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1. Intfmluction

1.1. The spectral theory for boundary value problems for pseudo-
differential operators seems to have been studied rather sparingly up to
now. Our own motivation came from a study of differential Douglis—Niren-
berg elliptic problems, where the pseudo-differential boundary problems
appear by a natural reduction. This work (partly joint with G. Geymonat)
is briefly described in Secfion 2 below, with an improvement due to new
results in Section 4. In the major part of the present section, we recall
some of the preceding results in the spectral theory for differential and
pseudo-differential problems of a single order, first for manifolds without
boundary and next in the ease with boundary. Section 3 concerns a resolv-
ent construction for ps.d.o. boundary problems, and Section 4 presents
our study of remainder estimates, first for manifolds without boundary
(Section 4.1), and then with boundary (Section 4.2).

Sections 1, 2, 3 and 4.1 have the character of a survey (with a few
improvements of earlier results), whereas Section 4.2 contains complete
proofs of new results.

1.2. The case without boundary. Let P be a classical pseudo-differ-
ential operator of order 1 acting in a ¢-dimensional complex hermitian
vector bundle  over an n-dimensional compact O* manifold 2 without
boundary. That P is classical means that in each local coordinate system
U x R* for T*(X), the symbol of p(z, £) is a ¢ X g-matrix of 0° functions

on U x R", of the form p(w, §) ~ 3, p,_;(®, &), where the terms p,_;(, £)
i=0 k

are homogeneous in & of degree [—j. The top order term we denote by

Pz, &) and call the prineipal symbol of P (it has a meaning on T*(Z)\0),
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and we assume throughout that detp®(z, &) # 0 for & s 0,1.e., P ig elliptic.
Reeall that an operator § = Op (s‘(w, 5)) is defined from a symbol s(z, &)
on UXRB" by

(L.1) Op (s(w, &)u(w) = 2m)™ [ = 195(w, &u(y)dyds;

P is locally defined in this way, modulo smoothing operators.

In [27], Seeley studied the resolvent of such operators P (under
certain extra hypotheses on p°), describing the kernel and showing that
conmplex powers of P can again be defined as classical ps.d.o.s. In particular,
for the cage where P is positive selfadjoint and 1 > 0, so that the spectrum
of P congists of a sequence of positive eigenvalues 4;(P) going to co (counted
with multiplicities), it was concluded in [27] that the number N(i; P)
of eigenvalues in [0, 1] satisfies

(1.2) N(t;P) = pt™+o(t"y  for ¢t — oo;
? P X H

where

(L.3) ép = fep(w)(las, with  ep(2) =—1— f tr[p%x, & " dew.
P n{2w)™ o

Remainder estimates (i.e. improvements of the term o(t™") were known
first for the ease of differential operators. Bypassing a long historical
development, we just mention some comprehensive treatments. The
works of Agmon and Kannai [3] and Hoérmander [227], based on studies
of the resolvent of P; imply that when dim & = 1, (1.2) can be improved
to )

1.4)

‘ N(@t; P) = Gpt" -0 (1" for ¢ -> oo,

for any 6 < 1/2, and there is a similar estimate of the spectral function
e(t; @, y) when < 1/2;

(1.5) e(t; 2, 1) = cp(@) P+ 03" for t — oo,

uniformly in # € Z. The proofs seem to generalize easily to systems (i.c. the
case where dim # > 1). The latter is not the case for the next improve-
ment of (1.4)~(1.5), that were shown to hold with 6 =1 by Hoérmander
[23]; based on a study of the hyperbolic problem D,u(w,t)—P u(z, 1)
= f(x, t), which was solved to a high accuracy by the introduction of
an adapted phase function y(x,y, £) instead of <(w—y, £ (cf. (L1)).
This method works for sealar ps.d.o.s. P, and for systems P where the
eigenvalues of p%(z, £) are simple. A generalization to certain systems
where the eigenvalues of p°(w, &) have constant multiplicity was given

by Demay [7'] (cf. also Chazarain [7], Petkov [24], and Duistermaat~Guil-
lemin [8]). :
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There remains the general ps.d.o. systems. For such, the author hasg
recently obtained the following result ([19] and Section 4.1 below): For
all §<1/2,

(1.6) tre(t; @, ) = cp(x)t™ -0 M) for ¢ — oo,

uniformly for # € X; and consequently (1.4) holds with 6 < 1/2 for general
(positive elliptic) ps.d.o. systems P. Using Seeley’s complex powers, we
found as a corollary that in the case where P is selfadjoint, not lower
bounded, the numbers N*(i; P) of positive, resp. negative eigenvalues
in [—%,t], satisfy, for all 6 <1/2,

@.7) NE(t; P) = 51+ 01y for t — oo
P 7

where the §7 ave determined from p° (cf. (4.13) below); a similar formula
holds for the spectral function. This is new also for differential operators.

1.3. The case with boundary. Now let 2 be an n-dimensional compact
C® manifold with boundary I' and interior @ = @\T'; we assume that
@ is smoothly imbedded in Z. We also assume that in a neighborhood 2’
of I'in X, coordinates # = (%', ,) are chosen such that 2’ ~I'x ]—1,1[,
with I'=~I'x{0} and 2X'n@ ~TIx]0,1[. The trace operators
U (D’;ﬂ ) |p are denoted by y;. Let B = # 5. Then one can study realiza-
tions of P in Q. Note first that P gives rise to an operator P, on functions
on Q by the definition

(1.8) P, = rtPet,

where 7+ is the restriction operator (7+: u +» u|g), and et is the “extension
by zero” operator from Q to X. Differential operators are local, so for these,
the index R is usually omitted, but for ps.d.o.s. it is important. For instance,
for two ps.d.o.s. § and &,

(1.9) L(8,8) = (88)o— 8,85

is zero when § is a differential operator but otherwise generally non-zero
(it is a singular Green operator, cf. [5]). Let I > 0; then a realization
Py, of P is an unbounded operator in L?(H) acting like Py and with domain
defined by a boundary condition T% = 0. (A more general kind of real-
ization ig included later.)

For realizations of differential operators there is an ample literature
on the spectral asymptotics. For selfadjoint positive realizations Pp,
the most general results are those of Agmon [2] and Briining [6]. Agmon
showed for the spectral funetion of Pp:

(1.10) le{t; @, %) — cp(w)1"| < const 1™~ M dist(z, I')~°,
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for each & < 1/2, and hence (with & <1/2)

(1.11) N{t; Pp) = cpt™l-L O~ for ¢ — oo,
where h
(1.12) op = [ op(a)ds;

2

the proof was given for scalar operators, but generalizes easily to systems.
Briining showed (using Hérmander [23]), that (1.10) is valid with 6 =1
for scalar operators P, and hence

(1.13) N(t; Pp) = cpt™-+-0 (" Vogt) for ¢ —» co.

(Still better results are known for special operators, cf. Seeley [28].)
Let us also remark that we showed in [13] that when P, is a selfadjoint
elliptie, not lower bounded realization of a strongly elliptic differ-
ential system P, then the negative eigenvalues satisfy

(L14) N—(t; Pp)< etV 1o (gD for ¢+ oo;

here ¢- is explicitly determined, and o (1Y) can sometimes be improved
to 0@t (in fact always to Ot 2+ in view of the recent work
[19]). The positive eigenvalues in the not lower bounded case were treated
by Pham The Lai [257] with a result like (1.11) for é < 1/2. He also treated
non-selfadjoint problems; we shall not go into the various contributions
to this aspect.

Realizations (in L2(E)) of pseudo-differential operators are not quite
80 casily defined. For a systematic study it is convenient to have more
hypotheses on P near I" (e.g. the transmission property of Boutet de Monvel
[51). But also without this, when P is selfadjoint positive on H, one can
always define the Dirichlet realization P, as the Friedrichs extension

of P, ]0°°(9F); it has its domain in HY2(#), so the spectrum is a sequence
(e

of eigenvalues going to co. We showed in [15] the principal asymptotic
estimate

(1.18) N(t; P,y = cpt™ 2 o(t™) for t — o,

for a class of operators arising from Douglis—Nirenberg elliptic problems
(ef. Section 2 below); and indicated in [16]how (1.15) is obtained in general.
The method of [15] was based on a constructive analysis of the resolvent
R, = (P,—I)"* in the framework of the Boutet de Monvel theory (cf.
Section 3 below). Now there are other methods to prove (1.15); a second
one is given in Section 4 below; a third one would be to use very heavily
that (1.15) has a certain stability nnder perturbations of P, so that one
may approximate P near I' by differential operators (this idea came up
in & conversation with R. Beals).
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The resolvent construction should be of interest for other purposes
(trace, index, domains of complex powers, etc.). A construction for fairly
gencral realizations was presented in [18] (with estimates in Sobolev
spaces), and S. Rempel is coming out with another study (primarily for
operators with symbols that are independent of the normal coordinate
@, near I, as far as we know), apparently directed at the mentioned ap-
plications. Some remarks on our construction will be given in Section 3.

In the study of remainder estimates like (1.11), perturbations of
p°(x, &) are too crude, so P itself has to be nice (we require that it has the
transmission property); however, perturbations of the boundary condition
are still admissible when 6 < 1, so one can concentrate on P, for many
questions. The resolvent is of the form, for 2 € C\R,,

(1.16) R, = (P,— M)t = (P—2D)g* +6y,

where @, is a singular Green operator depending on A. Following Agmon
[27, we study E; in a region

(1.17) V, = {ieC| [A>1, ReA<0 or [Imi| > cA[~"}.

We had at first planned to generalize the complete analysis of [15], [18]
(carried out essentially for “sectors” V) to regions V, with 6> 0; but
found very recently a method to show some particular pointwise kernel
estimates for &, that are almost as good as those of Agmon [2] for the
differential operator case, so that they ean be used to prove (1.11) for all
8 < 1/2 by a technique of Agmon [2]. This is explained with full proofs
in Section 4.2. (The main results were announced in [20].)

We also obtain versions of (1.11) for much more general realizations,
including selfadjoint realizations that are not lower bounded, see Sec-
tion 4.

The author would like to thank the directors of the Banach Center
Semester on Partial Differential Equations for the hospitality, and
access to an inspiring milien, during her stay at the Banach Center in
Warsaw in September 1978.

2. A motivation: The spectral theory for Douglis-Nirenberg elliptic
differential systems

2.1. A Douglis—Nirenberg elliptic sysiem of differential operators on 2
of symmetric type is a matrix A = (Agsim1,....q where the A, are of order
my, +m, for a given set of integers my, ...; My, and the matrix of principal
gymbols

a’(z, &) = (‘7ms+mt(Asi) (%, E))s,tgq
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is invertible for (z, & e T*(Z)\0. 4 is said to be sirongly D.—N. elliptic
when a® (%, &)+ a®(z, £)* is positive definite for & 5= 0; then one can assume
that all m; > 0. By rearranging (in an admissible way for spectral questions)
and letting the 4, be matrix valued — or act from bundles E, to B,
respectively — we can assume that -

My > My > .. > My = 0.
Denote @ F; = B. Let X be a neighborhood of 0, and assume that bundles

i<q
and operators are extended to X.

A famous example is the linearized Navier—Stokes operator
—4  —grad
div 0
here B, = Qx €% and B, = 2x C; m; =1 and my = 0. A® ig D.-N.
elliptie, and A® ¢l is strongly D.-N. elliptic for ¢ > 1. Other examples
are '

(2.1) AW =( ) on 2c R,

Az AP 42 —A-?z) A?s)
ea 40 =(yy T5), ma av-lan —a 4
e 49 4y 1

with the A% being suitable operators of arder m,-my, for m; = 2, my =1
and my; = 0.

From the formal expression 4 one defines realizations by imposing
boundary conditions. For the spectral theory, it is convenient to have
realizations in L2(H), but these are somewhat problematic since A acts
‘more naturally between products of Sobolev spaces of different orders.
A solution of this problem was given in [12], [14], by the introduction of
the so-called reduced Cauchy data yu that have a sense on the maximalk
I2-domain of A; we refer to [12], [14] for the complete discussion, and
mention also that the boundary conditions Byu that define selfadjoint
lower bounded IL*realizations Ay are characterized in [17] ([15] treats
the case m, > 0). An example is the Dirichlet realization 4,.

Let Ap be a selfadjoint lower bounded realization, we may assume
that Ag is positive. Then

0...00
(23) .A_EI =0 = (Gsi)s,fSQ = 0,.00' +S
0...00,

where €y, is of order —2m, and 8 is of order < —m,—m,_; <—2m,—1.

Since 8 is of lower order than C,,, one can expect that the spectral prop-
erties of A%" are close to those of C,,, which has the advantage to be of
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a single order, but on the other hand belong to the ealculus for pseudo-
diffe{‘ential (rather than differential) boundary problems. In fact, if 4
= (Ag) g 18 & Parametrix of A on X, we have that

(2.4) O = (Ag)a+Gy

where ﬁq,l is a parametrix of the ps.d.o. P of order 2m,

(2.5) P = Aqq_ (Ast)s=q (-Asi)s_slq—l(-Ast)sgq—n '
i<g—1 t<g—1 i=q .

and G, is a singular Green operator of order —2m, and class 0 [10]. (Singu-
lar Green operators are part of the Boutet de Monvel calculus [5], more-
details are in Section 3 and Proposition 2.2 below.) There is now a great
difference between the cases m, >0 and m, = 0.

2.2. The case m,>0. Here Az' and (,, are compact operators,
so the spectrum is discrete. We shall use a perturbation theorem (inspired
from a theorem of Ky Fan [9]), that will now be stated in a general form:

PROPOSITION 2.1. Let B, and R, be compact selfadjoint operators in

‘o Hilbert space H, and let 8 = Ry—R,. Let ¢, 8, ¢ and ¢ be positive

constants with ¢ > 0 and ¢ > p. Let 6’ = max {0, ¢o(L-+0)/(1+0)}, and let
B=01+c—0)q, p = 1+0c—08)]o.
1° If R, and S satisfy, respectively,

(2.6) (R = STTHH0GY), A (R = 0(7),
and
(2.7) X(18]) = 0(j™),  for j — oo,

then Rs satisfies
(2.8) (R = GHH0G), 4 (Bi) = 0G0, for j> oo

2° If R, has the inverse Ay, then (2.6) is equivalent to
(2.9) N+(t; 4) = at"+0(), N-(t; 4;) = 0(%), fort—> o0

The proof is a straightforward modification of the proofs of [19],
Prop. 6.1 and Lemma 6.2, applying the minimum-maximum principle
to the ordered sequences of positive resp. negative eigenvalues Af Tesp.
4. We denote (8¢8)"* = |8].

Recall the theorem of Agmon ([1], Theorem 13.6), that when § is
selfadjoint > 0 in L*(R), and continuous from I*(£2) to H'(Q) with r > n/2,
then 4;(8) < 0§ ~rin where C is a constant depending on the norm of 8 and
on 0. We shall need the following refinement (based on the calculus of
Boutet de Monvel [5]):

PROPOSITION 2.2. When @ is a singular Green operator on @ of order:
—7 (7 integer > 0) and class 0, then there is o constant C so that

(2.10) LG) < 67D for all §.



GUEST


154 G. GRUBB
Proof. The statement was proved in [15], Proposition 3.5, for the
case where G is a finite sum ¢ = 2 K,T;, where the K; are Poisson oper-

ators of order —r-3%, say, and the T; are trace operators of order —3%
and class 0. Letting A" = {E;};<s and = YT} 7, one then has ﬂnt

G2 = T AT,

where A *2¢ is a pseudo-differential operator of order —2r in I'; to this
(or an itemte) Agmon’s theorem applies with » — 1 instead of ». In general,

G = 2 E;T;+ 8, where the K; and T; have rapully decreasing symbols,
and S IS of order. —oco; then the result follows for 2 K;T; by a passage

to the limit, and hence for @ by a simple pertmbatmn argument. (An
estimate of ¢ can in principle be deduced from the exact form of &.) m

Denote 2m, =1, and m,+m,_; = I’ (note that I'>12 2). By the
theorem of Agmon, § in (2.3) satisties 4(|8]) = O(j~"") whereas O, is of
order 1, so we shall have occasion to apply Proposition 2.1 with ¢ = n/l
and ¢ = n/l". Now (, is the inverse of a fairly complicated “realization”
of P (cf. (2.5), details in [15]), but we can show, using (2.4), that the Dirichlet
realization P, of P satisfies

Op—P7' =6,
where @ is another singular Green operator of order —1 and class 0. By
Proposition 2.2, 4 (|G]) is O(j j~Un=1)) 50 we shall have occasion to apply
Proposition 2.1 thh o = nfl and ¢ = (n—1)/l. It remains to determine
the spectral asymptotics of P,.

This is the main subject of Section 4, where it is shown that for any ¢ > 0,
N(t; P,) = opt™+0(g®2+0)  for ¢ — oo,

(N = N*, since N~ is zero). Applying Proposition 2.1 twice,
above, we ﬁn&lly deduce:

a§ indicated

TEEOREM 2.3. For any &> 0,
N(t; Ap) = cpt™+ 0™ M) for t - oo,
1 17—
where 6 = min{-— —-g,n_l , _l__ .
2 4+l n—141

The theorem is & sharpening of the result of [15]. For the example
A®in (2.2),1 =2and ¥ = 3;sothatifn = 3, 6 = §—

2.3. The case m, = 0. (The results here were obtained jointly with
G. Geymonat.) Here Oy, is not compact in L*(E,), so Ap has a non-trivial
essential spectrum. (We define the essential spectrum of an operator
F, essspF, as the complement in € of the set of 1 € € for which F—AI

icm°®
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Thas finite dimensional nullspace and closed range with finite codimension.)

_ Since § in (2.3) is of negative order, hence compact, a theorem of H. Weyl

can be used to show that

essspAp = {A# 0] A~ cessspCy}.

This set was determined in [10] by the construction of singular sequences,
that permit localization of certain properties of C,, to the properties of
its interior and boundary symbol (more explanations of the terminology
is given in Section 3). For the interior points (in I'*(L)\0), the sequences
are like those used in Hoérmander ([21], Sect. 3); but for the boundary
points (in T*(I)\0), the sequences are a new tool. It is shown that 1-*
€ essspC,, exactly when Cp—271T is not elliptic in the sense of Boutet
de Monvel; and hence 1 cessspAp exactly when either A —Al is nob
elliptie, or A-—).I is elliptic but By does not satisfy the complementing
condition w.r.b. A — L. (This was to be hoped, but is non-trivial in view
of the difficulties with the domain of the realization.) Essspdp is deter-
mined in [10] also for general elliptic (not strongly elliptic or selfadjoint)
A. For the Stokes operator A® (2.1) with the Dirichlet condition, essspAp
={-1, -1

When Ay is lower bounded, essspAp turns out to be bounded, so
there is in the selfadjoint case an eigenvalue sequence A4;(Ag) going to
+co. Tt was shown in [11] that this sequence behaves (in the first approxi-

mation) like the sequence of eigenvalues of Ay, defined in L*( & E,) by
i<g-1

(211) 4=

(Ast )e,tsq—l b

with the boundary condition By{ty, ..., %g_y; 0} = 0.

For the example A®, the eigenvalues thus bebave like the eigenvalues
of — A (applied to 3-vectors). For example A%, the eigenvalues behave
like those of an operator like A®, that was treated above in the case
m, > 0.

Altogether, we see that essspAp is determined from the essential
speetrum of the block of highest order (= 0) in Az', and the eigenvalue
asymptotics at -+ oo is determined from the eigenvalue asymptotics of the
bloek of highest order (= —2m,_;) in (45)~2 In each case, the problem
is reduced to a study of pseudo-differential boundary problems.

3. A resolvent construction for boundary problems

Since there is not room here to give a deeper explanation than the presenta-
tion in [18], we shall just make some comments on our method. We assume
that P is of order I = 2m (m integer > 0) and has the so-called trans-
mission property (cf. [5]). The purpose of the construction is to write
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R, = (P,—AI)* as a series
(3.1) By = R+ EBi+ ... +BY 48,5,

where the terms Rf have known homogeneous symbols, and § 2, Satistios
good estimates uniformly for 1eV, (cf. (1.17)). Bach term is a swmmn
R} = Q%o+6G%, where §F is the corresponding term in the resolvent
Q, = (P—AI)-! of P on %, and G% is a singular Green operator. Since the
domain of P, is not the full Sobolev space, it is more convenient to obtain
(3.1) as a part of the resolvent construction for the “inhomogeneous
boundary problem?”
Po—a1
2

3-2) ( y
where y = {4, ..., Ym_1}, and K, is a Poisson operator depending on A.
Let us recall some ingredients of the Boutet de Monvel calculus.

It is concerned with operators

P
A= ( Cha K),
where P is a ps.d.o. with the transmission property at I'; K is a Poisson

operator (going from I' to £2; a typical example is the solution operator
K: @ uof the problem: Ay = 0in 2, yu = g on I'); T is a trace operator

)_1 - (R, Ky,

(3.3)

(going from Q to I'; the definition includes the standard trace operators:

¥z, and adjoints of Pmsson operators — the latter are of class 0); @ is a
ps.d.o. on I'; and @ is a so-called singular Green operator (going from Q to
£, it is essentially of the form ZKI'T:‘ where the K; and T are Poisson resp.

trace operators). A is called 3:1(;7'6?//), operator (cf. [5]).

For stch systems A one works on three levels:

(1) the operator A that aets in.n dimensions;

(2) the interior symbol ¢o(4)(w, £) = the symbol of P, which is
a (locally matrix valued) function on T*(Q);

{3) the boundary symbol op(4)(a', &), which is a family of special
integral operators in ome dimension, parametrized by (a', &) e T*(I).

For each (4', &), op(P)(a', &') is, more precisely, a matrix of oper-
ators on H+= F[e*¥(R:)]. We prefer to work with & (R..) itself (before
the Fourier transform #), where o,(P)(s, &) corresponds to the operator
»(@', &, D, ) [the restriction to B, of the ps.d.o. on R with symbol
2(#, &, £)] The whole or(4)(2', &) corresponds to a Green operator
a(@’, &, D, ) on R ; the boundary symbol operator. (There is an intricate
symbolic calculus for the operators a(z’, &', D, )or op(4) (2, &) explained
in [5], Section 1. Detailed presentations are furthermore given in lecture
notes by B. W. Schultze and his colleagues, Akad. Wiss. Berlin. The
Appendix of [10] gives a survey.)

icm°®

SPECTRAL THEORY OF PSEUDO-DIFFERENTIAL BOUNDARY PROBLEMS 157

When the symbols are series of homogeneous fanetions, the top
order term (principal part) will be denoted by an upper index 0. A is
elliptie, when p°(x, £) is invertible at each (, &) (& 0). and a°(%’, &', D, )
is invertible at each (¢, &) (£ = 0). The parametrix 4 ¢f 4 is then built
up of these inverses by a kind of ps.d.o. calculus. The simplest ease -is
when p°(@, &) is independent of x, near I', then the principal part of 4 is
entirely defmod by a®la’, &, D, ) near I', and by p%(z, &) further away
from I.

Consider our cperator P, assumed to he ntrungly elliptic in X, The
Dirichlet realization P, defined by applying the Lax-Milgram lemma to

the form (Pu, v) for 4, v € C7 (R, E) (the Friedrichs extension of P, ]c“’(g -
e,

in the case when P is selfadjoint) does indeed coincide with the realization
of Py with domain D(P,) = HY(E)nH(E), thank to the transmis-
sion property; and we have that (3.2) is valid for all A e C\R,, with R,
= (P, — AI)-1, within the calculus of Boutet de Monvel.
In the analysis of B,, we take AI into the prineipal symbel of P, so
it we work with the principal parts
1] ! 7’
2o, ) — AL, (1’ (2, &,

and

D — Al
o)~ s, ¢, 0,

4
(4 can be viewed as homogeneous of degree [ in u = |4]'). Here the posi-
tivity- of p® implies nice properties of a and its inverse (v} k). In fact,
when p%(x, &) is independent of », near I', we get the formula (3.1) with
N = 0 without having to involve the deeper symbolic calculus of Boutet
de Monvel [5]; with a fairly good description of Rj (or rather @}, since
Q) o is obvious, cf. (4.5)), and satisfactory estimates for 8% in V,, cf. [15].
This suffices to obtain (1.15) in the selfadjoint case, by evaluating the
kernels and applying a Tauberian argument.

The development in more terms (N > 1), and in particular the inclu-
sion of operators where p°(x, £) is not constant in x, near I', require more
intricate caleulations. (3.1) is only obtained with up to I—1 terms. (In the
present method, this comes from the fact that we operate with truly
homogeneous symbols, because the operators GF seem most clear and
applicable in this case. However, a similar limitation comes up in a rather
different approach to @, in Theorem 4.7 below.)

The construetion generalizes to other boundary problems with a
suitable “ray of minimal growth” property.

4. Remainder estimates

4.1. The case without boundary. Let us first give some indications
on the results of [19] for the case without boundary. We assume as usunal
that P is a selfadjoint, positive elliptic psendo-differential operator in
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B, and we now want to analyze the decomposition of @, = (P —AiL)~-*
in a sum
(4.1) Q, = Q5+Qi+ ... +QF + 8

for 1 e V, (cf. (1.17)) with 6 > 0. The Q" are ps.d.o.8. with symbols di(m, &)
determined in loeal eoordinates by successive application of the formula

(4.2) 2 % & (12:; P (@, &) ~u) D2 (kZ: & (@, 5)) =T+8_ 5.

lal<N

for ¥ =0,1,2,...; here s_y_; stands for terms of homogeneity degree
< —N—1. This essentially fixes the %, and the problem is to estimate
the remainder §; y. The method here is to show that

(4.3) P (@ ... +9) =I—Sin,
where 8} y has a decreasing norm for |A] — oo (A€ Vs), such that IT—8; »

is invertible for large 1 with inverse 3 (S)y)", and (4.1) holds with

r=0
(4.4) Biw = @+ oo +QF) D (800"
r=1
The study of (4.3) requires estimates for compositions of P with the @%.
Clearly,
(4.5) @@, &) = (p°(w, §—AI)*.

‘When 1 is integer, one finds in local coordinates, setting
. 1
(4.6) A= —éd"y, with p= 4", 6 =TArgle]—7:/l, =i,

the following estimates for all |a] <1, all § and all j:
(4.7 IDEDEDLG (@, )] < Oy (et | E)THHO-GeIHNA=AHIE,

uniformly for A€ V,. Hence ¢}(2, £) is in some sense in the class 8,5
(with o = 1— §) of Hormander [21], if considered as a function on T*(R™1).
‘We use this to obtain Soboley estimates in R™*' for the operator with
symbol §%(w, t, &, v) = ¢*q01(®, £), and this implies uniform estimates
for Q% in the spaces H>*(R"), where H** denotes the space H® with the
vorm fully, = (ul-+ s ul)2.

There are several preblems in this approach. For one thing, it turns
out that for the next terms QF,

(4.8) k@, &) e QLo -2 (Rrtly  (in g certain sense ;
2,1
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so the “order” —1+6—k(1—26) only improves with increasing % when
8 < 4. In the following, we set

(4.9) éd =%—¢ for some &> 0.

This phenomenon is encountered also for differential operators. [When P
is sealar (or the symbol satisfies certain conditions), one may possibly get
around it by use of an adapted phase function like in Robert [26], permit-
ting 6 < 1.] Another problem is that the symbols ¢%(z, £) are estimated for
A eVs, ie. [cf. (4.6)] for u on half-rays {u > pe}, where ps - co when
0 approaches -+ =/l. To use the calculus, we have to extend the symbol
to all e R (for each 0) without ruining the uniform estimates; this is
solved in [19], Lemma 3.8. A third problem is that when P is a ps.d.o., the
estimates of derivatives in £ are on lygood up to a certain number (which
is lower, the higher the number % in ¢f is). Then the caleulus of [21] does
not apply immediately; some composition formulas have to be proved
anew in a weaker form, and it turns out that in order to have (4.1) for
a given N, with Sy, of a given “order” (uniformly for 1 e V,), 1 must
be large, inverse proportionally to e. (Our method applies to differential
operators without that phenomenon.) Altogether, we find the following
theorem (where [a] denotes the largest integer < a; (—4)® is defined to
be positive for 1 € R_; and K (S) (=, y) denotes the integral operator kernel
of an operator 8, defined at least locally).

THEOREM 4.1. Let e ]0,1] and let 6 = 3 —-.

(i) When P 48 of infeger order 1> e*(n+35), and N = [1/2—n/d—
— 27, the resolvent is of the form (4.1) with 8, y continuous from () to
HELE(), uniformly for A e V, (k. (4.6)). In particular, the kernels of the
operators ewist as continuous functions and satisfy (for certain 0% functions
o (%))
(4.10) K¢ (e, @) = ok(a;)(‘_‘;t)-lﬂn—-k)ﬂ for k=0,.., N,

(4.11) 1B (8,2) (2, 2)] < e]AITHODE - for AeV,.

(ii) Let N' be am integer > 0. Then if 1 > e-(n+ N'-+-8), 8; y- satisfies
(412) K (8,0) (@, @) < ¢[00 for eV,

Part (i) is proved in detail in [19], and part (ii) follows by a further
application’ of [19], showing that when 1> e (n-+N'+5), then (4.1)
holds with K (8, y) (%, #) being O(|4|~1F~ "D for N = [I/2—n/4—2].

Since N > N, we have that 8,5 = 3 @f+8,y, where the kernel
N RN
of each term is O ({A["3H0—N-DA) for 3 = y.

Part (i) suffices to obtain (1.6) with § = }—e and hence (1.4), for
ps.d.o.s. P of any order I € R,, by use of a Tauberian theorem of Mal-
liavin and Pleijel. Here, (i) is in fact applied to a suitably high, possibly
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non-integer power of P, defined by the calculus of Seeley [27]. The latter
permits us to deduce also a two-sided estimate for selfadjoint, not lower
bounded, elliptic P. Define

@13) cg@)= [ D |hpo(e, &) Me; & = [ o(o)ds,
181=1 2;(n0)eR . X

and set [P| = (P2)'2, and

(4.14) Pt = 3(P+|P)), P-=3P-—I|P).

TEEOREM 4.2. If P is selfadjoint elliptio of orderl > 0 in B, not necess-
arily. lower bounded, the spectral functions = (t; ®,y) of P+, resp. —P-,
satisfy, for any &> 0,

(4.15) tre® (t; @, @) = ¢ (@) "+ O M) for § > oo,

and hence the numbers N*(t; P) of positive, resp. negative, eigenvalues of
P in [—t,1] satisfy

(4.16) NE(t; P) = 651" - 0@+ for ¢ 5 oo.
P

4.2. The case with boundary. Now let P be selfadjoint positive of
order [ = 2m on X, having the transmission property at I'; and define
P, as in Section 3. As noted earlier, the resolvent R, = (P, —AL)™tis of the
form, for 1e C\R_,

(4.17) R, = Qa,sﬁ‘gm

where ), , is the restriction to Q of Q,; and the problem is to get control
over the singular Green operator G, for 1 € V. ‘

For the case of differential operators, Agmon showed certain esti-
mates for the kernel of §,, making use of the localness of P [(Po—iI)@; o
= I, when P is a differential operator]. In our cage,

(4-18) I"(—PD—VH)Q}.,Q = !;(-P_J'I)QZ]Q_(-P_H)QQA,.Q

= L(P—1I,Q,)
is & non-trivial singular Green operator (cf. (1.8)~(1.9)). However, we can
obtain some slightly weaker estimates of K (6,) by a method partly inspired
from Agmon [2] and Beals [4].

Denote by e~ and »- the extension, resp. restriction, operators for
I\8 (analogous to e+ and r+ for Q), and note that when w is a function
on X, then

U—etrty = e~r-u.

When § and §' are ps.d.o.s. on T, we thus have that if §’e+u is a function
on X,

(£19)  L(8, 8)u = r+88 et — 1+ 8o+ §' ety — r+8e~r=8'etu.
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Lewra 4.3. Let g and v e C°(X), with p and 1 —p e (°( Q) and oy = 0.
Then for all e C\R,,
{4.20) #Cy(pu) = @B, [(P—2D)pQ:9lou  for u e L*E).

Proof. By (+17)~(4.19) and (3.2),

oG (pu) = (B —Qy.0) g
=g (Rz[(PQ‘U)Q:.,Q +L(P—Al, QJ,)J_Q}.,Q) pu
‘P([I‘“K;.V]Q:.,Q‘FRJ.L(P_ZL ) _Ql,ﬂ) U
= —pKyQiopu+ R, L(P— A1, Q) pu.
Using that yv = yyv for » € H™(E), and
L(P—AIL, @)gu= L(P—2I, yQ,)pu
by (£.19) (@, is of order —2m), we then find
gl pu = —oKypQ; opu+R, L{P— A1, pQ,) gu
= @[B)(Po—AL)—1I] %”Qz,QG"'L“f“‘PRA [(P —AL) 9@, ]opu—
—¢E; (Po—AI) 9@, opu
= @B, [(P—Al)pQ;]opu, since gp = 0. u
We note that the operator ¢@,¢ is selfadjoint in I2(¥) when ie R_
(since R, and @, o are selfadjoint then), and (pG,p)* = pG3p in general.
When S is a continuous operator from H*(E) to H'(E) [or from

H(B) to HY(E)], we denote the operator norm in question by I8ls:-
The following lemma applies to classical (or §;,) ps.d.o.s.

LevMa 4.4, Let S = Op(s(e, &) lef. (11)] de of positive integer
order k, with s(x, &) vanishing for @ outside a compact set in R Let ¢(,)
e CP(R), and set g@.(x,) = @(x,/r) for re]0,1]. Let 0> 0. Then for
u e F(R"),

Bl
1 1 . B
w2 g =D (Do) Op (o, s, 5wt S,
where |8,[, < constr™*=° for r €70, 1].

Proof. We first note that for integer a > 0, the Fourier transform
¢, of ¢, satisfies

(2%, (2)] = " (D) (1) < 0™,

=0

from which it follows (using interpolation) that for all a R -

1@ (D) < €T 1+ 7))~ for  re0,1] and zeR.
In particular we have, taking ¢ = 1+%-+o,
(+.22) o1, (2)] < eg'r* (L o)) 710

11 — Banach Center t. X
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Now
F8(g01(n) = (2m)7" [ FSPs(@, §) G (£)asdo
= @0 [$(n— &, E)p(Ea— O)B(E, 0,) AEdnas,.

Ingertion of
k-1

1 R
B8, 8) = D)5 thbln— &, £, 0)(En— 0u)'+
F=0
1

—h k—1
+(§n_0n)kf a )

Gy bl £ 6,4 T (6 —6.)dh

gives the two contributions from (4.21), where the second term satisfies,
for all » e #(R"),

s ] - 1
(B, 8) = 0 [ (B 005,80 O) B(E', 005() [ (L—T)*~* x

] (77— E 8, 0,+h(E,— Bn)) dhd&dndo,, .

Since &%, s(z, &) is of order 0, we have that for any N > 0, there is a constant
¢y so that for all & n and 0,,

185,80 — &, &, 01 < ey (L+1n' — &)™ (L 16— 7).
Using this and (4.22), we find
N ~ 3
(S, 5)] < ™ [ @+ 18— ) ¥ L+ I — &l x
X (L4 |6 — )T [(E, 0,)% ()| d&dndo,,

which is < constfjul,,l[v]l, when N = n, by an application of the Cauchy—
Schwarz inequality. o
Note in particular that the commutator [g,, 8] = ¢,8 — S¢, satisfies

k-1
X1 .
(4.23) lors 81 = D)= (D'9,) 00{5(a, 8) + 8,
i=1
and
(4.24) v8{p,u) = y8,u, when yp, =0

(then y = 0 on suppg,). We remark also that when 8 is a differential
operator, 8,u is a function times (D¥p,)u, 50 |8,ll,0 it O(r7%); here p8 (p,u)
= 0 when up, = 0. The formulas generalize easily to operators on Z,
when ¢ € C7°(2') and moreover is a function of #,, constant in #'.
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For 2 e C we denote by d(2) the distance from 1 to R, , and set V
= {1] d(3) > 0, |A] > 1}. For the exact resolvents @, and B, it is not hard
to show, using the ellipticity and positivity of P resp. P,:

(4.25) 1@aloo < @A), Qb < eldld(—  for 2V,
and hence by interpolation
(4.26) 1Qally,s < € 12°"aA(2)=2  for A€V,

for each s €[0,1]; similarly
(4£.27) IRillo,s < €IS ()1 for e V.

It then follows moreover from a theorem of Agmon (¢f. e.g. [2], Lemma
4.1) that when I > n, the kernels of @, and R, exist as continuous matrix-
valued functions (locally) and are O(lA™d(2)-Y) uniformly in ZeV.
Then also

(4.28) K (G) (@, @) < oA d(A)—r for 2B, 1e7V;

K (&) (z, %) is a section in Hom(H, E).
Let M be an integer > 1. Choose a system of (* functions on R:
B1y Pay « -y Par With support in 10, 1[ and satisfying .

Py =% forj=1,..,M—1; and g3 =1

For each j, let §,.(i) = ;(t/r), and let ¢, () denote the CO% function
on X that is equal to §;,(w,), when & = (#', 3,) € 2’, and zero elsewhere.

PROPOSITION 4.5. Assume that | = M. For any ¢ > 0, there is a consiant
¢, such that for all A e C\R, with |A|> 1, and all r € 2|7, 1],

(4.29) (P — AD)(L — @25,) QaPrrlloe < 6 (r~ 11 Ha(A) ).
Proof. The commutator of each g; . with @, satisfies
[Qs; 1 )% = Q191,% — 95, Q2%
= Q19 (P — 1)@ u—; (P— )¢y, Qu
= Q,[p;,, P1Qyu, for uel’(E).
Hence we have for each j < M
@110 P1@20sr% = (@521 P1Qs) ¢ ]+ (P15 Plor @ath
= [@iz1,0s P1Q:[9;,, P1Qau+ (9’;+1,r*1)P‘Pj,er%,

sinee (@;44,,—1) @, = 0. Denoting [g; ,, P1¢, = C;, and (goﬁ_l,,.——1)13(;9!.’,6),1
= F,;,,,, we have shown the operator identity

(4.30) Cip1pPrr = Oj+l,r0j,r + i1,
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(Fjs1, is O when P is a differential operator.) This is applied successively
in the following caleulation:

(431)  (P—2AD (1) D91,
= (P— ) (1 —¢3) QrPrr—rr -+ Pre
= [Qa,rs PlOiPar1,r -+ Prr
= OM,r‘PM—l,r cee Pur
= Opr Onp1n®rr-s -+ Pt ForsOagyr -+ Pra = oo
= O, Opr1 -+ Orpt FappPret - +Cap-e Ogp T e

We shall now estimate the factors. In view of Lemma 4.4 [see (4.24)] and
(4.25), we have for each j

(4.32) “Fj,r”ﬂ,o < ”(‘Pj+1,r —1)P<Pj,rno,oHQA”o,o < Car—l—ad(l) -1,
for any o > 0. By (4£.23), C;, is locally of the form

-1
1
GJ‘,T = [(pj,ﬂ P19, = 2 F (Dk%,r) Op(a?n-’p)QA + S1~QM
k=1

where [|S,]l, is O(r7+°); here (4.26) implies
1D 3, OD (9%, 2)Qalloo < er ™" 0D (8, 2 l1—r0 1@allo,1—r
Lo PRt for kB =1,...,1—1;
and we have as above
18, Qlle0 << cpr™ =0 d(2)2.
Since 1 < |AM, we find altogether that
(4.33) 16;,1 Moo << € #7102 G(2) L.

Then the first term in (4.31) is estimated by const(r~27 AP d(2)-1)™.
For the other terms, we note that

PO QA < AP (A),  sinee 7t < A
@A A aA) ), since d(4) < 1A,
with ¢’ = ¢/l, and hence by interpolation, (4.32) gives
(4.34) 17,4l < 0, (F 1A~ d(2)7)°  for any o >0,

for each se[1,1]. Since M <1, we find (4.29) by applying (4.34) for
various choices of s, together with (4.33), to the remaining terms in (4.31). =

Remark 4.6. Tt might have seemed more natural to try to prove (4.29)
by estimating (L—@ar,)@:9,, directly using the calculus of pseudo-dif-
ferential operators (cf. [19]), but this seems to give weaker results under
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heavier assumptions (e.g. high order I). The point is that the continuity
properties of §;, in their dependence on d(1), do not fully reflect the
fact that @, is the inverse of P— AI, a property that is used to advantage
in the above proof, where commutations are carried over to P, which
is independent of A.

For z e X, we set d(zx) = 3, when #eX?, and d(x) = 1 elsewhere.
Then we can conclude for the kernel X (&;) (%, y) of G;:

THEOREM 4.7. Assume that 1 > n. Let M €[0,1] and let o> 0. There
is a constant C so that for all # € Q, and all 1 € C\R_ with |2] >1,

(4.35) (G (%, 2)] < CIAM @ (2) (d () 1A R a (2)-1) .

Proof. The inequality was proved for M = 0 in (4.28). This also
shows that the inequality is trivial when d{z)< |A|™", for then
d(@)"°d(@) AP g (1)1 = 1, since d(2) < |A| and d(#) <1. It remain
to consider meQ with d(z)= A" If 2 = (2, 0,) e 2 with 2, <}
we apply Proposition 4.5 with r = 2%, and M = . By Lemma 4.3, (4£.27)
and (4.29),

]l%,raz%,r”o,o = ”‘Pl,rRA’"+(—P-‘;“I) (=@ Q6% 4l
< o 1B;lly,0 NP — AL) (L — 1, ) €3 01,rllo,0
< e a)= o2 a @,
and similarly (since multiplication by ¢, , is continuous in H"*, uniformly
when p>=r?)
llps,» Grrllo,y < Cad ()= {7 AP A(2) )

Bince (¢ ,Gho,)* = @1,G501,, With similar properties, 2 theorem of

Agmon (e.g. [2], Lemma 4.13) can be applied to give

(4.36) (@) (@, o) = [E{p1,,8:0.,0) (@, @)
< APt a(2) (@)~ A (),

where ¢, is independent of d(x). For the points # e 2 with d(z) > % one
chooses a fixed system of functions ¢i, ..., ¢; in € (2) with ¢;(2) = 1 for
a(z)> % and ¢}, ¢) = ¢}, j <l Then (4.36) is shown by a simpler version
of the above deductions. Finally, the validity of (4.35) for M e 10, 1[ is
obtained by interpolation. m

This result together with Theorem 4.1 (ii) permit an application
of the method of proof of Agmon [2], Theorem 3.1. Let ¢ € 10, £] (another
restriction is added below), and let § = §—e. We use Theorem 4.1 (ii)
with N’ = n, and in this case, [ has to be > s~*(2n+5). We use Theorem
4.7 with M = 8(3—8)~* = 1/2¢—1, and we assume that § & n/2(n-+1),

. 1/2[, which means that we restrict to ¢ e J0,1/2(n-+1)[. Here M<lif
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12> 1/2e—1, this is already satistied when > £~1(2n+5). Now Agmon's
proot applies, when the function called &(z) there is replaced by d(x)**.
This gives (since the estimates for larger ¢ follow from the estimates for
small ¢):

TamormM 4.8. Let ¢ €10, 3], let o > 0, and assume that 1 > max{e~* x
X(2n+5), 2(n-+1)(2n-+5)}. Then there is a constant ¢ such that the spectral
Function e(t; ,9) of P, satisfies (cf. (1.3))

(4.37) [tre(t; @, m)—-OP(w)t"’l[ < 0i(7bw1l2+a)/ld(m)—1/2+z»~o'7

for t=1 and x € Q. [(4.37) holds with ¢ = 0 when & = Land 1 >n.]
Finally, the asymptotic estimate of the eigenvalues of P, is obtained
as a corollary. Here, it is easy to remove the restrictions on 7, and to obtain
the same estimate for other realizations, by use of Proposition 2.1 and 2.2.
In fact, if @ is a singular Green operator of order I, and T' is & trace oper-

ator, such that the system (P"; G) ig elliptie and invertible (in the frame-

work of [8]) with inverse (By Ky), and such that Ry is selfadjoint and
continwous from L2(H) to H'(H), then we define the realization (P-+G)p
as the operator acting like Po+G and with the domain Ry (LQ(E)) [s0
(P+@&)p is the inverse of Ry: L*(H) - Ry (Z2(®))1; P, is of this kind with
G =0, T = y. [Theorem 4.8 in itself can be proved for positive selfadjoint
P, without the & and with a standard trace operator I.]

The above hypotheses mean in particular, that (P+ &)z = (PY)a+
+@&, where G’ is @ singular Green operator of order —1 and class 0; and
it then follows from the calculus of Boutet de Monvel that for any integer
k>0,

(.38) : (P+&)7" = (P +6",

where G’ is a singular Green operator of order —1k and class 0. We can
finally obtain

THEOREM 4.9. Let 1 be even > 0, let P be a selfadjoint positive elliptic
operator in B, having the transmission property ai I', and let (P-+G)p be
a selfadjoint (not mecessarily lower bounded) realization as described above.
For any &> 0, the numbers N* (t; (P—}—G)T) of positive, resp. negative,
eigenvalues in the interval [ —t, 1] satisfy (cf. (1.12))
(4.39) N*(t; (P+@)g) = ept® O+ for t —» oo,
(4.40) N-(t; (P+G)g) = 0@ D) for t — oo,

Proof. Let & > 0, and let # be an integer, for which I > max {e*(2n+
+5), 2(n+1){2n+5)}. Then (4.37) holds for the Dirichlet realization
of the iterate P", called (P7),, so we obtain by an integration over Q:

(4.41) Nty (P),) = epri™4 0@+ for t — co.

e ©
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In view of (4.38) (applied with k& = 1 to (P7),),
P+ (P, = &,

where @ is a singular Green operator of order —#] and class 0, for which
Proposition 2.2 gives
(4.42) 24(1G) = 0(j~M=Vy  for j — co.
Now Proposition 2.1 applies with R, = (P");? and R, = (P+@);5", ¢
=arl, 0 ={n—%+¢)/rland p = (n—1)/rl. Since rli=n —1, ' equals (n— -+
+¢)/rl. Since N* (t; (P+G)y) = N* (; (P+@)7), we find (4.39)~(4.40). m

The main results in this section were announced in [20].

Let us conclude with some remarks on improvements of (4.40).
For one thing, another application of our Proposition 2.2 shows that
if P is a sealar differential operator, the estimate (4.39) can be improved
to be
(4.43) N+(t; (P+G)y) = ept™+ 0™+ for { - oo,
for any &> 0, by use of (1.13); this is new for the non lower bounded
realizations (and for realizations including a @). Secondly, let us remark
that the estimate in Theorem 4.7 is useful for resolvent studies in Vy,
for any 6> 0, so a better estimate of 8y, in (4£.1) (possibly obtained by
a gencralization of the proof in Robert [26]) could imply (4.43) for general
scalar ps.d.o.s. P (and some systems).

Added in proof (June 1983). Since the above results were presented, various
improvementes of remainder estimates have been achieved, however, mainly, for
pseudo-differential systems in the case of manifolds without boundary, and for
realizations of differential operators in the case of manifolds with boundary. (Cf. e.g.
G. V. Rozenblyum: Zap. Nauchn. Sem. Leningr. 96 (1980); V. Ja. Ivrii: Dokl.
Akad. Nauk SSSR 250.6 (1980), 258.5 (1980), 263.3 (1982); and G. Métivier:
Journées E. D. P. 8t. Jean de Monts 1982, exposé 1.)
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Introduction

In this paper we present a method for constructing entire functions F':
C — C having properties of the following three kinds: 1. F satisfies an
estimate from above of Paley—Wiener type; 2. along the real axis F does
not decrease very fast in the mean; 3. F has a sequence of real zeros of
orders as high as possible. Entire functions with such properties arise
naturally in the Fourier analysis of convolution equations in various
spaces of distributions. The main ideas for the construction are due to
Ehrenpreis and Malliavin [3], a slightly weaker version of the one to be
found below appears in [5].

Let us discuss the meaning of the above three types of conditions
one by one.

The first one is used to characterize those entire functions which
are the Fourier transforms of the convolution operators acting on a given
space of distributions. For example, by the celebrated Paley—Wiener—~
Schwartz theorem an entire funetion F: C* — C is the Fourier transform
f of some fe &'(R") (= the space of Schwartz distributions on R® with
compact support) if and only if there are constants ¥ e R and 4 >0
such that with o = log(1-1])

(PW) |F(%+4-iy)| < constexp(Fo(x)+ A lyl), «,yeR"

Recall that &'(R") is the space of convolution operators on the space
2'(R™ of Schwartz distributions on R” and also on the space 25(R")
of distributions of finite order.

The second type of the above conditions serves for the characteriz-
ation of the convolutors which are surjective on a fixed space. For example,
let m: [0, - o) — R be a strictly monotonically inereasing convex fune-
tion, and denote by ., the Fréchet space of ¢ functions ¢: R - C
such that |D°p|< constexp(—m(c]-|)) for arbitrary aeZ} and ¢>0;

[169]
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