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Introduction

In this paper we shall speak about existence and nonexistence results
for initial value problems for equations of the form

1) i+ Au+f(lup)u =0, 2= —1, 4 =—%%b—,
where A is the n-dimensional Laplacian and f is a continuous real function.
In the special case f(s) = gs, ¢ = § = const., (1) is the dimensionless
standard form of the nonlinear Schrédinger equation which has been
sometimes called Ginsburg-Landau equation or recently also Zakha-
rov-Shabat equation. The latter notation is due to the fact that Zakharov
and Shabat [18] were the first to see that Canchy’s problem for the spatially
one-dimensional Schrodinger equation can be solved globally by means
of the inverse scattering method. This famous method was discovered by
Gardner, Greene, Kruskal and Miura [4] and firstly applied to Cauchy’s
problem for the Korteweg—de Vries equation. Unfortunately the approach
of Zakharov-Shabat does not seem to generalize neither to higher space
dimensions nor to other functions f than f(s) = gs. Since we are interested
in more general cases we do not go into details of the inverse scattering
method here.

In the last decade, existence and nonexistence results for initial
value problems for (1) have been published by many authors. In this
paper we take into account existence results of Shabat [13], Strauss {15],
Baillon, Cacenave & Figueira [1] and Ginibre-& Velo [5] as well a8
nonexistence results.of Talanov [16], Shabat [18], Zakharov, Sobolev
& Synach [19], Kudrashov [8] and Glassey [6].
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All the papers mentioned are eoncerned with Cauchy’s problem for
(1). Only little is known about solutions to (1) satisfying boundary condi-
tions. Bspecially we are not aware of any nonexistence result for initial-
boundary value problems for the nonlinear Schrodinger equation. So we
chall restrict ourself also substantially to Cauchy’s problem. Only in the
end of this paper we shall give some existence and nonexistence results
for simple one-dimensional initial-boundary value problems which include
the n-dimensional spherically symmetrical case.

The puper consists of five sections. In the first one we introduce
some notations and prove a lemma motivating in some respect the notion
of solution used in the paper. Section 2 is devoted to a local existence
theorem for the m-dimensional Schrodinger equation. A global existence
theorem for the case n < 3 is proved in Section 3. Section 4 contains a non-
existence result connecting the space dimension # and the growth of the
funetion f. Our results concerning one-dimensional initial-boundary value
problems ave given in Section 5.

1. Preliminaries

. For a complex number z we denote by |z, Z, Rez, Im# modulus, conjugate
complex number, real and imaginary part, respec’gively. The letter ¢
stands for various constants. €y, I?, Wi, (H' = W}) are the usual spaces
of complex-valued functions defined on R" (cf. [9], [17]). The symbols
(-, ) and {fl, I1lp, il denote scalar produet in H = H® = L* and norms
in H, I?, W}, respectively.
We shall use the embedding theorem [10]

(L1 Wie Wi-nrne—d 1r<p< o0, 6>0,

[a] = integer part of a,
and the inequality [11]
(1.2) D9, < ool Dol

1<g, r<oo l<e<1,

Yo e WinIf,

1/p = j[n+alfr—1n)+(1—a)fg,
where ||D? ol}, denotes the maximum of the ILP-norm of all jth derivatives
Div of ». '

For a Banach space B and a time interval [0, T') we denote by N0, T;
B) (C%,(0,T; B)) the space of all on [0, T) I-times continuously (weakly
continuously) differentiable B-valued functions (0(0, T'; B) = 0°(0, T'; B))
and by IL?(0,T;B) the space of the quadratically Bochner-integrable
functions w e((0, T) - B).

We congider initial value problems of the form

(1.3) i+ Au+Ff(lul)u = 0,

%(0) = o,

icm
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and assume throughout the funection f to be real-valued and econtinuous
on R} . We define the functions

Fs) = [ f)dr, >0, gle) = fllzz, 2eC.

TWe look for solutions # of (1.3) belonging to spaces of the form
XUT) = 0(0, T; H' nL* nW)nCY0, T; H),
where W = {v e H| [|o]*|o|tdw < oo}, [ = [.
i

These spaces turn out to be suitable for formulating existence as
well as nonexistence results. Indeed, one of the main tools for proving
such results is the

LEM:MA:L Let w e X2(T), T >0, be a solution of (1.3). Set
Liu) = [ m@Pde, ILu) = [(IFa@)E—F(u@))de,
e(t) =f 2] |2 (8) |2 e .

Then for t < T the following identities are valid:

(1.4) I (u(®) = Li(e),
(L5) L{u@®) = L),
(1.6) 6(8) = 4Im(Vu(t), ou(t)), ¢é = defds,

@7 60) = 4(2Lfu)+ [ (@+m) P () —nf (w1 (@) do).

Proof. The identity (1.4) ((1.5)) follows by multiplying (1.3) scalarly
by u (w), taking the imaginary (real) part and integrating with respect
to t. )

In order to prove the remaining identities we denote by & a real
funetion with the following properties

heCP, 0KSh(®)<L, hzw)=0if /=2, &) =1if Jzi<1,

and set
hj(m) = h(2[j),

By Lebesgue’s theorem on dominated convergence we have for each
aelt

v;(w) = |z|*hy;(2), w; () = ah(x), j=1,2,...

(1.8) Jlirgj hado = [ ado
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and

(1.9) hmlfm 7h, adw|<hmf @l | Pyl lalde =Yim [ ||| Vhy| o] deo
o0 J—)ooJ<Ke,,

<11m(9nnx]l7h[ f [a,!d:o) = 0.

I i<z
Now we have
(%, 1uf2), = 2Re(v;0, u) = — 2Tm (v,(du+g(u)), u)

= —2Im(du, v;u) = 2Im(Vu, Vo,u+ v, Vu)

= 2Im(Vu, (Vhy|]> 4 2w;) u)
and by (1.8), (1.9) and Lebesgue’s theorem

1
e(t)—e(0) =lim [(v;, |u|*)]} =Lim f 2T (Vo (Vh; |5+ 2ah,) u) ds
jooo

j—;oﬂo
i
= 4Im f (Vu, wu)ds
0

Hence (1.6) follows by differentiating.
Now we want to prove (1.7). Taking into account that u, e 0*(0, T
H-Y), we obtain

Tm (w, w;w), = T ((Pug, wp0) + (0, - Vi 24,))
= —Tm (s, V w0-+w;- Vi) — (w;-Vu, w))
= Im (2w; - Vu+V -w;u, u)
= —Re(2w; - Vu+V-wu, du+g(w))
= Re (V{(2uw; Vu+ V-w;u), Vu)+
+(Vrwyy F(juf2)—F(ju]?) uf?) =
Thus,. using (1.6), (1.8), (1.9) and Lebesgue’s theorem, we get
1/4(6()—é(0))

?

—-hm [Tm (w; -V, w7 _hmjﬂjds

joo g

= f [~y [Pu) 2 Pl + (0 Vu, V) +(ny B () —£(j0]?) juf?] ds
0

i
= [Tt + [ (@+m) F(jul2) —nf(1u?) jul?) do] as

Henece (1.7) follows by differentiating.

EBemark 1.1. For smooth solutions which decrease sufficiently
rapidly as @ — oo, Lemma 1 has been proved by Glassey [6].

%
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2. Local existence

In this section we prove a local existence theorem for the Canchy problem
(1.3). Our technique of proof is essentially due to Shabat [13] who proved
the existence of a unique local solution # e C(0, T; %) to (1.3) for the

. case f(s) = gs, ¢ = § = const., where & is the Schwartz space of smooth

funetions decreasing rapidly as @ — oo.

TEEOREM 1. Let @ e HnW, 1> [n/2]+1. Suppose that the function
g 1is l-times continuously differentiable such that

(2.1) ”g("))”l,z < e(lwlh,e)» Vve Hza

where ¢ is & real nondecreasing locally Lipschitziam function on RY,. Then
the problem (1.3) has a unigue solution u e X*(T,), where [0,T,) is the
existence interval of the solution y to the ordinary differential equaiion

gt =ely®), 9(0) = gl
Proof. We rewrite (1.3) as equivalent integral equation

£
(2.2) w(t) = U(t)p+s [ U(t—s)g(u(s))ds,

where U is the group generated by the operator 4w, that is

Ut): o —>u(t) = Uy, w=1idu, u(0)=gp.
It is easy to see that

238) UMDl = llph, and [Tl < ollely+tiel,s) -
‘We consider the iteration sequence (%) € X'(T,) defined by

(2.4) W) = Tt)p-+i f T(t—s)g(uF(s)ds, u =9, k=1,2,..
From (2.1) and (2.3) it fl:)llows
1w*+ (@) 2 < ligplh 2+ f‘ ol (s)la)ds, e = lgplh,a-
Besides (u*) we define a sequejnce (¥*) by
91 (1) = liplla+ f F)ds,  y°(t) = liplha-

It is easy to see that ( U ) is monotoneously increasing and that y*(i)
—y(1) a8 k — oo, t < T,. Moreover, it follows by induction that

I (Ol < ¥* @) < y(D), Ek=1,2,..., 1<Ty,
and in view of (1.1) k

(2.5) "“k“cm,m;z.w) ”’“ Ha(a,r,ﬂl)\ o(I), T<T,.
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Further, taking into account (2.3)~(2.5), we get

I3
W (1)l < 1T (B @l + f [Tt —s)g (w*(s))|lwds

(my(1+ f I (5) ) -

Hence, using similar arguments as in the proof of (2.5), we deduce
(2.6) T+ oo, zmy < e(T)-

Finally, rewriting (2.2) as

2.7 W AP L g () = 0,  wFTL(0) = @,

and using (2.5), we get the a priori estimate

(2.8) " oo, szt < (T«

Since the embedding from H'AW into H is compact, we can pass to the
limit % — oo in {2.7) because of (2.5), (2.6), (2.8) and obtain the theorem
by standard arguments (cf. [2], [9]).

Remark 2.1, One can show (cf. the proof of Theorem 2) that in the
case n = | = 1 the local solution to (1.3) guaranteed by Theorem 1 belongs
in fact to X*(T,), provided ¢ e H*NW.

Remark 2.2. It follows from (1.2) by setting « = jfl, ¢ = oo that
the functions f(s?) = ¢s* for integers p = 0,2,4,... or reals p>1-1
> [n/2] fulfill the hypotheses of Theorem 1.

CoROILARY 1. Under the hypotheses of Theorem 1 either (1.3) has
a unique solution u € XT) for each T >0, or there exisis o finite time T,
such that [u(t)l, — oo as t— Ty . Moreover, if n <3 and 1 = [n/2]+1
then even Ju(t)l|, — oo as t - T7 .

Proof. From the proof of Theorem 1 the first statement follows im-
mediately. To prove the last statement it suffices to show that [u(f)], < ¢,

1< Ty, implies [u(f)l;, < ¢ provided n<3,1 = [n/2]+1. Let » = 1.
‘We deduce from (1.4), (1.5)

fu(®)2
o (DIF = (o) + [ Flu(0)l?)ds = Lp)+ [ [ fls)dsdw
0

< ILy(9)+ el (u(t) = La(p)+ely(9) = o
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For n = 2,3 it follows from (1.3) that

i

IAu()r = |4} —2Re[(g(u), 4u));+2Re [ ((g(w)),, du)ds
; 0
<120 4u@+o(1+ [ luldu)ds)

i
<120 4u(lt+o(L+ [ [dulpds).
1]
Thus Gronwall’s lemma implies {ju (¢)[,,» < ¢(T') and the corollary is proved.

3. Global existence

In this section we prove for n < 3 the existence of a unique global solution
to the Cauchy problem (1.8). Recently, similar results have been published
by Baillon, Cacenave & Figueira [1] for f(s?) = gs?, 1<p < 4/n aud
more general for twice continuously differentiable functions g satisfying
estimates like

gle) = oL+ ™) el, 0<pi<4fn,
19'(2)] < e(lel?+ 1217, 1<p<p<4[(n—2),

by Ginibre & Velo [5]. Whereas in [1] and [5] the global results are based
onlocaloneslike Theorem 1, we shall use a parabolic regularization technique

n—2
which allows us to replace the restriction p>1 by p > max( pare 9)

THEOREM 2. Let n< 38 and ¢ € H2nW. Suppose that
{(3.1) F(s?) < e(145™), Vs> 0, 0< i< 4fn

and that g is continuously differentiable. If n= 2 suppose in addition that
na 2am
(32) 9@+ ") VeeC, S <m<p< 5,

with (n—2)[n < a < 2/n.
Then the problem (1.3) for each T < oo has a unique solulion w € x2(T).

Proof. Let (¢,), 0 < e<1/2, be a set of functions such that
13.3) g e0P, @,~¢ inHNW ase—>0.
For r > 0 we set

0.(2) = {g(2) it lel <r, glrzlel) it Jo[ >}
We consider the regularized problems
(3.4) fu,+ (1 —1s) du—+g, (1) =0, 4(0) = @,.


GUEST


136 H. GATEWSKI

Because of
g (2) — g (W)l < 211}%]9 @llw—wl, Yo,Ywel

lel<r

. the operator » — ¢, (v) is Lipschitzian m H. Thus from results on parabolie
equations (cf. [3], [7]) it follows thatb fbr each T < oo (3.4) has a unique
solution ,, € C(0, T; H2) nC*(0, T; H). Moreover, it holds %, e L0, T';
H?).

Now we want to show that for sufficiently large r u,, is the solution to
(3.5) i+ (L —ig) du+g(u) =0, u(0) =g¢,.

Evidently, for this it suffices to find an a priori estimate for u,, in C(0, T
I=) independent of r. Firstly we have (cf. (1.4))

¢

(3.8) Ilﬂw(t)llzﬂ-b"]IIV%Ilzds = |lp,l*-
0

Next we find using (1.2), (3.1), (3.3), (3.4) and (3.6)

13 i
IPu(®lF+e [ 1dulpds = | Vp,l2+2In f (g,-(w), Au)ds
0

i
<o+ [(o(e) B +helldul) s

0

<o+ f (&) [ VulP" + e | dull?) ds

¢

<ot [ (el I7ult + 3ol dulp)ds.
0

Hence, using (3.6) and Gronwall’s lemma, we get

(3.7) Watep oo, msmzty T+ tker 220, ety < (e, T)
For » = 1 this implies

’ ”usr”c'(o,T;L‘”) <o(e, T).
Let now % > 2. Then it follows from (3.2), (3.3) and (3.7) that

(L-+2%) fdu ()

. .
= (1+2) | dp.l*+ [(2Re(Vg,(w), (1—ie) Pu) — & V) ds
[

£
< (L+e) Mg+ [ (ol + i) | Vulll| Pali— & Vaw |?) ds
[+
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t t
ofe) (1 + J (s | Vul|2ds ) < o(e) [+ J el Vel dis

(1+f Il ds) < ofs) 1+ fnuu” as).

The latter inequality is clear for 0 < p,<2. If 2 < p; < 2anf(n—2), it
follows from (1.2) with p=o00,j=0,1=2,7=2, a =2/p, ¢ =
(ps —2) (% —n) (< 2n/(n—2)). Hence, taking into account (3.7), we get by
Gronwall’s lemma |{u,|o,ma2 < ¢(e, T). Because of (1.1) this implies the
desired a priori estimate

eerlloge,zizomy < ¢(e; T)-

Now we want to prove some a priori estimates for the solution u, to
(3.5) nniform with respect to s. We suppress the subscript & wherever
misunderstandings are excluded.

(i) Because of

0 = —2Re (i +(L—de) du-t+g(u), (1—is)u)
= Delull®+ ((1+82) I Vu[12~fﬁ’(lulﬂ)dw)i+261m (g(w), ),
we obtain by (1.2), (3.1) and (3.6)

.
A+ [ Pu)E < c+fF(|u(t)12)d96+8flly('“)lizdé‘
<o+ B+ f Ity ds)

<e (1 V()Y 4 f I Vuu"z’lds) )
: [}

Since np, < 4, we eonclude from this and (3.6) by Gronwall’s lemma that
(3.8) st omty < © (T)-

(i) Let h € CF be a real function as in the proof of Lemma 1. For
j=1,2,... we define w;(2) = |z|h{z]j) and conclude from (3.5) and (3.8)

i
oy (t)]12+2¢ [ Yo, Vulpds = Jaoyp,]P +2Tm (1 — i) f (7, 2005 Vaoyu) ds
¢ 0
&
<ot [ (Pule+loyull)ds)
[]

<oft+ S oyuieas)
[
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-Gronwall’s lemma yields [[w;%,llop,7;m < ¢(L). Hence by Faton’s lemma

it follows
(3.9) ellog, zsm) < Wtelloo,z;zm + 1181 Walloo, 7szny < €(T) .
(iif) Now we wish to prove the estimate

{3.10) leellogo,7zey < (1)

For n = 1 (3.10) follows from (3.8) and (1.2). In order to verify (3.10) for

= 2,3 we infroduce the operators

U): v = U, (00 = u,(t), %y =i(l—is)du, u(0) = 0.

It is easy to see that
(311) 1Tl < loly,  VoeH, t20.

Moreover, we have the representation (ef. [12])

(T.()9)(2) = (4mi(L—is)t) ™" [ expls & —y12/(4 (1 —45)1)) v () dy

from which we see that

(812) 1T.(0)0lle < (27) ™™ Jlolly, V7 = L2

On account of the Riesz—Thorin theorem (cf. [12]) (3.11) and (3.12) imply
(313) U0l < o™ B o],, Vo elP, 1<Pp<2<g< oo,
1/p+1fg =1.

Now we rewrite (3.5) in the equivalent form

N

t
w(t) = U()p.+1 [ U,(t—s)g (u(s))ds.
0

Using .(1.2), (3.2), (3.8), (3.9) and (3.13) with ¢ = 2/(1 —a) € (n, 2n/(n—2)),
assuming without loss of generality that p,ja < 1, 2 < pyfa, we get with

D = 0/om;, j=1,...,n,

i
1Du(O)ly < 10, (8) Dl + [ [|T(2—5) Dy (u(s))],ds
13
< o(IT.() Dpulhat [ (2—8)029 g (u) Du, ds)

t
< c( IID¢8!|1,2+Df (8 —8)=|| (|ul?2+ |os|7s) | Du|[, ds)

t
<olpda+ of (=)™ 1B ol Dl + 1l | Dol s

icm
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%
<e[Lt [ (i—a) (L -+ [2l) 222 1 D) ds)
0

I3
<ofL+ [ (t—s)7" |Dulds).
0

Hence it follows that [Du(i)ll, <y (), where y{(?) is the solution of the

integral equation

i
y(&) = oL+ [ (t—s)Ry(5)ds).
o

{Note that an/2 <1 by assumption.) Since g > n, (1.1) implies (3.10).

(iv) Finally we need the estimate

v

{3.11) [ellego,mmn + Wballo,z:m < O(T) .
Using (3.8), (3.10) and
(3.12) [orell < (L &) [ Awgll -+ llg (w)ll < o(1+ | dul))

we conclude from (3.5) that
14

0 =2Re f {u, + (L —ie) du+g(w), (L—is) Au)ds

i
=f (g 172 —2Re (g (w));, (1—de) Au)) ds+
+ {1482 ({1 4u (I — | doli?) -+ 2Re [(1 +ie) (g {w), du)]§

i
> —o(L+ [ g’ (w)ul | 4ulds) +F w2
0

i

= —o[1+ [ 1dulpds) + 3 4ue.

1]

Thus Gronwall’s lemma and (3.12) imply (3.11).

‘We are now going to take the limit ¢ — 0. Noting that the embedding
from H*NW into H is compact, we conclude from (3.11) by means of
a well-known compactness lemma (cf. [9], I, Theorem 5.1) that the set
(u,) is compact in L2(0, T; H). Consequently, there exist a sequence

(%;) = (u,]_), g -> 0, and a function « such that
we0,(0, T; H2OW)nC(0, T; HY) nCL(0, T; H),
u; —> % {strongly) in L*(0, T'; H),
u; = u (weakly) in L2(0, T; H2NW),
Uy — % in L2(0, T; H).
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By standard arguments (cf. [2], [9], [14]) ome shows that « is the
(unique) solution of (1.3) and that in fact u € X2(T).

Theorem 2 is proved. .

COROLLARY 2. Let ¢ e H:. Suppose the functions f and g fulfill the
hypotheses of Theorem 2 with p,> a. Then for each T << oo the problem.
(1.3) has @ unique solution u e C(0, T3 H*)n O*(0, T'; H).

Proof. Let (g;) be a sequence with @; e H2OW, ¢; - ¢ in H2 and let
u; be the solution of (1.3) corvesponding to the initial value g;. It is easy
to check that w; satisfies a priori estimates like (3.8), (3.10) and (3.11).
Now for a, = u;—w, we find by (3.10)

11
s (1 < Nyl + 6 [ gl ds
1]

and by Gronwall’s lemma uy; —0 as j, k — co. Thus the sequence ()
is compact in C(0, 7'; H) and we can proceed as in the proof of Theorem 2.

Remark - 3.1. Evidently the functions f(s?) = ¢s? with max(0,
(n—2)/(n+2)) <p < 4[n (max (0, (n—2)/n) < p < 4/n) satisfy the hypo-
theses of Theorem 2 (Corollary 2). (Clearly, the assertions of Theorem 2
and Corollary 2 hold also for the linear case p = 0.)

Remark 3.2. As we shall show in the next section, global solutions
to (1.3) do not exist in general for p > 4/n. Nevertheless, for initial values.
@ with sufficiently small L2-norm solutions may exist globally. The existence:
of such “small” solutions for f(s?) = ¢s? Baillon and al. [1] proved for
n=7p=2andn =23, p=4/3 and Strauss [15] for sufficiently large p.

4. Nonexistence

In this section we prove a blow up result for X?(T)-solutions to Cauchy’s
problem (1.3). Apparently the first nonexistence result for the nonlinear
Schrédinger equation is due to Talanov [16] (cf. also Shabat [13]), who:
found an explicite example of a solution to (1.3) blowing up in finite time
for n = 2 and f(s?) = s2 A nonexistence result for the spherically sym-
metrical case when n = 3 and f(s?) = s? has been given by Zakharov,
Sobolev & Synach [19]. More recently Kudrashov [8] and Glassey [6]
have independently proved blow up results for sufficiently smooth solutions
to (1.3). The main tool of all the mentioned papers are identities like those
we have stated in Lemma 1.

TuEOREM 3. Suppose that the function f satisfies

(4.1) @2+n)F(s) < nsf(s) Vs=0.

* ©
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Suppose that w e X*(T), T >0, is a solution to (1.3) and I,(p) = b < 0.
Then necessarily T < t,, where 1, is the positive oot of the equation

(4.2) 4bi4-6(0)t 4 e(0) = 0

and ¢(0) = ||[z|9l*, €(0) = 4Im(Ve, ap). If in addition the function g(z)
= f(|2|?)# satisfies the hypotheses of Theorem 1, then there exists a Ty € (0, t,]
such that

@l >0 as Ty

Moreover, if n <83 and 1 = [nj2]+1, we have

el 00 as 117,

Proof. We shall show that the hypothesis 7 > ¢, leads to a contra-

diction. From (4.1) and Lemma 1 it follows that
i & )
e(t) = e{0)+ f(é(0)+ f é(r)dr) ds < (0)+6(0) -+ 4bi2.
] 0

Consequently, there exists a ?, < 7, such that ¢(,) = 0 and thus w(t,) = 0.
But this contradicts the fact that [[u(f)|? = |@l* > 0 as a consequence
of I(g) # 0.

The remaining statements follow immediately from Corollary 1.

Eemark 4.1. Evidently the function f(s?) = ¢s?, ¢ = § > 0, satisfies
(£1) if p = 4/n.

The following proposition covers our results concerning the case
f(s?) = ¢s%, n< 3.

PROPOSITION 1. Let n <3 and p >m1'11(0, (n—2)/(fn+2)). Suppose
o e H2NW and I,(¢) = b < 0. Then the Cauchy problem

i+ Au+-qluPu = 0, %{0) =¢, ¢>0,

Sor each T > 0 has a unique solution % € X2(T) if and only if p < 4/n. If
P = 4[n then there ewists a unique local solution. This solution blows up in
finite time Ty < t, such that

()l =00 as t—=T5.
Here t, is the positive solution of equation {4.2).

Remark 4.2. Evidently, for arbitrary ¢ e H%, ¢ # 0, the function
@, = Ap for sufficiently large |1 satisfies

Lo = [ (170 - 22

713 ]q:z]l’“)dm<0, it p,g>0.
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5. One-dimensional initial-boundary value problems

Tn this section we carry over some results of the preceding sections to
initial-boundary value problems. Unfortunately we can handle only one-
dimensional problems (apart from the m-dimensional spherically sym-
metrical case). The proof at least of global existence and non-existence
theorems for higher dimensional initial-boundary value problems seems
to require new ideas. Especially, we do not see how to prove suitahle
equivalents for the identity {1.7) and the estimate (3.13) when houndary
conditions are posed and # > 1.
We consider initial-boundary value problems of the form

Wty U HF (012w = 0,  (0) =g,
u{t, 0) = ku(t, 0), w(t,1) =0, 0<k=>F< o,

(5.1)
(5.2)
and set now

1
H=140,1), (o,w)=[omds, H*=H0,1),
0

V = {v e H?| 0,(0) = k(0), v(1) = 0},
Y{(T) = C(0,T; V)n0*(0, T; H).
LeyvwA 1'. Let w € Y(T), T > 0, be a solution of (5.1), (5.2) and

1 1 )
Lu@) = [ wrde, Lu®) = [ (u0r—F(lw@e)de+kud, 02,
0 0

6ty = f 22| (t)|2dm.

0
Then for t< T the following identities hold:

Liu®) = Lip), Iu) = ILp),

1
8(0) = 4[2L (w() + [ (8F (lm()) —F {10 ()1 ju(o)}F) dow—
0

é(t) = 4Tm (wu,(t), u(t)), -

— g t, )2 —T [u(t, 0)P].

The proof of this lemma is analogous but easier than the proof of
Lemma 1.

THEOREM 1'. Let ¢ € V. Suppose the fundtion g is continuously differen-
tiable such that
g}, <e(lvll,.) VveH?

with a function ¢ as in Theorem 1. Then the problem (5.1), (5.2) has & unique
solution u e Y{(T'y), where [0, T,) is the existence interval of the solution to
the ordinary differential equation ‘

90 = ely®),  (0) = (L+plE,+Elp(0)]2)*".
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Sketch of the proof. As in the proof of Theorem 2 we find that the
regularized problem
it A (L—de) e+ o (u) = 0,  u(0) =9, C™(0,1) N7V,
has a unique solution 4, e Y(T,) satisfying
(e (E)1 2+ T ot (2 O)12)y < 200 (1, (1) W) (8)
< 2 ({7 (200 Nkl (2)
< 20 ({tber (8)lly, ) ey ()12 -

Sinee {ig, [} , + ¥ (0)] < (y(O))Z for sufficiently small ¢, we get the a priori
estimate

P>V

e (DL + B ko (2, OV 2 y(2))2, B < T,

which implies
[t {B)oo < 9{2)

The remainder of the proof is essentially the same as that of Theorem 2..
From Theorem 1’ we deduce immediately

CoroLLARY 1'. Under the hypotheses of Theorem 1’ the problem (5.1),
(5.2) either has a wnique solution u e Y (T) for each T < oo or there is o
finite time Ty such that |lu(t)], = oo ast - Ty .

TrrorEM 2'. Let @ € V. Suppose that
FE) <e(d+s7),

and that § is continuously differentiable. Then the problem (5.1) has a unique
solution w e ¥ (T) for each T [0, o).

The proof proceeds substantially as that of Theorem 2 for n = 1.
Using Lemma 1’ and Corollary 1’ one can prove the following non-
existence result in much the same way as Theorem 3.

520, 0<p< 4,

THEOREM 3'. Suppose the function f salisfies
3F(s) < sf(s),

Suppose u € Y (T), T > 0, is a solution to (5.1), (5.2) and L{p) =b < 0. Then.
T <ty < oo, where t, is the positive root of the equation 4bi2-+-é{0)t-+e(0) = 0
and e(0) = (22, |p|?), é(0) = 4Im (2g,, @).

If, in addition, the function g satisfies the hypotheses of Theorem 1"
then there emists a Ty < 1, such that [[u{t)ll, = oo ast —>T; .

=0,

Remark 5.1. Theorem 3’ yields also a nonexistence result for the
initial value problem (5.1) under the boundary conditions

(5.3) U (t,0) = Fu(t, 0),  wy(t, 1) = —Ku(t, 1).
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Indeed, let @ be an initial value satisfying these conditions with ¢(z)
= —gp(1—2), 0< 2 < 1. For a solution  of (5.1), (5.3) evidently o(t, »)
= —u(t, 1—a) is also solution. Suppose  is unique. Then we have u = ¢
and, especially, u (¢, 1/2) = v{t,1/2) = —u(t, 1/2), that is u(, 1/2) = 0.
Thus the problem (5.1), (5.3) for special initial values is reduced to a
problem like (5.1), (5.2).

Similarly as (5.1), (5.2), we can handle the following n-dimensional
spherically symmetrical initial-boundary value problem:

e+ (10]%)
0) =0,

(5.5)
(8.6) (1,
THEOREM 3. Suppose the fqmction f satisfies
(n+2)F(s) < nsf(s)

Suppose weC0, T; H)YNC(0,T; H), T>0, is a solution to (b
and

w2 (8™, %(0) = @,

w(t, l) =0.

s=0.

), (5.6)

1

= [ (il

0

Then the first statement of Theorem 3' holds with e(0) = ("%, |p|?) and
6(0) = 4Im(a"g,, ).

Sketch of the proof. The theorem follows essentially from the identities
I (w®) = (@7, w®)?) = L), I(u(t) = L(e),

In(p) F(lpl2)a" dp = b < 0.

8(1) = 4[2L{u( ( f (124+m) (i) — nf ) [l 27 ) (1)

— lug(t, 1)17]-

References

[1] J.-B. Baillon, Th. Cacenave, and M. Figueira, Hquation de Schrodinger non
linéaire, Note C. R. Sc. Paris, Ser. A, 284 (1977), 869-872.

[2] H. Gajewski, On an initial-boundary value problem for the non-linear Schrodinger
equation, Internat. J. Math, & Math. Seci. 2 (1979), 503-522.

[3] H. Gajewski and K. Groger, Bin Projektions-Tterationsverfahren fir Bvolu-
tionsgieichungen, Math. Nachr. 72 (1976), 119-136.

[4] C. 8. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Methods
Jor solving the Korteweg—de Vries equation, Phys. Rev. Letters 19 (1967), 1095—
1097.

[5] J. Ginibre and G. Velo, On a class of non linear Schrodinger equations III.

Special theories in dimensions 1, 2, 3, Ann. Inst. Henry Poincaré 28 (1978), 287—
316.

icm

RESULTS FOR NONLINEAR SCHRODINGER EQUATIONS 145

(6] R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear
Schrodinger equations, J. Math. Phys. 18 (1977), 1794-1797.

[7] X. Groger, Regularitdtsaussagen fiir Evolutionsqleichungen mit stark monotonen
Operatoren, Math. Nachr. 67 (1975), 21-34.

[8] 0. I. Kudrashov, On singular solutions of monlinear equations of Ginsburg—
Landau type (Russian), 8ibir. Math. J. 16 (1975), 866-868.

[9]1 J. L. Lions, Quelques méthodes de résolution des problémes auw limites non lindaires,
Dunod-Gauthier-Villars, Paris 1969.

[10] 8. M. Nikolskij, Approwimation of functions of several wariables and embedding
theorem (Russian), Nauka, Moskva 1969 (Engl. transl.: Springer-Verlag, Berlin,
Heidelberg, New York 1975).

{111 L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm.
Sup. di Pisa, Science Fis. a Mat. Ser. ITI, 13 (1959), 115-162.

[12] M. Reed and B. Simon, Methods of modern mathematical physics, Academic
Press, New York, San Francigco, London 1975.

[131 A. B. Shabat, On Cauchy’s problem for the Ginsburg-Landau equation (Russian),
Ser.: Dynamies of continuous media, Novosibirsk 1 (1969), 180-194.

[14] W. A. Stranss, On continuity of functions with values in various Banach spaces,
Pacific Math. J. 19 (1966), 543-551.

[15] —, Dispersion of low-energy waves for two conservative equations, Avch. Rat.
Mech. a. Anal. 55 (1974). 86-92.

[16] V. L. Talanov, Self-modulate wave pencils in o nonlinear dielectricum (Russian}),
Isw. Wuzow Radio-Fiz. 9 (1966). M

[17] H. Triebel, Hohere Analysis, Deutacher Verl. d. Wiss., Berlin 1972.

[18] V. E. Zakharov and A. B. Shabat, Exact theory of two dimensional self-ft g
and one-dimensional self modulation of waves in nonlinear media (Russian), J. Exp.
Theor. Phys. (JETP) 61 (1971), 118-134.

[19] V. E. Zakharov, V. V. Sobolev, and V. S. Synach, Desiroing of mono-
chromalic waves in media with inertless nonlinearity (Russian), J. Prikl Mech.
i Techn. Fiz. 1 (1972), 92-97.

Presented to the Semester
" Partial Differential Equations
September 11-December 16, 1978

10 — Banach Center t. X


GUEST




