined
by Ay, ..., 4, if there is some predicate symbol P which represents &2
in that elementary formal system.

Finally, we say & is recursively enumerable (r.e.) (over ) if £ is rep-
resentable in some elementary formal system (over ). Also 2 is recur-
sive (over %) if both & and ¥ —2 are r.e. (over A).

3. Examples

BxaMPLE 1. & = w. # is the successor relation: Zz, y iff y = z+1.
Let Ay be the structure {7, #>. It can be shown that a relation is r.e.
over Ay iff it is r.e. in the usual sense.

ExAMPLE 2. & is the set of signed integers. Z is the successor relation
for signed integers. Let U, be the structure {&/, #). A relation is r.e.
over 2, iff under any standard Godel numbering of the signed integers,
it corresponds to an r.e. set of natural numbers.

ExXAMPLE 3. & = o X 0. We use two relations on . %2,y iff
the first component of y is the successor of the first component of x. %,
is similarly the second component successor relation. Let %y be the struc-
ture (o, &y, #,». A relation is r.e. over U, iff the result of applying
a recursive pairing function to its members produces a relation r.e. in the
conventional sense.

ExAavmpLE 4. & = H.F. = R,. %, is the union relation, %,(z,y, 2)
iff xUy = 2. 4, is the unordered pair relation, %,(z, y,?) iff {z, y} ==.
Let Wy = (&, &y, Ryp. A relation is r.e. over g iff it is T over H. F.
Remark: This example is essentially unchanged if we use the single relation
xV{y} = 2.

ExAMPLE 5. & is the set of words over a fixed finite alphabet. £ is
the concatenation relation on <. Let Ay be the structure (&7, £). Eleman-
tary formal systems over Uy arve those called pure in [6]. Remark: This
example too is essentially unchanged if, instead of Z we use one relation
for each letter a of our finite alphabet, taking, say, %, z, y iff y is word @
with & added to the end.

EXAMPLE 6. & is the set of real numbers. Take the two relations
of addition and order for reals. In the resulting structure, for example,
the set of integers is r.e. Also, the funetion f(#) = [#], mapping each
real & to the greatest integer <, is recursive (as a relation).

ExAMPLE 7. Let % be the structure <FUV3F, 45, Xz, V) +p Xg,*>
where F is o field under the operations +5 and Xz, V is an n-dimensional
vector .space over F, with vector addition 4, and scalar multiplication
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X g, and # is an inner product on V. Call a function partial recursive if
its graph is r.e. The Gram-Schmidt orthogonalization process can be
“captured” by an elementary formal system over this structure to show:
there is a partial recursive function f, taking n-tuples of vectors to n-tuples
of vectors, such that if f(@,...,%,) = <Y1, .-, ¥n> then {w,...,,}
and {yy, ..., ¥} span the same subspace of V, and {yy, ..., y,} is an orthog-
onal set (some of the y; may be 0).

4. Enumeration operators

We modify elementary formal systems so that they may aceept inputs
as well as produce outputs.

Some notation. Suppose A is the structure {7, #,, ..., #,> and #
is some relation on . We write (¥, Z> for the structure {7, %, ...
eory &y, %>, Suppose H is a set of axioms for an elementary formal system
over U, and 4 is a predicate symbol. We write BHtydx to mean there is
a derivation of Ax from  over A. Then {x| Bty da} is the relation which A
represents in the elementary formal system (with axioms) & over 9.

Now, let % be some structure {s7, %, ..., %,>, fixed for the rest
of this section. Suppose £ iz some n-place relation on &/, Let B be an
elementary formal system over the structure (%, #> in which, say, the
predicate symbol P has been. assigned to 2. Let @ be an m-place predicate
symbol. Using the axioms ¥, @ represents a certain m-ary relation on of .
Now suppose we keep ¥ fixed, but change 2 to &', still using P to rep-
resent it. Then ¢ will represent a different relation on »7. In this way a
certain operator on & is created, which we may symbolize by [E§]. It
uses the axioms B, takes whatever P represents as input, and gives what-
ever () represents as output. Formally

[ES](-@ ) ={x| B 1‘<nr,y>Qw}

[where the predicate symbol P ig assigned to #£].

We call the maps [E}] enumeration operators over the structure 9.

Let Ay be the structure of arithmetic as defined in Example 1 of the
lagt section. It can be shown that the enumeration operators over Uy
coincide with enumeration operators as defined in [5].

Let [Eg] be an enumeration operator over the structure U taking
n-ary relations to m-ary relations. That is, P is #-place and @ is m-place.
We call pair {n,m) the order of [Hg]. Of course, n, m > 0.

5. The w-rule

We add an infinite-premise rule of derivation to the machinery of el-
ementary formal systems as defined above.

First, we modify the alphabet by adding the additional symbol ¥.
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Now an atomic formula is a string Pxy, ..., x, where P is n-place and
each z; either is in &7, or is 7. (We similarly modify the notion of pseudo-
atomic formula, and formula.) Otherwise no syntactical changes are
made; instance still means instance over «7; for example.

Intuitively, Pv, V,w is to mean Pw,a,w holds for each acs/.
Now we give rules governing the formal use of 7. We make the restriction
that ¥V may not occur in the conclusion of any axiom schema. And we
add one more rule of derivation.

w-rule: If Pv, V,w is atomie, then

Py, a,w for each a e/
Po, 7,w ’

The notion of an w-elementary formal system is formulated as expected.
Derivations are now well ordered (possibly) infinite sequences, allowing
o-rule applications. Call a relation # < P w-r.e. over A if it is represent-
able in some w-clementary formal system over %. Also 2 is w-recursive
if both £ and &*—2 are w-r.e.

Let %, be the structure of arithmetic (Example 1 from §3). In [1]
is a direct proof that, for Wy, w-r.e. is the same as II} and o-recursive
is the same as hyperarithmetic. More generally, in any structure, w-recur-
sive coincides with hyperelementary, as defined in [4].

The definition of enumeration operator over 2 may be modified
in the obvious way to define the notion of w-enumeration operator over U.
We skip the details.

6. Basic structural properties

The collection of enumeration operators over a structure A= (&, %y, ...
«evy %> and the collection of w-enumeration operators over A have certain
common structural features, which we now develop. We note that the
o-rule plays no role in many of our proofs below, so we can treat recursion
and w-recursion theories simultaneously.

TEEOREM 6.1. Suppose I and J are (w) enumeration operators over U,
I is of order {n,m) and J is of order {m,p>. Then the composition JoI
is also an (w) enwmeration operator over U, of order {n,p).

Proof. Say I = [F4] and J = [EF]. We may suppose without loss
of generality, that ® and B’ contain no predicate symbols in common
other than Ry, ..., Ry. (Call B and B’ disjoint if this is the case.) Consider
the (w) enumeration operator [F4] where F consists of

the axioms of ¥,

the axioms of F,

Bx - Cx.

It is easy to see that JoI = [F4].
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DrrmvirionN. Let I and J be (o) enumeration operators over 2, both

of order <n, m). We define two maps as follows:
(Ind)(P) = L(P)nJ (P),
(IUud)(P) = L(P)VI (D).

THEOREM 6.2. The collection of (w) enumeration operators over U is
closed under N and U.

Proof. Say I =[F4] and J = [BS] where B and H' are disjoint.
Then Ind = [FE] and IUJ = [FE] where F consists of

the axioms of H,

the axioms of F',

Gx — Az,

Gx — Ox,

By - Dy - Hy,

. By-Ky,

Dy - Ky. )

DEFINITION. Let I be an (o) enumeration operator of order {n, m)
and let J be an (w) enumeration operator of order (n, m’> over A. By I xJ
we mean the map of order {n, m-+m’) given by

I xINP) = L(P)xJ(P).

TEBOREM 6.3. The collection of (w) enwmeration operators over A
18 closed under X.

DEFINITION. P” is the projection operator of order {n, n —1) defined by

PMP) = {1y s 8D @YY, @3y ooy ) €P).
D" is the dual projection operator of order {m,n —1) defined by

DNP) = {{yy ooy Dp Dl (VY)Y 1y oy Bpr) € P)

THEOREM 6.4. 1) P* is both an enumeration and am w-enumeration
operator over .

2) D" is an w-enumeration operator over .

DErFINITION. Let § be a map from =™ to &%, § is a sequential operator
if, for every j <k, either

1) there is an ¢ << n such that for every @ € «”, the jth term of S(x)
is the ith term of @, or

2) there is some ¢ € o/ such that for every @ € «#™ the jth term of
8(x) is o.

DEFINTTION. Let 8: & — /% be a sequential operator. By 8-t
power set (%) - power set (/") we mean the map given by

8 UZ&) = {ve ™ S(v)eZ}.

‘We call such a map an explicit transformation.

THEOREM 6.5. Every explicittransformation is an (w) enwmeration operator.
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THEOREM 6.6. Hach (o) enumeration operator I over U is monotone,
that is, & = B = I(H) < I(D).

THEOREM 6.7. Each enumeration operator I over A 1is compact, that is,
v e I(P) iff for some finite F = 2, veI(F).

7. The first recursion theorem

THEOREM 7.1. Let I be an (w) enumeration operator of order {m,n).
I has o minimal fized poimt which is (w) r.e.
Proof. I is monotone. Set
I*=IUI%.

B<a

By standard monotone operator arguments (see [4]) I® = [ JI°isthe
a

minimal fixed point of I. We show it is (w) r.e. [Remark: If I i3 an enumer-
ation operator, it is compact, in which case I is simply I°.]
Say I = [F4]. (We note that, in H, 4 can not occur in the conclusion
of any axiom.) By definition,
xecl(?) iff ErggeBe.

Now let B’ = Eu{Bx - Ax} (that is, B’ is F4“output = input”).
‘We claim B represents I® using F'. That i,

I° = {x| B'vyBx}.
1) For each a, we show
I* ¢ {&| B'tyBx}
by induction on a. Well, suppose
I<® c {&| B'tyBx}
[where I<% = | I? so that I® = I(I<%)].
Also suplfc;;e a € I* then a e I(I<%), so, by definition
(*) Bt iy, 1<a B,
By induction hypothesis, for alle € <%, B'FyBa. But then, for all ® e I<°,
(%) B'ryda.
By (%) and (x*), since also F < F',
E'tyBa.
Hence I° < {x| E'tyBx}.
2) I* < {®| B'tyBx}.

This is immediate.
3) {x| B'FyBax} = I™.
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We show this by an induction on the length of derivations from B’
in .

Suppose: if Bz is derivable from E’ in < a steps, then x e I*.

Suppose: Ba is derivable from B’ in o« steps. We show a € I%.

Let #, = {&| Az occurs before the last line in some (fixed) derivation
from E' of Ba}.

Let %, = {x| Bx occurs before the last line in this derivation}.

Now, A occurs in the conclusion of only one axiom in E', namely
Bax — Ax. It follows that

Ry < Ry
Also, by induction hypothesis, Zz = I*. Hence
{*) Ry I™.
Finally, it should be clear that

Bt A>Ba.
This says
acl(Z,).
Then by (*), since I is monotone,
acl(I®y=1I.
This concludes the proof.
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1

Let V be a lattice, % a positive integer and (V) the direct power o,
A function feF,(V) is called compatible if for any congruence OonV
and (a;,0;) €0, 4 =1, ..., &, (f(ay, --., az), f(brs .-, b)) € © holds, and f
is called order-preserving if a,<b;, i =1,...,k implies f(ay, ..., a)
< f(byy oney by). We denote by Cp(V) the set of all k-place compatible
functions on V and by OF,(V) the set of all k-place order-preserving
functions on V. As it immediately follows by a result of Wille [12], OF,(V)
< C, (V) ift V is simple.

Tn the present paper we determine all distributive lattices V with
C,(V) < OF,(V), and we give necessary conditions for an arbitrary lattice
¥ to satisfy C4(V) < OF(V). Thereby we obtain necessary conditions
for a lattice to be (locally) k-affine complete and (locally) k-order affine
complete resp. (for these concepts of completeness cf. Schweigert [9]
and Wille [12]). Furthermore, we show that every distributive lattice is
locally k-order affine complete (generalizing a result of Grétzer [4]) and
that 1-affine completeness implies k-affine completeness in case of a dis-
tributive lattice.

Throughout this paper we adopt the following notational conventions:
join, meet, inclusion, and proper inclusion in a lattice are denoted by U, N,
<, and <, resp.; k always stands for a positive integer and V always
denotes a lattice.

2

Tirst we show that it is sufficient to consider the case & =1 in order
to answer the question whether OF, (V)< (V) and whether C,(V)
< OF,(V), resp.
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