168 G. GRUBB

[7] Y. Demay, Paraméiric pour des systémes Typerboligques du premier ordre G multi-
plicilé conslante, J. Math. pures cf appl. 56 (1977), 393-422.

[8] J. J. Duistermaat and V. W. Guillemin, The spectrum of posilive elliptic
operators and periodic bi-characteristics, Invent. Math. 29 (1975), 39-79.

191 K. Pan, Mavimum properiies and inequalities for the eigenvalues of complelely
continuous operators, Proc. Nat. Acad. Seci. USA 37 (1965), 760-766.

[10] &. Grubb and G. Geymonat, The essential spectrum of elliptic systems of mived
order, Math. Ann. 227 (1977), 247-276.

[11] —, —, Bigenvalue asymplotics for selfadjoint elliptic mized order systems wilh
non-empty essential spectrwm, Boll. Un. Mat. Ital. 16-B (1979), 1032-1048.

[12] G. Grubb., Weakly semibounded boundary problems and sesquilinear forms, Ann.
Inst. Fourier 23 (1973), 1456-194.

[13] —, Properties of mormal boundary problems for elliptic even-order systems, Ann.
Sc. Norm. Sup. Pisa 1 (Ser. IV) (1974), 1-61.

[14] —, Boundary problems for systems of partial differential operators of mimed order.
J. Functional Analysis 26 (1977), 131-165.

[15] —, Spectral asymptotics for Douglis—-Nirenberg elliptic systems and pseudo-differen-
tiol boundary . problems, Comm. Part. Diff. Equ. 2 (1977), 1071-1150.

[16] —, Sur les valeurs propres des problémes auw limites pseudo-différentiels, C. R.
Acad. Sci. Paris 286 (1978), 199-201.

[17] —, On coerciveness of Douglis—Nirenberg elliptic systems, Boll. TUn. Mat.
Ttal. 16-B (1979), 1049-1080.

[18] —, Sur la resolvante d'un probléme aum limites pseudo-différentiel, Exposé XIV,
Seminaire Goulaouic~Schwartz 1977-1978, Palaiseau.

[19] —, Remainder estimates for eigenvalues and kernels of pseudo-differential elliptic
systems, Math. Scand. 43 (1978), 275-307.

- [20] —, Bstimation du reste dans U'dtude des valeurs propres des problémes aus limiles
pseudo-différentiels auto-adjoints, C. R. Acad. Sci. Paris 287 (1978), 1017-1020.

[21] L. Hérmander, Pseudo-differential operators and hypoelliptic equations, A. M. 8.
Proc. Symp. Pure Math. 10 (1967), 138-183.

[22] —, On the Riesz means of speciral funmciions and eigenfunciion expansions for
elliptic differential operalors, Recent Advances in the Basic Sciences 2, Belfer
Graduate School of Science, Yeshiva University 1966, 155-202.

[28] —, The speciral function of an elliptic operator, Acta Math., 121 (1968), 193-218.

[24] V. Petkov, Propagation of singularities for pseudo-differential operators, Akad.
der ‘Wiss. DDR, Bexlin 1977.

[25] Pham The Lai, Comportement asymptotique du noyaw de la résolvanie et des
valeurs propres d’un opérateur elliptique mon nécessairement auto-adjoint, Israel
J. Math. 23 (1976), 221-250.

[26] D. Robert, Developpement asymptotique du noyau resclvant d’opérateurs ellip-
tiques, Osaka J. Math. 15 (1978), 233—243. ‘

[27] R. Seeley, Complexs powers of an elliptic operator, A. M. S. Proe. Symp. Pure
Math. 10 (1967), 288-307.

[28] —, A sharp asymptotic remainder estimate for the eigenvalues of the Laplacian in
a domain of R3, Adv. Math. 29 (1978), 244-260.

Presenied to the Semester
Partial Differential Equations
September 11-December 16, 1978

e ©
lm PARTTAL DIFFERENTIAL EQUATIONS

BANACH CENTER PUBLICATIONS, VOLUME 10
PWN —POLISH SCIENTIFIC PUBLISHERS
WARSAW 1983

SLOWLY DECREASING ENTIRE FUNCTIONS AND CONVOLUTION
EQUATIONS

OLAF VON GRUDZINSKI

Mathematisches Seminar der Universitii, Kiel, F.R.G.

Introduction

In this paper we present a method for constructing entire functions F':
C — C having properties of the following three kinds: 1. F satisfies an
estimate from above of Paley—Wiener type; 2. along the real axis F does
not decrease very fast in the mean; 3. F has a sequence of real zeros of
orders as high as possible. Entire functions with such properties arise
naturally in the Fourier analysis of convolution equations in various
spaces of distributions. The main ideas for the construction are due to
Ehrenpreis and Malliavin [3], a slightly weaker version of the one to be
found below appears in [5].

Let us discuss the meaning of the above three types of conditions
one by one.

The first one is used to characterize those entire functions which
are the Fourier transforms of the convolution operators acting on a given
space of distributions. For example, by the celebrated Paley—Wiener—~
Schwartz theorem an entire funetion F: C* — C is the Fourier transform
f of some fe &'(R") (= the space of Schwartz distributions on R® with
compact support) if and only if there are constants ¥ e R and 4 >0
such that with o = log(1-1])

(PW) |F(%+4-iy)| < constexp(Fo(x)+ A lyl), «,yeR"

Recall that &'(R") is the space of convolution operators on the space
2'(R™ of Schwartz distributions on R” and also on the space 25(R")
of distributions of finite order.

The second type of the above conditions serves for the characteriz-
ation of the convolutors which are surjective on a fixed space. For example,
let m: [0, - o) — R be a strictly monotonically inereasing convex fune-
tion, and denote by ., the Fréchet space of ¢ functions ¢: R - C
such that |D°p|< constexp(—m(c]-|)) for arbitrary aeZ} and ¢>0;

[169]
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then fsdt',, = A, Tor every fe &' (R"), i.e. each f e &' (R") is a convolutor
on A,. From the theory of convolution equations we cite without proog
(see [2], [6], [8], [9], [4], [10]):

TEEOREM 1. Let f e &' (R™), and let X be one of the spaces 9', 9y,
A,. Then the following conditions are equivaleni:

(i) f*X = X.

(i) f has a fundamental solution in X.

(iil) The Fourier transform F of f satisfies an estimate of the form
(SD)

My(2, o(w(®)) > constexp(—No(@) for seR", |a| large,

(notation: Mu(z,r) 1= sup {|F(w)|; we C" |w|<r}), where « = log(1+
+ 1), where N s a real constant, and where g: [0, +o00) = (0, -+ o)
is a function such that

0(), t - + oo if X =9,
olt) = o(t), tt+ + oo ’Lf X =@}M
O(M”I(tr))’t—_}%.oo %fX=‘%m-

Recall that F is called slowly (resp. very slowly; resp. extremely slowly)
decreasing if (SD) iy satisfied with ¢(f) = O(f) (resp. o{t); resp. = const)
and o = log(14|]).

The third of the above-mentioned counditions comes into the picture
if one wants to distinguish between solvability and non-solvability of
a convolution equation in different distribution spaces X. A trivial con-
sequence of Theorem 1 is the observation that every convolutor f € &' (R")
which operates surjectively on some of the spaces. X does so on every
larger one as well. The more difficult question is to the other direction:
if f acts surjectively on some X, does it s0 on any smaller one, ie. does its
Fourier transform satisfy a stronger condition of (SD)-type ¢ Tn some cases
the answer is in the affirmative (see § 2 below), in general, however, it is
in the negative. To show this, one employs the following method: from
the estimates (PW) and (SD) one derives corresponding estimates for the
orders of the real zeros of F (sce § 3); then one constructs examples F
showing that these estimates are sharp (see § 5), i.e. these F cannot satisfy
stronger conditions of (SD)-type, and consequently the corresponding
convolutors do not operate surjectively on the smaller space in question.

It was this line of arguments Rhrenpreis and Malliavin used in [3],
§2, in order to prove the existence of distributions fe &'(R) such that
f+2'(R) = 9'(R) but f+D5(R) # Dp(R).

For further results of this kind see [5]. In this article we apply the
improved version (see § 4 below) of the construction lemma in [5] to obtain

icm
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examples in &' (R") which in combination with Theorem 1 lead to the
following theorem (for the proof see § 6):

THEOREM 2. Let m, my be strictly monolonically increasing conven
Junctions on [0, + o). Then the following conditions are equivalent:

(i) For every f € &'(R") such that fxH,, = Hyy 006 Bt fhpy = Ay

(il) There is a constant ¢ > 0 such that m,(t) = m(i*) for sufficiently
large 1.

Similar results hold for arbitrary convolution operators on ,,;
they will be treated elsewhere (see [10]).

Finally, in §7, we deal with estimates which hold for arbitrary
fe &' (R™). The following result —due to Ehvenpreis ([2], Prop. 4.5) — asserts
that the Fourier transform of every fe &' (R") satisfies an estimate of
(SD)-type.

THEOREM 3 (Ehrenpreis). Let f e &' (R"). Then for every &> 0 there
is a constant B > 0 such that for arbitrary » € R", |#} > B, one has Mj (%, &|»])
> exp(—elz)). »

We show that the corresponding estimate for the real zeros of Fi
is sharp in general. Here the method of § 4 seems to fail, we make use of
the much more refined Beurling-Malliavin Theorem from [1].

2. Sharpening the estimate (SD)

In this section we show to what extent the estimate (S8D) can be sharpened

for functions satisfying (PW).
From now on let w: R™ — [0, 4+ o) be a continuous funetion such that

{a) o@E+y) < o@+oy) for arbitrary »,9 € R";
#) o< d||+D, where d,D are constants > 0;
() lim o(z) = -+ oo.

|@|—00

THEOREM 4. Let F: C* —~ C be an entire funciion satisfying (PW)

for some consiamts N and A, and let gz [0, +00) ~> (0, +o0), j =1,2,
be continuous functions such that

1) 0u(t) <loy(t) <t for sufficiently large 1.
If F satisfies (SD) for some N with o0 = o, and if
log——
. 0:(?)
(2) limsup ———— < +00
o0
log ——
¢ 01(%)

then F also satisfies (SD) for some N with ¢ = ga.
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Proof. By (2) we may choose 7, t, > 0 such that
1 1
log = log

e{t) T 14+n 7 ea(d)
We fix 2 e R” and set v:= g,(0(®)), 7:= g1(w(®)) and B := r(z[z)'".
Since in view of (y) o (#) > f, if |z| is sufficiently large, it follows from (3)
that o(z) > R if |#| is large. Using («) and (B) and the last estimate we
obtain from (PW):

Mp(#, R) < constexp (¥ + |¥|d+4)w(@), «cR".

for every ¢ {,.

(3)

0

Since in view of {1) and (y) wehave 7 < r < R if |#| is large enough, Hada-
mard’s Three-Circles-Theorem yields

Mp(®, 7)> Mp(z, Y M p(z, B)™T

{compare [4], Satz 9). The assertion follows. m

3. Estimates for the orders of the zeros of slowly decreasing entire functions.

In this section we give the estimates for the orders of the real zeros of
entire functions satisfying estimates of the form (PW) and (SD). By
ord (@, F') we denote the order of # as a zero of I (which is by definition
equal to 0 if F(z) # 0).

Levva 1. Let F: € — C be an entire function. Let N e R and A > 0
be constants such that (PW) holds. And let g: [0, +o00) —> (0, 4 o) be
a function and N € R be a constant such that (SD) is fulfilled. Then

. ord(z, F) () o "
hil:lljgp (@) log (c g(w(m)))< N+N+(4+d|N)e

1
for every ¢ > limsup o) .
{00 3

Proof. Fix e R". For r> 0 choose w € C* such that |w| = and
Mp(®,r) = |F(#+w)|. Application of the maximum principle to the
entire function €'s 1 > A~4%AG (1) where G(1) := F(x -+ Aw) yields the
inequalities

1
4) ord(m,li’)s—e-(logMF(aa,9‘6")—10gMF(m, 7))  for every 0> 0

(see [5], Lemma 1). Setting

g

e _ ®
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-we have o(o(#))¢® = cw(z). Since by («) and (B)

Fo(y) < Fo(@) + ¥ de(o(2)) ¢ +|F1D
for every ¥ eK(m, olw (@) e"), it follows from (PW) that
(5) MF(w, 0 (w(w))e") < constexp((l\-f—!— (IF1a+A)e) a)(m)).
If ¢ > limsup (Q(t)/t) and if || is sufficiently large then — in view of (y) —
6 >0, antcﬁche agsertion follows by combining (4), (5) and (SD) and taking
{y) into account. m

The following results are immediate consequences of Lemma 1.
They contain parts of those of Ehrenpreis ([2], Prop. 6.1) and Grudzinski

(8] §4).

THEOREM 5. Let F: C" — C be an entire function satisfying (PW),
and let p: [0, +00) = (0, ~o0) be a function such that (SD) holds.

(i) If F is slowly decreasing with respect to w, i.e. ¢(t) = O(t) as t — oo,
then oxd (2, F) = O(w(s)) as || - co.

(ii) If F s very slowly decreasing with respect to o, i.e. o(f) = o(t) as
¢ — co, then ord(z, F) = o(w(x)) as |6 — co; more precisely
msup ord{z, F)
e 2(0(2)
where N, N are the constants in (SD), (PW) respectively and where (for

Ii < N4F,

large 1)
1
{6) ‘ 2(t) = —
log ——
et

COROLLARY 1. If F is extremely slowly decreasing with respect to o,
i.e. (SD) holds with o = const, then

o (%) :
ord (x, F) —O(logw(a;)) as  |@| - co.
Combining the case o = -] of assertion (ii) of Theorem 5 with Theorem

3 one obtains
COROLLARY 2. If fe &' (R then ord(e,f) = o{ln]) as [z] > oo,
z eR™

4. The main lemma for the construction of slowly decreasing
functions with high order zeros

The lemma of this section is a slight improvement upon Lemma 2 in [5].
The latter is essentially due to Ehrenpreis and Malliavin ([3], § 4).
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Let ({)zew be @ sequence of real numbers, and let (m,) and (7,) be
sequences of positive numbers. Our main hypothesis for the construction
of slowly decreasing entire functions postulates the existence of a sequence
of numbers », > 1 with

K
(7) V= E m,cex'p(—gvk)< + oo
keN

such that the points ¢, lie so far apart from each other that
(8) the intervals Jy := [t,— s, t+1,] (Where 7, := ».1,) are pairwise
disjoint having distance greater than 1.

Moreover, we assume that the sequence (I;) converges to --oco-so
that we can define a continuous function h: R — [0, + o0) by

7 m,
(9) h(y) :=?I;N;Z—:max{[y| ~1;,0}, wyeR.

Levva 2. Under the preceding assumptions there emists an entire
Sfunction F': C — C having the following properties:

(10) F-(1+ ) exp(— b (Im () =2 [Tm ()]} € Ly(R2);
(11) ord(t;, B} > m,—1
and

(12) sup{|F(s-+u)l; vekR, |lu <1}
1 if @ e R\ JJ},
keN

m;

211 X %
(? min{l, c,,(w)}) if @ edy,

where
1 .
o () :=Tk'mm{ly'_tkl; yes+[—1,1], ly—4l> 43

Proof. The idea of the proof is as follows: First a suitable subharmonic
function is constrncted which reflects the desired properties of F (this
step is essentially [3], Lemina 4); then F is found by means of the so-called
Oka prineiple: first a C* function having the desired properties is con-
structed and is then made holomorphic by an application of the solvability
theory of the inhomogeneous Cauchy-Riemann equations as developed
in Hérmander [7]. The second step is suggested by a result of Bombieri
(see for example Hormander [7], Theorem 4.4.4)

icm
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Step 1. Define g: € —[—o0, 0] by

0 if Imz|>1,
g(z):= exp(ine)—1| |
I L S — <1
log Py ———) if |Ime|
and seb
s—1;
(7) 1= mkg( ), zeC.

Since — as is easily calculated —

(13) g(w+1iy) > —4exp(—inizl) for every #,y e R with |»| > 1/=,
it follows from (7) and (8) that
0 if Rez¢l) Jp,
keN
(14) () > —4v+ o1
mkg( ") if Rezedy.

Hence »: € — [—oo, 0]is & well-defined upper semieontinuous function
belonging to Li(R*). It is not difficult to compute

m,
Ao = E 27y, by, — E 'l_k"/’k®(52k+ o)
;2
N

keN

where d, € ¢’(R?) and Or Oz,
t, and I, —I, respectively and

™ ™ o—1 \\7!
fpk(w):_—:—z——(cosh(? l,,k)) , weR,

e &'(R) are the Dirac distributions at

(for details see [5], proof of Lemma 2, step 1). Since 4, < =/2 and sinece

@k = N M
—=— » —(§, + 6
2, {0y, +0_y,)
keN

it follows that the funetion w: € —[—oc0, +o0), #>0(2)+h(Imz),
is subharmonic.

Step 2. Choose 0 < & << 1/8 such that

1

(%) ey <3

For » € R we denote by §(z, £) the open square {t+4y; [[—a| <e, ly] < eh
Let us choose a bump function y € Cf (R?) such that

(16)  (a) suppy = 8(0, 2e), (b) Zls,p =1s (e) x=0.
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BY (#,)nex We denote the sequence of numbers € $Z such that the distance
of # to every 1, is not smaller than 1. Define ¢: C — [0, +oc) by

0 on R\ () 8(w,, 2¢),
@ G:= neN
OnT, 0D 8(@, 2¢)
where
1 it 8(@,,26) 0 J I = @,
keN
Cp i =

n"'t .
exp (mk(—l—l—logmin{l, El—ki!})) it S{®,,2e)Nd;, # @.

Note that the ¢, and G are well-defined by (16.a) and (8). Since & is constant
on every square S(z, &), # € 1Z, 6G/9Z vanishes there, and we can define
a (= function H: € — C by

i oq
(18) )= la—i (2)/sin2wz  if 2z e supp% ,

0 otherwise.

Since g —log|-| is harmonie in the strip {z € C; |Imz] < 1} we find — mak-
ing use of the maximum principle —:
g(z)—logle| > g(1)—logV2> —% for every #€8(0,1).

Now let z e 8{#,, 2¢) such that Rez e Jy. If [Res—1;| < 1, we then con-

iclude that
2—1, 4 U
> —my | — +log—F
A ))/exp( m"(ﬁ Togm—tkl—ze))

> c,exp|{m, - lo 12— b )> ¢

Z X\ Mg | g[m,,—tky——z.e = O,
here the last inequality is valid since because of |#, —1#,| =} and (15) the
last exponent is nonnegative. If on the other hand |[Rez—#| = I, then by
(13) we have g((2—%)/l;}) > —1, and the inequality

-

2—1
. "))} ¢, for every zeS(x,,2¢) such that Rez e J;
'k

(19) exp mg
is proved in this case as well. Hence we deduce from (14) and (17) that

< conste’.

L]
0z

- ©
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Since [sin(x-+iy)|* = [sin®|2+- [sinhy|?, the same inequality (with a new
constant) holds for H. Consequently the function He™*(1+|-|2)-* belongs
to L,(R?). By Hormander ([7], Theorem 4.4.2) we obtain a solution u
€ L. (R?) of the equation

ou
20 — =
(20) = "
such that
(21) ue™ (14 ][%)72 € Ly(R?).
We set

F(2) :=G(z)+u(2)sin2=z, =zeC.

By (20) and (18) we have 0F[0Z = 0, i.e. F ix holomorphie. Since by (19)
and (17) |@|, too, is majorized by conste’, (21) implies

(22) F(1+ ) exp(—w—2xTm ()] e L(R?).

Sinee » < 0, (10) is a consequence of (22). Now, (22) and the harmonicity

~ of g—log || near 0 imply that the funetion z > 2 —1|" is locally square-

integrable near ¥, where 7, := ord (%, F)—my,; this can only be frue if
n, > —1, and (I1) is proved. Finally, since d(x, {,; » € N}) <1 for every
# € R and since F(z,) = G(z,) = ¢,, (12) follows from the definition of
¢, W :

5. Applying the construction lemma

Let us suppose in this section that w: R —[0, +o0) is & continuous
function satistying («) and (y) and instead of (B) the stronger eondition
]
log|w|

) o) = 0(

) as || — oo.
So we may fix constants &, 8 > 0 such that

(23) sup{w(®); sl << d for every t=>s.

logt

With many applications the data of Lemma 2 are sequences (),
(my) and (I;) such that

my,

24 < +oo
@4) 2 o(t)
keN
and
(25) < =z o(t) for every keN.

24

12 — Banach Center t. X
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In the following completely elementary technical lemma we specify
additional assumptions under which the hypotheses of Lemma 2 are fulfilled
if we seb ‘
2
(26) v, t=—log w(t).-
™
LEsnua 3. Under the preceding assumptions the following assertions
are true.
(1) (7) 4s valid.

(i) (8) holds if |ty] > max{e®, s} and if for every ke N

17 1+t +L 2
(27m B | LT, I, :=l b .
tk l_Lk+1 ™ w(tlc)
(iil) If vl > s we have for every » ed,
(L—de) o(t) < (@) < (14 deg) o(H)
where g, 1= maxj2 ——lf—— —L—} '
= ofty) * logwnl,
Proof (). is (24) in view -of (26).

). (26) and (23) imply vl < L, [t,]. Since (27) means
(= Zpga) gl > (X4 L) el +1

and since by (25) L, <1, (8) follows.
(iii). By («) and by (23) we have

Joo (%) —

(@) < d—%
logz,

From this inequality the assertion follows since

1

) 7 log 7, o (t) i < wly),
' <
logz, ~}2 1 oty it
© w(t) @(t) T 2 w(tk)-.

For the rest of this section we fix a function o: R — (0, +oo) and an
unbounded subset X of R such that

(28) limsupo(s) =
fal—o0,zeZ

The fqllowing theorem shows how sharp the estimate for the orders of the
zeros in assertion (ii) of Theorem 5 is.

-+ oo,

icm

SLOWLY DECREASING ENTIRE FUNCTIONS 179

THEOREM 6. Let 2: [0, +o0) - [1, +o0) be a function such that 2(1)
= o(t) as T — oco. Define g: [0, +o0) = [0, -} o0) by (6), i.e

@)

Suppose that o(t) =1 for sufficiently large t and that there is a constant
7> 0 such that

(29) olf) = tex:p(

(30) hmsupmax{ Et)) ;s re[(l—n)t, (1+n)t]}< +oo.

t—-co

Then for every ¢ > 0 there ewist an entire function F: C — C and a sequence
of numbers t, € X such that

(31) |F (m-+iy)| < const(1+ o)) exp(Ty]), @,yeR,

such that (SD) is valid for any N > ¢, and such that

(82) ord (t,, F) = ez(w(t,))  for ‘every keN
and :
(33) mo(t) = +co.

k>0

COROLLARY 3 ([58], Theorem 4'). Let 2: [0, +o0) > (0, +) be a
Sfunction such that z(t) = o(w )) as t — co. Then there are f e &' (R) and
{te) = (0, +oo) such that f is very slowly decreasing with respect 1o o and
ord (t,,f) = #(t,) for every k e N.

The next corollary improves ([5]; Theorem 8) and shows that the
estimate in Corollary 1 of Theorem 5 is sharp.

COROLIARY 4. For every ¢ > 0 there are f € &'(R) and (t;) « (0, -+ o0)
such that f is ewtremely slowly decreasing with respect to o and

o(t)

— i keN.
Tog o) for every ke

ord (&, f) = ¢
The following more general corollary will be needed for the proof of
Theorem 2.

COROLLARY 5. Let m: [0, +o0) — R be o strictly increasing conves
Sfumetion. Then there ewist f € &' (R) and (4;) = R such thai (SD) holds for
some N with g(t) = t/m~1(t), such that (33 ) holds and

‘o ()

o) keN.
Togm ( (%)) Jor every ke

ord (t, f) =
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Proof of Theorem 6. Let (1) < (0, n/2d) be a sequence decreasing
to 0 as & — oo. Choose a sequence (1) « X satisfying (33) such that |t
> max{e?, s}, such that

iy 27+ 2dn,
t 7 — 20741
and
1, T2
34 2 #(w () < 7T—2mw
7y () e

keN
Set my, 1= cz(m(tk))+1 and I := n,o(f,). Then the assumptions of the
assertions (i) and (i) of Lemma 3 are satisfied. Hence Lemma 2 applies
and yields an entire function F: € -» C such that (32) holds. Since by (34)

K m,
— N E 7 9m,
2 Z A

keN

(10) implies (31). To deduce (SD) from (12) we fix & > 0 and choose, using
(30), constants 8, T > 0 such that )

(35) Sp(t) < e(v) for arbitrary re[(L—n)t, (1+9)t] and ¢>T.
Now fix k e N. If g(co(t,,)) < 4/8 we have in view of (y), provided & is suf-
ficiently large:

w(tk)
doo (ty,)

!

0g —

« (tic)

.= ) +1<
my = (o) +1< 0 o

+1<(o+e)

and, using the notation of (12),
71 d Mk |
(36) o) k>(;) exp(—(e+&)w(ty) - for every »eR.

It o(w(ty)) > 4/6 we have for every y € R such that |y —1,| > de{w(f))—1:
Lo l(y) > % Q(m(ik)) or

__i _ o{t) .
“WW>5- exp( z(w(tk)))’

since because of (y) and limz(f) = +oo
>0

My, @ (1)
2 (o (t))
we conclude that for sufficiently large &

< (6+e)ofty) for & large,

d mn,
(37) ck(y)mk>(ﬁ£.) " exp(—(¢+&) o (ly).

icm
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Sinee 2(f) = o(t), there is for every b >0 a constant &, e N such that

(38) b > exp(—ew (%)
Tnserting (36) resp. (37) into (12) and applying (38) we see that for suffi-
ciently large k

(39) My(w, max {o(w(ty), 1)) > exp(—(c+20) 0 (),

Since limw,l, = -+ oo, the assumption of assertion (ili) of Lemma 3 is
oo . :

fulfilled for large %, and the sequence of numbers &, defined there converges
to 0. Hence Lemma 3, (iii), has two consequences: (e+28) w ()
< (¢+3¢) w(%) and, in combination with (y) and (35), b0 (w(t) < e(w (@)
for arbitrary e J, and sufficiently large k. Hence (39) implies (SD) with
N =c+3e ®

for every k= k.

s €dy.

) 6. Proof of Theorem 2
Let o = log(1+1]). Setting

1
1= — : d i) i=—7—
0:(%) (D) an. g2 (%) (D)
we see that condition (ii) of Theorem 2 is equivalent to (2). Hence the
implication (i) = (i) is a special case of Theorem 4. If, on the other hand,

condition (ii) is false this means that (28) holds for
_ logmi? (o®)
~ logm~t{w(t)
Let f e &' (R) and (1) have the properties of the assertion of Corollary 5.
Set g:=f®... ®f € & (R"). It is then evident that g satisfies (SD) with
o = Vg, so that by Theorem 1: g+, = A, Since
ord (14, 0, - .y 0), 7) > 0rd (1, )
o{ty)

> logm—(w ()

o(t): and X =R.

o(t;)

() Jogmet ()]’

Theorem 5, (ii), says in view of (33): there is no constant ¢ > 0 such that
(SD) holds for some N with ¢ = cg,. Hence by Theorem 1: gty # Ay
This proves (i) = (ii). ®

7. A consequence of the Beurling-Malliavin Theorem

The construction in § B does not answer the question whether or not the
estimates in assertion (i) of Theorem 5 and in Corollary 2 are sharp in
general. In both cases the method of Lemma 2 seems to fail: as for the
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first case, setting my :=1, := o(t,) entails that h is not majorized by
const |-|; as for the second case, the same thing happens even if we set
my, := B, /logt, and try to satisfy (7) and (8). In fact, in both cases the esti-
mates are sharp in general. For the first one this was proved in Ehrenpreis
and Malliavin ([3], §2) by a different method which relies heavily on
potential theory. For the second one this readily follows from the Beurling—
Malliavin Theorem in [1] as we are going to show now

THEOREM 7. Let 2: [0, +00) = (0, +00) be a function such that
z(l) = o(t) as t > oo. Then there are a C* function f: R — C with support
contained in (—1,1) and a sequence (f,) = (0, +o0) such that ord(t,, f)
= a(ty) for every k eN.

Proof. Choose (t,) such that .., > 2¢, and such that 2 (te) [t conver-

ges. Let 4 be the increasing sequence which contams tk precisely (%)
times (we may suppose that z(t,) € N) for every k e N. By dN, we denote
the measure 2 () 8y, Let & > 0. Choose j, and &, > j, such that

w St
=gt )
and
> 2(t;) &
41 £l <.
(41) ; 4 b, —t,a 2

Assertion. 1. Every real interval I which has the property

1
(42) 77 [ Wae
]
i
© Eg—1
is contained in kaIk where Ip:= (— 3 w1, ) and I 1= [,— gy, &+ 1]
= =1
for k> 1 with g;:= (1/e)2(z).
Proof of Assertion 1. Let I'be an interval satisfying (42 ), and let ¢, ...

-1 % (Where 1<C%) be the points of the sequence (4;) which lie in 1. If
Z—-k then by (42) 2(3) = deA> lIl, and Ir:tk—l-[ I, 1I|] < I.

Tt 1< % then |T| > #,—1,, and by (42):

1
43 —_ E B
(43) He—1; P “)>e;
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if & were not smaller than k, we would have by (40) and (41)

& k

1 2(t 2(k) 2(t; 1,

\ \2 &) 4, +2 ) & <e
= t;-tz ) [

d=jpt1 7

v o

in contradiction to (43). Hence k < k,, and I < (— oo, i) Sinee [T <

by (42), it follows that I < I,.
Assertion 2. Let D, be the isoscele with base I and of height |I,],

k>0, and let D:= UDE. Then
k=0

2 By
i=

oy _
ety
Proof of Assertion 2. If k is so large that u, < 1t, we have

dmdy
1+m‘+:'/

(Zm 41”7: <4__ __i 2(t)

1 e

In view of the choice of (f;) Assertion 2 follows.

End of the proof of Theorem 7. The Assertions 1 and 2 imply that,
in the terminology of [1], the set @2, := {I; I satisfies (42)} is negligible
for every ¢ > 0, and hence that d¥ 4 is regular and of density 0. By com-
bining Theorems IT and A of Beurling and Malliavin [1] one obtains an en-
tire function F: C — C of exponential type < 1 such that [F| < exp(— RS
on R and such that ord (¢,, F') > 2(¢,) for every k € N. By the Paley—Wiener
Theorem there is 3 0 function f: R — C with support contained in (—1, 1)
such that F = j. The proof is complete. m
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1. Introduction and statement of the “Fundamental Prineiple”

Tt is very well known that everj} solution % to a homogeneous linear ordinary
differential equation. with constant coefficients

[ ad
P(ﬂTﬁ)“ =0,

P 3 non-trivial polynomial, is an exponential-polynomial of the form

2 ¢ (=) 3h7

P(3)=0,eC

w(x) = reR,
where the polynomials g; have degree strictly less than the multiplicity
of the root 2. Around 1960 L. Ehrenpreis [3] stated a “Fundamental
Principle” which enabled him to give a genuine extension of this result
t0 homogeneous linear partial differential equations with constant coeffi-
cients. In this paper we shall give a detailed proof of the “Fundamental
Principle” for a single equation. The proof will be self-contained except
for some standard facts from functional analysis and for solvability results
on the Cauchy—Riemann equations.

Let neN and let P be a polynomial in n variables. We have

P(9]0w)exp{z, oy = P(d)explz, sy for 2 cR", z2eC".

Hence the equation
(11) P(8]om)

holds if % = exp<z, -> for some z € C* with P{2) = 0. Roughly speaking
the “Fundamental Principle” states that any solution « of (1.1) is & super-
position of such special solutions. Since the zero-variety of P

= {#eC"; P(z) = 0}

[185]
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