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1. Introduction and statement of the “Fundamental Prineiple”

Tt is very well known that everj} solution % to a homogeneous linear ordinary
differential equation. with constant coefficients

[ ad
P(ﬂTﬁ)“ =0,

P 3 non-trivial polynomial, is an exponential-polynomial of the form

2 ¢ (=) 3h7

P(3)=0,eC

w(x) = reR,
where the polynomials g; have degree strictly less than the multiplicity
of the root 2. Around 1960 L. Ehrenpreis [3] stated a “Fundamental
Principle” which enabled him to give a genuine extension of this result
t0 homogeneous linear partial differential equations with constant coeffi-
cients. In this paper we shall give a detailed proof of the “Fundamental
Principle” for a single equation. The proof will be self-contained except
for some standard facts from functional analysis and for solvability results
on the Cauchy—Riemann equations.

Let neN and let P be a polynomial in n variables. We have

P(9]0w)exp{z, oy = P(d)explz, sy for 2 cR", z2eC".

Hence the equation
(11) P(8]om)

holds if % = exp<z, -> for some z € C* with P{2) = 0. Roughly speaking
the “Fundamental Principle” states that any solution « of (1.1) is & super-
position of such special solutions. Since the zero-variety of P

= {#eC"; P(z) = 0}

[185]
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is non-diserete if # > 1 we may not only form finite sums but also integrals
over exponential (-polynomial) solutions to obtain new solutions of
equation {1.1). But since V is also unbounded if » > 1 one has to be careful
that these integrals exist.

Let us fix some more notation. Choose a non-characteristic vector
N e C" for P. This means that P,,(N) # 0 where P,, denotes the principal
part of P; m is the degree of P. Let Oy denote the following differential
operator acting on functions f which are holomorphic in some domain
OO

a
(OxS)(2) =ﬁf(z+w)|;.=oa zeU.

Let P = Ph- ... -Phr be the (essentially unique) factorization of P into
distinet irreducible factors P;,%; e N. Fori =1, ..., 7 consider the sub-
variety

Vi={2eC"; Pi(z) = 0, (0yP;)(2) # 0, P;(2) # 0 if j 5 4}
of the zero-variety of the polynomial P,. The ¥,’s are contained in ¥ and

{m—1)-dimensional complex submanifolds of C™.
For a compact set K = R" let Hy denote its supporting function, i.e.

Hg (&) = max{{s, £>; €K}, £cR"
We are now able to state the “Fundamental Principle” or
INTEGRAL REPRESENTATION THEOREM. Let Q< R* be open and
convew. Let 4 € 0°(Q). Then u is a solution to the equation
P(ojom)u =0 in 2
if and only if w has a represeniation ‘

o S}

(1.2) wa) = 3 3 @, NY [ 6Pauy(e), we,
Vi ’

i=1j=0
with Rad_w‘:, méasures Guy; which are supporied by V, and which satisfy for
some positive continuous function o on C, with
A+ e expHe(Res) = o(w(2)) as o] —+ oo,
Sor every M > 0 and every compact set K € £, the condition
(1.3) me(z);czm,(z)K +oo; i=1,..,r55=0,1,...,,—1
1

From the Integral Representation Theorem we can immediately

fierive the following corollary on decomposition of solutions which is of
independent interest.

e ©
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COROLLARY. Let 2 = R" be open and convexs, and let @, @, be relatively
prime polynomials. Then w e C®(Q) is a solution to (@,05)(0]0x)u = 0
in 2 if and only if there ewist uy, u, € O°(2) such that Q,(0/0x)u, =0,
Qo(0]05)uy = 0 and W = 1y +Uy.

Let us illustrate this corollary by the following well-known
examples:

(i) 4 = 400. Therefore, every harmonic function of R* is the sum of
a holomorphic and an antiholomorphic function.

(i) &%/t — 0°|0w? = (0/8t— 0] Pw) (80t + 8] 0%). Therefore, every sol-
ution # € 0®(R?) to the one-dimensional wave equation can be
written as w(Z, ) = f(i+=z)+g(t—2) with f, g € C°(R").

(ili) Let ¢y, c,e R, o % c;. Let (8702 — AN (P[0 — a3 Ayu = 0,
% e C°(R**). Then u = u,+u, where (&/0’—cid)u, =0, 1
=1,2.

The Integral Representation Theorem and the Corollary are in general

not true if 2 < R® is not convex.

An Integral Representation Theorem is still true if, more generally,
we consider an arbitrary homogeneous system of linear differential equa-
tions with constant coefficients. This fact constitutes the full “Fundamental
Principle”. Tt was proved by L. Ehrenpreis [4] and, independently, by
V. L. Palamodov [8]. The proof of the general “Fundamental Principle” is
considerably more difficult than the proof of the special ease which we
give here. In particular, the varieties, the polynomials and the differential
operators (called “Noetherian operators” by Palamodov [8]) which are
to play the role for a general system which for a single equation is played
by the varieties V;, the polynomials (-, N’ and the differential operators
&4 cannot so easily be given explicitly. Furthermore, it may happen that
the polynomials generalizing <-, N’ have to have coefficients depending
nontrivially on 2; polynomial dependence on z suffices, however. Another
ingredient in the proof of the general “Fundamental Principle” which
does not appear in this paper is an “Oka Theorem with bounds” (essentially
given in Hormander [5], Proposition 7.6.5, for example). These new features
appear when one wants to give the analogs to the Division Lemma (Liem-
ma 2.2) and the Extension Theorem (Theorem 2.3) in Section 2. Other
proofs of the general “Fundamental Principle” have been given by O. Liess
[7] and, relying on results of Hormander ([5]; Chapter 7, Section 6) which
already cover a large part of the proof of the “Fundamental Principle”,
by J.-B. Bjork [2].

I like to thank Professor Bierstedt who called my attention to his
joint work with Meise and Summers on projective descriptions of induetive
limits of locally convex function spaces. This helped me to improve the
functional analytic part in the proof given below.
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2. Deduction of the “Fundamental Principle” from an Extemsion Theorem

Roughly speaking we have to exhibit the surjectivity on kerP(&/éx) of
a linear map which maps Radon measures carried by the sets V, into the
space C*(£2). This mapping will be the dual 4~ to the mapping which we
shall define below.

Fix an increasing sequence of compact, convex sets I; € 2, je N,
which exhausts £. Denote the supporting function H. & of K; by H; for
short. For W = C" let (W) be the linear space of all continuous complex
valued functions f on W which satisfy for some j e N

(2.1) 4(f) = S%glf(z)l(lJr lel) 7 exp (—H;(Rez)) < -+ co.

Equip (W) with the natural locally convex inductive limit topology.
As alocally convex space (W) only depends on W and on 2, not on the
particular choice of the sequence (K;),y. The linear map

Ny = ( g]ﬂn)ﬁf}:u ved'(9Q),

r
is continuous from &'(Q) into [] (V)% because of the Paley-Wiener
theorem. =1 :

Here #(%) = <», 6™ =4 (iz), 2 C", ve &' (2), where ~ denotes
the Fourier transform.

Let us call those positive continuous functions o on C* which satisfy
for every jeN,

(L+ [l expH,(Res) = ofo(2) as o] - oo,

weight functions. Then we can give the following description of the space
% (W) which is needed for the proof of the Integral Representation Theorem.
This description is intimately conneeted with Ehrenpreis’ PLAU-space
approach to the “Fundamental Principle” (see Ehrenpreis [4] and Beren-
stein-Dostal [1]), however, we shall not go into this here.

ProposiTION 2.1. The natural locally convex snductive limit topology
on €(W) coincides with the seminorm topology given by the seminorms

2.(f) = fgé)lf(z)l/w(z>, fe®(w),

where  runs through all weight functions. B(W) coincides with the space of
all continuous functions f on W satisfying f(@)l/e(z) =o0(1) as |g] - co
for every weight funciion w. Hvery bounded set in €(W) is already bounded
with respect to some seminorm g, and €(W) is a (DF)-space.

Proqf. The inductive limit topology on €{W) is clearly finer than the
topology defined by all seminorms p,,. Therefore, let U < € (W) be a clused
neighbourhood of zero with respect to the inductive limit topology. We
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have to find a weight function o such that {fe%(W);|fl < w} < T.
‘With a suitable sequence of positive numbers & 0 we have

2.2) eth FeeW); g(H<s}e U.

Here ch stands for convex hull. Choose a continuous partition of unity
()%, on C™ such that the supports of the functions ¢; are bounded and

(2.3) I+l <27 it g %0, j>2.
Choose 0 < §;< 1, j e N, such that )
(2.4) ;{14 I exp H; (Rez) < 27 % ¢, (14 |2l)exp H, (Res)
if @, (2) # 0, 1< k< j. This implies immediately that
{2.5) () 1= §111}) & (L+ [2)Y exp H;(Res) < 40, 2€C",
je
cefines a weight function. Leb f e € (W) satisfy |f(2)| < w(2), z € W. Using

8;< 1 and H; < Hy, j <k, we then obtain with the definitions (2.1} and
{2.5)
Gelonf) < SU)P o(2)((1+ ¢ exp Hy (Ree)) ™
Pp{2)0
< sup max( sup 6;(1+ le))"~*exp (H;(Res) — Hy (Rez)), (1+{z])‘1).
Pp(#)#0 1<k<]
Hence it follows from (2.3) and (2.4) that

Gl f) < 27"

for k = 2,3,... and also for k = 1 as is obvicus from (2.4). Therefore,
by (2.2) we have

(2.6) f=2"nfel,

provided the series converges in the induetive limit topology. As for t]?is
note that ¢;(f) < -+ oo for some j. From this it easily follows that the partial

sums in (2.6) converge to f with respect to the seminorm g;.,. )
Now, let B be a set of continuous complex valued functions on w

which is bounded with respect to all seminorms p,. We have to show
that for some keN '

2.7 B c {fe4(W); g:(f) <k}

Suppose the contrary is true. This means that we can find a sequence
(f)2; of continuous functions on W which is bounded with respect to
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every p, and an unbounded sequence (2,)iwy, &, € W, such that
(2.8) Ifoli)] > B(L+ o FexpHy(Reg,), £ =1,2,...
Choose a sequence (6;);2, which satisfies

(2.9) 0< 8;(1+ |o]) expH; (Resy) < (1+ o)) exp Hy (Re) s
and is such that

1<ELy,

w(z) = sup &;(1+ [2]) exp H;(Rez)
=12
is & weight function. Since H; < Hy, j < k, and §; <
from (2.9) that we have

o (2) < (14 o)) expHy (Rezy),

But this contradiets (2.8) since [f,(2)] = O(w(#;)) a8 & — co and therefore
(2.7) holds with some k € N. We have thus in particular shown that (W)
has a fundamental sequence of bounded sets. Therefore, being a countable
inductive limit of Banach spaces and thus in particular barrelled, (W)
is a (DF)-space (see e.g. Kothe [6], p. 400). This completes the proof of
Proposition 2.1.

We shall show that

(2.10)

1 by (2.9) it follows

k=1,2,...

kerP(9/0w) = im 4.

Applying this together with Proposition 2.1 and the Riesz Representation
Theorem we arrive at a proof of the “Fundamental Principle”: u € C*(2)
satisfies P(0/0z)u = 0 if and only if there exist Radon measures dg;
supported by V; such that

r -1
gy = D' Y f (85) (2) dpy (2),
1—1 J=0 {
and (1.3) holds for some weight function w. Inserting Dirac measures
for ¥ in (2.11) we obtain (1.2).
Let us first show that kerP(d/0x) equals the weak closure of
im 4. This assertion follows by duality from

LemmA 2.2 (Division Lemma). Let v € &'(Q). Then #v = 0 if and only
"if there ewists p € &' (2) such that v = P(—0]0z)p.

Proof. Let y =P(—0d/om)p with peé&’(Q). Then 5(2) = (i2)
= P(2) ji(2), # € C". From the definition of 4 it is elear that #» = 0. Now,
assume that #» = 0. Consider 5P which is a holomorphic function outside
V. If z e V does not belong to set

(2.11) ve &'(9Q),

V' = {#eV; Pi(z) = P;(3) = 0 for some i % j or
Py(z) = 0, Py(z)="0 for some i}
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then by Riemann’s theorem on removable singularities the function

1 F(-LAN) da _ ,
2w J P 7 0<9d<intlo—sl,

[A]
gives a holomorphie extension of #/P to a neighbourhood of 2. By Theorem
A.3 in the Appendix we may regard #/P as an entire function sinece the
possible singularities of #/P are contained in the “essentially 2-codimen-
sional” subvariety ¥* of C" Using the well-known Ehrenpreis—Malgrange
inequality (see Lemma A.1, Appendix) we obtain with some constant
¢ > 0 independent of 2 € C*

[7(2) [P (2)| < esup [p(z+27)].
1211
Therefore, by the Paley—Wiener theorem, there is a distribution u € ¢'(Q)
such that » = P(— 8/8x) u. Thus Lemma 2.2 is proved.
To complete the proof of the “Fundamental Principle” we have to
show that im 47 is closed in C°(f2). We shall deduce this fact from the

following result which is the major step in the proof of the “Fundamental
Principle”.

TaeoreEM 2.3 (Extension Theorem). Let ¢ be a plurisubharmonic
Junction on C™ which satisfies for some positive constant C > 0

(212) lpE) —pR)l < C  if
Let f be an entire function such that

(2.13) sup (%f) () e <1 for all 4,j.
2eVy

Then there exists an entire function g such that

a2".\7'(](."57)117,- =0
suplg(z)]e~ "2+ o)~ ¥ < 1.
zeCM :

oy —2l <1, 2y,2,€C".

(2.14) Jor all 4,7,

Here M > 0 1is independent of f.

For the definition and some properties of plurisubharmonie functions,
see e.g. Hormander [5]. Note that

p(?) = Mlog(1+2[*)+H(Rez); zeC",

is plurisubharmonic if M > 0 and if H is the supporting function of a ecom-
pact, convex set. Hence, using the Paley—-Wiener theorem, Proposition 2.1
and Theorem 2.3, we can apply the following lemma from functional

analysis with B = &'(2), F = 1] (V)% and T = 4 to conclude that
the range of A" is (weakly) closed m C*(Q). Thus (2.10) holds.
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LEMMA 2.4. Let B and F be (DF)-spaces. Assume that every closed
Dounded subset of B is compact. Let T: B — F be a bounded linear map such
that for every bounded Bp < F we can find a bounded Bgc B with
By T(Bg). Then imT" is weakly closed in .

Proof. The strong duals B, and F; are Fréchet spaces (see e.g. Kothe
[6], p. 400). Let R denote the closure of im1” in Fj. Note that, since all
closed bounded subsets of B are compact, the weak-#-closure and the
strong closure of an absolutely convex subset in Hj coincide. In particular,
R equals the polar (kerT)’. Let V be a neighbourhood of zero in F;. There
is an absolutely convex hounded subset By < F such that the polar B
is contained in V. By assumption there is 2 bounded set Bp < F with
T-Y(By) c Bp--kerT. Using the Bipolar theorem we have therefore in the
weak-#-topology of E’

(2.15) T'(V) o T'(BY) = (T7(Bp)) » By n(kerT)°.

Since (2.15) also holds with closures taken with respect to the strong
topology we may conclude by the Banach-Schauder theorem (e.g. Kothe
[6], pp. 169-170) that 7" considered as a mapping from F into R is open
and onto. This proves Lemma 2.4.

3. Construction of local extensions

The propf of Theorem 2.3 will be based on its following local version which
is essentially what Ehrenpreis calls the “semilocal quotient structure
theorem” for principal ideals (see [4], Theorem 3.1).

Lewwma 3.1. Let f be an entire function on C™ and let ¢ e C*. Then

there emists a fumction g which is defined amd holomorphic in U, = {z € C";
le—] < (1+1E1)7"™} and which satisfies

afv(f"“g)winvc =0, for dall i,j,
suplg(2)] < (2+12)¥max  sup |2k f(2)|-
2U; %] 2ePle—lI<M
Here 1, j vary according foi =1, ..., 7 andj =0,1,...,l;—1, and M >0
is a constant independent of f and C.

Proof. Let us introduce coordinates in € such that ¥ = (0, ..., 0, 1).
For z € C* we shall denote by 2’ e C*~* the first n—1 coordinates and by
%, the last coordinate. With polynomials a, of degree at most % we have

(3.1)

m

P(’?I) zn) = 2 am_,-(z")zf,, zeC™.

F=0

icm°®

ON THE “FUNDAMENTAL PRINCIPLE” OF L. EHRENPREIS 193

Let £ = ({', {,) € C". Introduce the seb
W, ={'eC |’ —&'| < 2(1412))"¥}.

By the mean value theorem we have with a constant ¢ > 0 depending
only on P

lag (") — ap (O < ele’ = 11+ 1™ < 2e(115) 7™,

for 2" e W, k = 0,1, ..., m. Since a, is constant we therefore obtain for
seC and 2’ e W,
(3.2) [Py 8)—P (L', )| < 26(L+ L))~ m{L+ [s|)™

< 2me(l+[s—g, 0™t

Now choose a positive constant b independent of ¢ such that
(3.3) 2me (24 2mb)™ " < [P, (M) ™.
Let K, be the union of all connected components ¢f the set
{8 € C; |s—so| < b for some s,e C with P({', s,) = 0}
which have a non-empty intersection with the ball {s € C; |s—{,| < 1}.
It is geometrically obvious that
(3.4) ls—Cal <14+-2mb it sek,.

Since ay(l’) = P, (N) # 0 we obtain after factorizing the polynomial
P (', s) in the variable s into linear factors

(3.5) IP(L, 8)| = [Pu(N)]D™, s edK,.
Using (3.2), (3.4) and (3.5) we arrive in view of the choice of b (3.3) at
(3-6) ’P(z,7 8)_P(Cl$ S)] < {P(CI’ 8)]: 2'e Wc: S E aK;-

Let D be the set of all 2’ € C*! for which there exists a common zero to
Pz, ), %Pi(z’, -) for some 4 or to P;(¢', -), P;(2', ) for some i # j.
n
D is the zero variety of discriminants and resultants and is net equal to
all €1, From (3.6) and Rouché’s theorem it therefore follows that
r

the polynomial P(e', -) has exactly ¢ = D' degP; distinet roots s;(2'),
i=1

2’ e C"~\ D, with multiplicity m;, ¢=1, ..., g, which are ordered such that

with some integer p, 1 < p < ¢, we have for 2" € W,\D

: s;(#) ek, i 1<i<p,

s;(e) ¢ K, i p<i<y.

Furthermore, note that [P(2', 8)—Pp, (N)s™] < [Py (N)s™]; Is| = e(1+ 2],

with ¢> 0 depending only on P, and therefore we have by Rouché’s

(3.7)

13 — Banach Center t. X
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theorem
(3.8) Is; (2" < e(L+ 1), 2 eC\D,i=1,..,4q.

After these preparations we can now give the construction of the desired
function g for the given entire function f. g will be given as a polynomial
in #, - )

m—1
(3.9) 9 = D' gl

k=0
where the functions g, have to be determined such that (3.1) holds. This
leads in view of (3.7) to the following interpolation problem

i

&
T y(z’ ) 3@(5'))

n

&, ‘

- Z 9(# 8,8 )7 = ddj, =T sl@), 1<i<y,
(k J)' ’

o P<ISY

0<j<my 2 e WN\D. The determinant of this m X m-system of linear
equations for the g, equals =+ A(s;(2"), ..., 8,(2')), where

1 0 o ... o1
. 0 1
Aoy, .-) =1, o 1... (m—1)! gm-m |
(m—my)t
1 o

(01 ..., o) € 0% is a generalized Vandermonde determinant which vanishes
if and only if o; = o; for some i # j. By Cramer’s rule we thus have

(3.10) 9i(e') = 8,(<')[8(2'),
2 eW\D; k=0,1,...,m—1; where
8(2) = (A(s1(2")5 ...r 8 z')))z
G{#) = Ak(z’7 8:1(27), ..., S ’)) 4(31 ()5 .0y 81(% ))
A (e 01y ..., 0,) is the determinant of the m X m-matrix which equals the
matrix defining 4(oy, ...) with the (k+1)-st column replaced by

¢ a1
(f(zly 01y ey &}"‘,Ii_'lf(z" 9,0, ..., 0).

Since they are symmetric in the zeros 8,(¢'), ..., s,(¢) and in the zeros
8541(#); -+, 8,(¢') the functions & and §, are well-defined and holomorphic
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in W\D. Furthermore § and 4, stay bounded near D and ean thevefore
by Riemann’s theorem on removable singularities be continued to holo-
morphic functions in W,. Because its definition does not depend on £ the
function & is entire. It is in fact a polynomial since it grows only poly-
nomially by {(3.8).

‘We now want to show that the quotients (3.10) can also be continued
holomorphically across D. Again, by Riemann’s theorem this follows once
we have shown that the functions

(3.11) (z'_7 Gy veey Og) = Ap(@'; 04y ooy 0)[A{Tyy o0y 07)s

k=0,1,...,m—1, can be extended to holomorphic functions in W,x

X (K x (C\K;)*®. This is a problem only for those points (2', oy, ...

o,) where o; = o; for some ¢ < j such that 4, j < p or p < 4, j. Let such

a point be given where in addition all ¢y, 3 , 6, are distinct. Recall the

rule for differentiating the determinant of a matrix (.ependmg on a par-
ameter 4

a@ Al-( 1) -A(lal.)(l)

TV : = H ]
L VI = PTCOR)

1=0,1,...

Here A4,(4), ..., 4,(A) are the rows of the matrix and the o’s are multi- -

indices, @ e (NuU{0})™ Therefore, the Ith derivative at 1 =0 of the
following functions of 1

(3.12) A(Oyy evy OgF Ay Oppgs eany G55 00n)y
(3.13) (&5 Oy +eny Gt Dy iy oy 0 )y

k=0,1,...,m—1, is a sum over a € (NU{0})™, |a| = I, of terms which
vanish when the following m;+m; nonnegative integers

{3.14) ayy, Lt ag, ooy My—L+0p, 5, 0,1,2, ..., m—1

are not all distinet; for the function (3.12) the terms vanish- only in thig
case because they are generalized Vandermonde determinants. The
sum of all integers in the list (3.14) is l-{-( (m;—1)m;+(m; —1 mj)/"
Since the sum of m;+m; distinet nonnegative integers 1% at least
(mg+my; — 1) (m;+m;) 2 it follows that the Ith derivative at A = 0 of the
functmns (3.12) and (3.13) vanishes if 0 <<l <mym;. If now 1 = mm;~
then all integers in the list (3.14) are different for a e (NU{0})™, la| =1,
if and only if ¢ = m; for ¥ = 0,1, ..., m;—1. Hence

dl

73 A(Oyy eeey G+ Ay Oppgy oeey Gy oedico 05 1= mymy.
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Thus it follows from Riemann’s theorem that the function (3.11) can be
regarded as a holomorphic function outside the union of the 2-codimen-
sional submanifolds o; = o;, i #j, of Wy X ()" X (ONK)T?. The remaining
singularities of (3.11) can be removed with a theorem of Hartogs (Lemma
A.2 in the Appendix). Thus we have shown that g, has a holomorphic
extension to W, for k = 0,1,...,m—1.

So we may apply the Ehrenpreis—-Malgrange inequality (Lemma A.1
in the Appendix) to the quotient (3.10) and obtain using (3.8)

sup () <@+ )Y max sup

H
1 -tl<@+E) 3 1<i<p,0<i<m; |5~ LI<M

a7
G T 5(2)

kF=0,1,...,m—1 Here M > 0 depends only on P. In view of (3.4) and
(3.7) Lemma 3.1 follows with g given by (3.9) and some larger constant M.

4. Proof of the Extension Theorem

The local extensions obtained in Lemma 3.1 will be pasted together to
give the desired global extension of the entire function f. This pasting
procedure follows the pattern given by Oech cohomology theory for
coherent analytic gheaves. Here, however, we have to be careful with the
bounds on the various cochains which occur in the procedure.

Let us first give suitable coverings of C* and an associated partition
of unity. Fix a sequence ({;)ren, &i € C", such that for the balls

G ={2eC" =Gl < al+1LN)7™}, keN,a>0,

we have
U U = o

keN

and such that the number of distinct balls U}* which have non-empty
intersection is bounded by a fixed number m,. We leave it to the reader to
show that such a sequence ({;)..yv ¢an be found. To construct a partition
of unity we choose v € C°(C™), 0 < 9 < 1, with p(2) = 1 if |2/ <1/4 and
suppy = {z € C*; |¢| < 1/2}. We then have

1< PE) = D wl-— L)@ +15D™) < my.

keN

For the partition of unity
B, = p{(-— L) A+ 1G)™P, keN,
it follows that with some constant M, > 0

(4.1) 100, (2)] < (2+ 1), zeCm, keN.

icm°®
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Here ¢ denotes the CaucBy-Riemann operator acting from (p, ¢)-forms
into (p, g+1)-forms (see Hormander [57).

Now, let ¢ plurisubharmonic and f entire be given such that (2.12) and
(2.13) hold. From (2.12) we can immediately derive

(4.2) @) —@@)| <1-C if |e,—a)<l; 2,2 eC" leN.

From Lemma 3.1 we obtain functions g, k € N, holomorphie in U} such
that

(43) A~ 0lpppt =0 i=1,.r5§=0,1,.,1—1;

and which by (2.13) and (4.2) can be estimated
(4.4) 9x(2)] < (2+ 226,  2e Ui, keN.

Here and in the following M denotes a positive constant which only depends
on P; however, M may well be different in different formulas.

We want to find functions %, holomorphic in U}* which satisfy
“good bounds” and are such that P(h,—h;) = g, —g; holds in U} 0T}
for all k, 1. Then the entire function g which equals g, —Ph, in U¥? will be
the desired extension.

Arguing as in the proof of Lemma 2.2 we obtain from (4.3) that the
quotient (g, —g,)/P can be extended to a holomorphic function in U3 n T}
By Lemma A.1 (see Appendix) and (4.2), (4¢.4) we have for all k,leN

(4.5) [9:(2) — 9 (@) [P ()| < @+ Py e, 2 TEATH.

The function
(4.6) W, =Y &(g.—9)/P, keN,
jeN

is well-defined in U3 and gives the decomposition

(4.7) hy—hy = (ge—g)/P I TP AT

Furthermore, using (4.5) and the fact that at most m, terms in (4.6) are
non-zero for every z € Uy, we have

(4.8) “ 1, (2)] < (24 2P e?®, z2e U, keN.

Since the right-hand side in (4.7) is holomorphic the (0, 1)-form H with
H = 7k, in UY, keN, is well-defined in C". Again, since the number
of non-zero terms in the sums

49 () = (9~ 9)P)2)(9B)(), =T}, keN,
jeN
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is bounded by my, it follows from (4.1) and (4%) that
(4.10) H(Z)| < 2+ p1D)Ye™, zelm.

7ith the constant M in (4.10) now define the plurisubharmoniec function
o= (2M+n+1)log(2+ |- +2p.

Applying @ to (4.9) we see that H satisfies the compatibility conditions
ZH = 0. By Theorem 4.4.2 in Hérmander [5] we can therefore find a func-
tion v € If,,(C") which is a solution to the equation

(411) o =H

and satisfies

(4.12) [ wPee(1+ 2P 2ar< [ 1EFe an.
con on

Here d denotes the Lebesgue measure in C™.
The right-hand side in (4.12) is by (4.10) and the definition of o smaller
than the finite constant

J @+ taace).
on
Henee the function ¢ e I}, (C") given by
(413) = ge—P(hy—v) in UY, keN,

which is well-defined by (4.7), satisfies in view of (4.4), (4.8) and (4.12)
with another constant M > 0 still depending only on P (and on m, of
course)

(4.14) [ 9P @+ o) M e aa(s) < 1.
c’ll

Since » is a solution to the equation (4.11) we have 5g = 0 which implies
by the regularity theory for the Cauchy—Riemann equations that g is an
entire function. From the definition (4.13) of g and from (4.3) we obtain
(2.14). Because ¢ is holomorphic the well-known inequ&lity‘

. ]g(z)IQCn(W “[[1 Ig(z’)pd}.(zl))llz’ zeC*,
gl <
holds. With (4.14) this implies
9@ < 60 sup (24 [P)HeH), g,
le'~2] <1

An application of the assumption (2.12) completes the proof of Theorem 2.3.

L
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Appendix

For the convienience of the reader we shall state and prove some classical
results on division by polynomials and on removability of singularities
which are frequently used throughout the paper.

Lemma Al (Ehrenpreis-Malgrange). Let P be a polynomial of degree
m. Then there exists a constant C > 0, such that for every r > 0, z € C*, and
every function f which is defined for all 2’ € C" with |2’ —z2] < r and is such
that f/P is holomorphic there, we have

[f(2)/P(2)] < Or™™ sup |f(2)].
' —2l<r

Proof. Fix a non-charagcteristic vector N for P, i.e. P, (N) # 0. Let
7> 0 and z € C" be given. Consider P(z+4AN) as a polynomial in 4 € C.
If we denote its roots by 4,(2), ..., 4, (2) we have the factorization

P(z+IN) = P (M) [ [ (2—3(2)), 2eC.

We can find 0 < ¢ < 7/|¥| such that
_ 2—Af2)| = r2(m+ D)V i |2 = o.
Frcem the maximum principle we obtain
[f(2)/P(2)] < max|f(z+ AN)/P(z+ AN)| < C'?“”I‘ sup [f{z')]
1A{=a 8~z <1
with ¢ = (2(m~+1) |N[)™|P,(N)|"". The proof is complete.
Now, let us give the results which show that a holemorphic function
can be extended holomorphically across “small” exceptional sets.
Luwva A.2. Let U< C* be open. Let Vy, ..., V= U be complex
submanifolds of codimension 2 satisfying V; < UV, for all 4. Sei
i>i :
V=V, U... U7V, Then every holomorphic function in UN\V has a unique
holomorphic extension to U. )
Proof. Let us first assume that ¥ is a complex submanifold of codi-
mension 2. Let f be holomorphic in UN\V. Let {e V. We introduce

coordinates such that ¢ becomes the origin and V = {2 = (24, ..., %,) € C";
2, = 2z, = 0}. Choose § > 0 such that z e U if || < 24. Hence

1 1)
2w A—2zy
=8

is o well-defined holomorphic function of z = (e,#') e C% |2| < 8. By
Cauchy’s integral formula this function coincides. with f in the open set
{z€ C"; |e| < 9, 2, # 0}, and thus gives an extension of f to a neighbour-
hood of £. ’
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By assumption all W, = {JV; are closed. Therefore, using the

>
construction above, we ean successively extend f holomorphically across
VINWy, V.\NW,, ..., V. Thus fextends to a holomorphic function on 7.
This extension is clearly unique. The proof of the lemma is complete.

Lemma A.2 is essentially a special case of

TEEOREM A.3. Let U = C" be open and let V = C™ be a finite union of
varieties {z € C"; Py(2) = P,(2) = 0} where P, and P, are relatively prime
polynomials. Then every holomorphic function in UNV can be continued to
a unique holomorphic funciion in U.

Proof. We shall prove Theorem A.3 by applying Lemma A.2 to some
“stratification” of V. Let us introduce coordinates ¢ = (#1, ..., 2,) € C?
such that P, and P, are normalized in the z,-direction and such that the
resultant R(z,, ..., #,) for the polynomials P,, P, in the variable 2 is
normalized the z,-direction. Recall from algebra that R is not identically
zero if P; and P, are relatively prime, and, furthermore, that

{2€C"; Py(2) = Py(e) = 0} = {2 € C"; Py(2) = 0, R(2s,...,2,) = 0}.

Therefore, we may well replace P, by R. So let us now assume that P,
and P, are normalized in the z,- and 2y-direction, respectively, and that
P, does not depend on z,. From the first property it follows that V is
contained in the union over k, 1 e N of the sets

Via = {s.€ € (1P, j0k)(¢) = (8P, /™) (5) = 0 and
(F“Py[0) (2) 0, (&P, |22k (2) + 0}.

Only finitely many V;, are non-empty. If ¥, is not empty then it is
a complex submanifold of codimension 2. This follows — after we have
made use of the fact that P, is independent of 2, — from the Implicit
Funetion Theorem. Hence Theorem A.3 follows from Lemma A2,
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