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This paper deals with the existence and appfoximation of the solutions
of the initial-boundary value problems for nonlinear parabolic equations
of the form

B S S (0D A, ey ) = fl, D)

lil<m
in (z, 1) € X (0, T), where £ = R"is a bounded domain with Lipschitzian
boundary 802 and T < co. These problems have been extensively studied
by many authors in the case where the coefficients A; have polynomial
growth in » and its derivatives.

It is our goal here to extend the existence results to the cases where
the coefficients do not necessarily satisfy this eondition. When the coeffi-
cients A; are rapidly (or slowly) increasing, then it seems to be appropriate
to formulate the problem of existence in Banach spaces of the Orlicz—Sobo-
lev type, which are not reflexive, in general. In such a case the correspond-
ing operator of monotone type (i.e. the corresponding elliptic operator of
(B,)) is not bounded nor everywhere defined and, generally, not coercive.
Nonlinear elliptic boundary value problems with operators of the type
just described have been studied by J. P. Gossez in [1]. Applying Rothe’s
method (recently developed in [2]-[5]) and the results of [1], we obtain
the existence results for the corresponding nonlinear parabolic initial-
boundary value problems.

As an example for a rapidly increasing coefficient 4, stands, e.g.,

Ao, §) = fexp(&)  or  Ayw, ) = &exp( Y o)

lil<m
where a;> 0 for |i|<<m. As an example for a slowly increasing coeffi-
cient 4; stands, e.g., 4,(, & = éil In(|&]41).
i

[243]
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In Section 1 we present an abstract result and in Section 2 we present
applications to the initial-boundary value problems with equations of
type (By).

Notations and definitions. Let ¥ and Z be real Banach spaces in
duality with respect to a continuous pairing (-, -> and let Y, Z, be sub-
spaces of Y and Z, respectively.

DEFINTTION 1 (see [1]). The system (¥, ¥o; Z, Z,) is a complementary
system if, by means of <+, -y, ¥ can be identified (i.e. is linearly homeomor-
ph ¢) to Z and Z; to Y.

Let H be a real Hilbert space with its sealar product (, ) and the
norm |-|l. We identify H* with H.

We assume that Z and H are continuously imbedded into a linear
loeally convex space V. Moreover, we assume that

Y,nH is dense in ¥, and H,
Z,nH is dense in Z, and H,
wlig = 0 implies [lylly = 0 for y e Y nH,

1.1

where ¥ nH is the Banach space with the norm |y|lynmg = Wlyr+ Wiz

By ¢(Z, Y,) we denote the weak topology in Z generated by ¥, (Z = ¥;).

Similarly ¢(Y, Z,) is the weak topology in ¥ generated by Z, (¥ = Z;).
Let 4 be a mapping of D(4) ¢ Y into Z with ¥, = D(4).

DerINITION 2. The operator A is of type (M) with respect to the
complementary system (Y, Y,; Z, Z,) if:

(a) <Au—Av, u—v)> >0 for all u,veD(4);

(b) A is a continuous map from finite-demensional subsets-of ¥, into Z
in ¢(Z, Y,) topology;

(e} There exists ¢ > 0 such that 4 is a bounded map from B,(0, ¥)
into Z (B,(0, ¥,) is the ball with radius ¢ in ¥, centered at 0);

(d) For any net {y;, 2} such that Ay, = z;, ¥, D(4), y, bounded,
the conditions y; -y e X for o(X,Z), 2 ~2€Z for o(Z,Y,) and
limsup {z;, ¥y < <z, y)> imply y e D(A) and Ay = 2.

In [1] a psendomonotone operator with respect to (¥, Y,; Z, Z,)
has been defined. Our operator A of type (M) with respect to (¥, Y3
Z,Zy) is also pseudomonotone.

Let |-l be an (equivalent) norm on Y. Denote by [z, the restriction
of |'llg to Xg, by ||-llz the norm on Z dual to Iy, and by |['|]z0 the restriction
of Il to Z,. I ||y is dual to |z, and <y, 2> < |ylylllz holds for all
y € Y, zeZ, then the norm |||z is said to be admissible (see [1]).

Let ¢ with or without indices stand for positive constans.
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Section 1
Let us consider the abstract equation

du ()

(By) w

+Au{t) = f(1),

%(0) = o,

where 4 is a mapping from D(A4) « ¥ into Z which is of type (M) with
respect to the complementary system (¥, ¥o; Z, Z,). Let f be an abstract
function <0, T - H. We assume the following coercivity assumption
on A:

(Ky) {Auy upfulgt — oo for fully — co.
In many cases this assumption cannot be verified. Assumption (K,)

may be replaced by the following two assumptions:

(Ky) {Au, uy — oo for fully — oo, u e D(4A);

(K,) for all feZ,+ H there exist a (norm) neighbourhood Uy in Z+H
and a number C(f,1) sueh that |ully g <C(f,2) for all
ueD(A)nH satisfying Au-+Awe Uy, where 21>0 is a fixed

parameter.

The abstract function f: <0, 7> — H is said to be of bounded vari-
ation if

sup ) If(t) —F(tin)ll =

W};L 1 =1

V (f; H) < o0,
@1

the supremum being taken over finite partitions of the interval <0, T>.
Our main result is

THEOREM 1. Let 4 be of type (ﬁ) with respect to the complementary
system (X, Yo; Z, Zo) and let (1.1) be satisfied. We assume wy e D(A) NnH,
Au,e H, feC(K0, T, H) with l)\;)(f; H) < co. Let one of the following
assumptions I or II be satisfied < '

1. (K,) 48 fulfilled;

II. Y admits an admissible norm and (K,), (K,) hold.

Then there ewists a unique u € L, ({0, T>, ¥ NH) with the following
properties

{) u(t): 0, T> — H is Lipschitz continuous and 4(0) = uy;

(ii) the strong derivative duldt ewists for a.e. t€(0,T) and we have
dujdt e L (0, T), H);


GUEST


icm

246 J. KAGUR

(iii) the equality
( du (t)

at

holds for all ve Y NH and for a.e. t €(0, T).

Before proving Theorem 1 let us sketch the idea of the proof. We apply
Rothe’s method to (E,) in the following way. We replace (E,) by its
time discretization and we solve the operator equation (successively for
i=1,...,m) .

) v)+ CAu(t), vy = (f(2), )

*— u_1

(1.2) +Au =,

where b = Tfn, t;, = ih, f; = f(t , U, i8 from (H,) and = is a positive
integer. By means of %, ({ =1,...,n) we construet Rothe’s function

_ti—-

(1.3) U, (1) = ;s + (wg—uy_y) dor 1, <I<H,,

i=1,...,n, and then we prove certain a priori estimates for u,(t).
Finally, we prove that the u(f) = limu,(f) is a solution to our
problem. . .

LeMMA 1. For each i =1, ..., n there exists a unique u;, € D(A)NnH
such that the equality .

(%, /,;)-|-<Au“ vy = (fi,7)

holds for all ve Y NH.

Proof. Let us consider the system (Y NH, Y,nH; Z+H, Z,+H)
with respect to the pairing [f, »] = {fy, 2>+ (f, v) for ve YN H and f, +
+f. = feZ+-H. Owing to our assumptions on Z and H we can construet
the Banach space Z+H with the norm

Wlzyg = inf  max(lifllz, Ifal)-
1182, 160
Frtfa=f
Moreover, we have
(1.4) [fyol<  inf (Ifllzlvlle+ifalllol) < iollpnm Ifllz.a,
f16Z.fasH
fi+fa=f
which proves that the pairing is continuous. In view of (1.1) we have
(see [6]) .
(YonH) = ¥i+H* = Z+H,

(L5) P .
(Zo+H) =Z; nH* = YnH

NONLINEAR PARABOLIC BOUNDARY VALUE PROBLEMS 247

(in the sense of sets and norms) after identifying Zy with ¥, ¥; with Z and
H* with H. Thus (YNH,Y,nH; Z+H,Z,+H) is a complementary
system with respect to the continuons pairing [, J. From (1.4) and (1.5)
we conclude that the norm [y z is admissible in Y nH if the norm
Il is admissible in Y.

Let 2 > 0 be a fixed parameter. We define a mapping 4, from D(4) nH
into Z+4H by i

[A,u,v] = {Au,v)>+(Mu,v) for al veY,NH.

e prove easily that 4, is of type (M) with respect to the complementary
system (YnH, Y nH; Z+H,Zy+H).

We claim that A4, has property (d). Let {y;, 2;} be a net such that
A= 2,9, € D(A)NH,y;bounded in ¥ nH, y, - yfor o (¥ n H, Z,+ H),
2;>z€Z+H for o(Z+H,Y,nH) and limsup[d,y;,y;]1< [4,¥, 2]
Hence we obtain {(Ay;, ¥,> < C(A). From the property (a) of 4 we have

CAY;, 9 < CAYs Yo + (Ao, 0> — (Ao, 9,
from which we conclude

4y llz = sup [<4y;, | <0,
folly<1
ve¥,
because of the property (c) of A. Thus {4y;} is bicompact in Z in ¢(Z, ¥,)
topology. There exist a subnet (which we denote also by {4y;}) and an
element 2, € Z such that Ay, — 2, for o(Z, ¥,). Since y; -y for o(H, H),
we have

Ay;+ Ay, —2+2dy  for o(Z+H, Y,nH).
Thus 2 = 2,+ 4y and
liminf (Ay;, y;) -+ Hmsup (4y;, ¥;> < limsup [4,9;, 3.1 < <21, 9> +(39, 9).

Since [y|? < liminf y,|2, we have limsup<{4y,, ¥;> < {21, y>. Hence the
property (d) of A implies y € D(4) and Ay = 2,, from which we obtain
yeD(4A)NH and 4,y = z, proving the claim.

Now let us take A = 1/h and consider the equation

A = f+ ”’;1 eH < Z,+H.

Using the existenceresults of [1] (Theorem 3.1, Theorem 3.10 or Corollary 3.7)
we conclude that there exists a unique %, € D{4) NH such that ’

(1.6) (@%ﬂﬂ+a%w=mw
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holds for all » € ¥, 0 H. From (1.6) we conclude that the functional {du,, v}
is continuous in v in the norm of the space H. Thus (1.6) holds for all
ve YNH < H and the proof is complete.

LeMMA 2. There exists C such that

Uy — Wy
)
holds for all m, 4 =1,...,n

Proof. Subtracting  (1.6) for
v = (u;—u;_,)/h we obtain

l %,
|
|

the property (a) of A has been used here. From this recurrent inequality

we get
< D=+

i=1

<0, |ulrar<0

i=3 and 4¢=j—1 and taking

‘uzl
h

+Ilfi—Ffiealls

Uy — U,

h

i—1

Analogously from (1.6) we deduce the inequality

uy — g |[? Uy — 1, 1 —r
g < a2 252
Since Awu, € H, we estimate
Uy — U, — 4,
KMO, 2 > < ) |2
and hence
Uy~ Uy
_“f_; < duell +max|If () V (f; H
0,7 0,y

From this inequality and from the triangle inequality we conclude u,]| < ¢
for all #, 4 = 1, ..., n. Then, from (1.6) we obtain |[(Awu,, 4| < €, which
implies |lully < C for all 2, ¢ =1, ..., 2 (because of the assumption I or
II) and the proof of Lemma 2 is complete

Now we define Rothe’s function u,(t) by means of (1.3) and the
step function %,(3): %,(1) =u; for ¢,_ <1<, i= 1, ..., n, %,(0) = u%,.
Analogously we define f,(t) by means of fi=7&). On account of Lemma 2
we have

(1.7) e (8) — 7, (O < Cfn for all n and ¢t €0, T>.

icm°®
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Levya 3. There ewists u(t) € L, ({0, T>, Y nH) with the following
properties:
(1) ,(t) —u(t) in the norm of the space C({0,T>, H);
(i) w(t) is Lipschite continuous from {0, T into H;
(iii) the strong derivative dw(t)/dt emists for a.e. e (0, T) and we have:
du|dt € L, (<0, T, H).

Proof. The identity (1.6) can be rewritten in the form

(1.8) (E—';%(—),@)%-@un ), 0> = (fu(2), )

a- —
for all ve YNH and 7ve(0,T), where Z"(t) = B %
T

, 7. Subtracting (1.8) for n = r and » = s and putting;

for t,_,

<r<<h,t=1,...

? = U, (7)—%(7) we obtain ..
R )@, (s, )
T
< (HEO=) - (ﬁ,(r)——ﬁ.<r)))+

+ %) =B ()1, (7) — o (2)15

again the property (a) of A has been used. Integmtmg this inequality over:
(0, t) and using the estimates of Lemma 2 and (1.6) we obtain

i
1 1 1 -
5 )% OIF< 0 (7 + ;)+ o [ 1o~ @nar
for all positive integers 7, s and ¢t €(0, T). Hence we conclude that there-
exists # € C(<0, T, H) such that %,(t) - u(t) in H uniformly in ¢ e <0, T

and the proof of assertion (i) is complete.
By Lemma 2 we have

”un(t) —’le"(t')” < Olt'—t,! .
Hence and from assertion (i) we deduce
(1.9) e (t) —u )| < Clt—1'] for all ¢,t <0, T

and assertion (ii) is proved. From (1.9), in virtue of the result of Y. Komura.
(see [7]), follows assertion (iii). Now, we prove that » € L, (<0, T, Y nH).
Owing to Lemma 2 we have the estimate

(1.10) e (Mpnzr + [ (llpam < €
for all » and t e (0, 7). Bounded sets in ¥ NH are compact in (¥ nH,
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Zy+ H) topology, since ¥ nH = (Z,+H)*. Hence there exist w,e Y nH
and a subsequence {u,, (1)} (¢ is fixed) such that %, (f) -w; in o(¥Yn H,
Zy+ H) topology. On the other hand, Uy, (£) —> W, ine(Y nH, H) topology,
which is weaker than o(Y NnH, Z,+ H) topology. According to Lemma 3
and (1.1) we have w, = w(t) and, moreover, the original sequence U, (1)
converges to w(t) in o(¥ nH,Z,+H) topology. Hence the conclusion
of the proof follows from (1.10).

LemwmA 4. Let w(t) be as in Lemma 3. Then w(t) eD(A)YnH and
A%, (1) — Au(t) in o(Z, X,) topology for all te (0, T).

Proof. Let t be fixed. Just as in Lemma 3 we have Uy (8) — (1) in
o(Y nH, Zy+ H) topology, since (1.10) and (1.7) are fulfilled. From (1.8)
and Lemma 2 we infer ’

(1) [<47%,(8), v3] < Clol
for all n and v € Y H. Hence and from Lemma 2 we obtain ‘
(1.12) K4m, (1), 7, (1)) < 0

for all n. Owing to the property (a) of A we estimate
CAT (1), ) < ATy (1), T, (1)) + (Ao, v5 — (Ao, T, (1))
for all v € D{A). Hence, using property (c) of A4, together with the estimates
in Lemma 2 and (1.12), we obtain
14%,(t)lz = sup [<A%, (1), 1) < € < co.
: ve¥,
[l <1
Thus there exist w, € Z and a subse %, i
u quence {4%, (1)} (which we denote b
:{Aun(t)}) such. that A%,(t) ->w, in 0(Z, ¥,) top(ﬁogy. Passing to the ]jmgi
in (1.11) we find out that the functional {w;, v> is continuous in » in the
norm of the space H. Owing to (1.11) and Lemma 3 we have
A%, (8), w(t)> — (A, (1), T()) -0 for n - oo,
From these facts and from (AZ (1), ¢ r
we conclude that > ARL), 0> e v dor vetnk
AT, (1), T (1)) > G, w(0)y,

Since ¥,nH is a dense set in H > ¥ NH. Thus, from the property (d)

of 4, we obtai .
of Lémmao {Lam u(t) e D(A)NH and Au(t) = w, which ends the proof

Proof of Theorem 1. Integrating (1.8) over (0, t) we obtain

¥ R
(1.13) (14,8) , ©) ~ (285, 'v)-l_of <_A7_7,n(-;)? oY dr =0f ((fn(r), W) dr
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for all v € ¥y NH. In view of Lemma 4 we have
{Au,(z),v> - {Au(r),v) for all 7e(0,T)-and ve Y,NnH.
From the estimate (1.11) we get
[CAu (@), vy < C  for all te(0,T)

and we see that (Au(f), v> is measurable, since (A%, (t), v is a step function

_in #. Taking limit in (1.13) we obtain

t . £ ‘
(w(t), ) — (0, 0)+ [ <Au(z), 0ddz = [ (f(x), v)dv
[ 0
for all v e Y,nH. Hence we deduce

du (t)
&

(L14) o)+ CAutn, vy = (0, )

for all ve ¥YonH and a.e. t €(0, T). The functional {Au(f),v) is econ-
tinuous in the norm of the space H (see (1.11) and Lemma 4). Thus (1.14)
holds for all v e ¥ nH < H. The uniqueness of #(t) can be proved by the
following standard argument. If u,(t), %,(?) are two solutions of (E,) then
w(t) = u,(f) —u,y(t) satisfies the inequality

( du(t)

T u(t))‘< 0,
because of the property (a) of 4 and (1.14). Hence
e =0 for all 1e(0,T)
and the proof is complete.
Remark 1. If f: <0, T — H is Lipschitz continuous, i.e., [[f(f)— T
< Ct—1'| holds for all ¢, ¢’ € (0, T'), then the estimate
ot ()~ (£)P< OJm

takes place. This fact follows from the proof of Lemma 3 and the estimate

I8 —F @I < Cfr.

Section -2

TLet us consider an equation‘of type (B,), with rapidly (or slowly) inereasing
coefficients 4, (in their variables). In such a case it proves advisable to
consider A4, (lif < m) as a mapping from a space of Orlicz—Sobolev type
(generating a complementary system) into an Orlicz space. Then The-
orem 1 can be applied.. . ) :
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" We now sketch the fundamental concepts of the theory of Orlicz
spaces (for details see [8]). A real valued function ¢(t) is said to be an
N-function if it satisfies: G(¢) > 0 for ¢ > O,EEQ- ~» oo for ¢ - oo, —G—(Q -0

1
for ¢ — 0, G(f) is convex and even for ¢ ¢ R. Let us denote by Z4(2) the
set {u e Ly(2); [G(u(m)ds < oo} and by Ly = Ly(2) the linear hull of
Zg(£2). The set Lg is a Banach space (Orlicz space) with respect to the
(Luxemburg) norm

. A
lhelligy = Hﬁ{?> O,DfG(T)deJ.}.

The closure in Ly of the set of all bounded measurable functions in ©Q is
denoted by Eg. The function @ () is said to satisfy the 4,-condition if there
exists a k> 0 such that @(2t) < kG(f) holds for ¢ > t, for some #, > 0.
The inclusions By « %, « L; take place and the equalities B, = &,

Zg = Ly hold if and only if G(f) satisfies the A,-condition. The dual spagé
of By can be identified by means of [wvdw with the Orlicz space Lz

_ 2
= Lg(Q), where G(f) is the N-function (conjugate to G(i)) defined by
Q) = sup (is — G (s)).
seR

Young’s inequality s < G(t)4G(s) takes place and we have E(t) = @G(1)
The norm

fuly = i} ol
[l :i‘_p;{gfw 23 ||v]](a)<1}

(Orliez’s norm) is equivalent to the norm [l and the following Hélder’s
inequality

Juvdo < ullglvllg,  for all w eI, velg
Q

is valid. Clearly, the system (Lg, EBy; Lg, Bg) i
' @ Lig) 15 & complementary syst
with respect to the scalar product | uv(}m. ’ v s

Q2
Let W"Lg = W"Le(2) = {4 < L,(2); D'uely for all |i|<m),

(8 = (is, ..., iy) i & multiindex with || = 4, + i i
= (i, 8 = w. +iy and D?
distributional derivative of u) with the norm1 v v the

Il = ( 3 1D uig)

lil<m

The space W™Lg can be canonically imbedded into the product Il Zg

lil<m

= IZg. Tiet Wi'Ls(Q) be the o(IILg, [IHg) closure of 0P(Q) in W,

icm
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Let Wik be the intersection WiLgnIIEg,. We define WirE, as the
norm closure of 7 (Q) in W™ Lg,. In [1] the following density results are
proved:
0°(9) is 0(I1Lg, IILg) dense in W™Lg,
0P () is o(I1Lg, IILg) dense in Wy Ly,
O3 () is (norm) dense in W™Hg,
Wit By is the intersection of Wi Ly with I1E,.
Let us write ¥ = Wi'L; and ¥, = Wi Eg. Then the dual space
to ¥, is Z = W~™Lg, where
WLy ={fed (Q); f= Y (—1"DY; with f; e L5(Q)}
i fil<m
(2'(Q) is the space of distributions) and Z, = W™"H, (the dual of Z,
being Wi Lg) is
WmHg ={fe @ (Q); f= 3 (—1DY; with f; c Bz(2)}.
lil<m
The quadruple (Y, Y,; Z,Z,) is a complementary system (see [1]) with
respect to the continuous pairing

Fruwy =Y [ Dudo
lil<m 2
Let H = L,(R). We can verify easily that ¥,nH is dense in ¥,
{becanse of the density results) and that [u|z = 0 implies |ully~g = 0
for w € ¥ nH. The spaces W ™Lg and H are continuously imbedded into
the linear loeally convex space 9'(£). We also find out without trouble
that the set of functionals
[fe(@;f= Y (—1"Dif, fi e O ()

lii<m

for ue¥, feZ.

is dense in W™™Hz and in L,(Q), again because of the density results.
Thus the cssumption (1.1) is satistied.

Let ¢ be the number of all multiindices j with |j| < m. By & = (&; 1]
< m) we denote a real vector in R? and by &(w) we denote the vector
function {&(u) = Diu, |i| < m}. Let M be the class of continuous functions
g{w) in R satistying: g(u) — oo for % - oo, g{%) is odd and ug(w) is convex
for u > u, > 0, where u, is sufficiently big. It is well-known (see [8]) that
for each g(u) € M there exists an N-function @ (u) (not uniquely determined)
such that G(u) = ug (%) for all 4 > u,. All these N-functions are equivalent
and generate the same Orlicz space Lg.

The coefficients 4;(z, £) are supposed to satisfy the following condi-
tions:
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(2.1) A4z, & (il <m) are real valued functions defined on &e R,
which are measurable in x for fixed £ and continuounsin £for fixed w;
(2.2) There exist g(u) € M, a(x) € Bg(2) and C,, C, such that
(@, 8] < a@)+0C1 ) 19(Cag);
1fi€m
23) (4w, H—As(m, ) (&—n,) >0 forall £ qe R

ll<m

Since the estimate g{u) < G (G (u)) takes place (see [9]), then using
(2.2) and the convexity of G(u) we estimate

Az, B\ L _fa@) 1 _ 1.,
)=l 5o Y )
1 _[a)
<—2—6;(401 ) +

1
w 2@(02 &)
Hence we see that the operator 4, (z, £(u)) (Ji| < m) maps WP E, into the

Orlicz space Lg. Moreover, this operator is bounded on a small ball in
Wi B centered at 0. Thus, by means of the form

(Au,vd = Z fD‘vAi(m, &(w)) da,

lil<m 2
we define an operator A: ¥ = Wi'Lg -+ % = W ™Iy, its domain being

D(A) = {u e Wi Lg; A;(z, £(w) e g for all ji| < m}.

The inclusion D(4) > ¥, = W H, is obvious. The properties (a)
and () of A are evidently fulfilled. In essence, the properties (b) and (d)
of A are proved in [1] (Theorem 4.1). Thus the operator 4 is of type
(M) with respect to the complementary system

(Wi'Lg, Wi Eg; W™"Lg, W™ Eg).

Remark 2. Let (2.1)«2.3) be satisfied. Then Aw e Z for some u e ¥

it and only if 4;(x, &(u)) e Ig for all || < m. Tndeed, we have

2 f'w,;Ai(a;, £(w)) dz

lil<m 2

< (Aw, uy+ Z fw,._A_i(m, w) dis —

lijxm 2

D [Dudy(a, w)aw

lil<m @

for all w € ITE; and hence 4, (a} §(u)) € Lg, because the operators A, (@, w)
(I#} < m}) are bounded mappings from a small ball in 1B into L.
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NONLINEAR PARABOLIC BOUNDARY VALUE PROBLEMS 255

The algebraic condition which ensures the coerciveness of the oper-

ator A is
ZEAxE 02551(5‘) G,

lHl<m

(2.4)

where £ e R? and r >1 is arbitrary.
LeMMA 5. Let G satisfy the Ay-condition. If (2
sumption I of Theorem 1 is satisfied.

Proof. In view of (2.4) we have

4) holds, then the as-

“Jac-,

Diy ‘1
@25)  (du,u>> 0, Z fa (—T—)dw—og f@(
lij=m 2 M@m Q
since the Poincaré inequality

[e(Duwyds < ¢
lil<m 2 lij=

G (sD'u)
Dfs

Ay-condition for @ implies Bz = Lg. Then from [1] (Lemma 3.14) we
obtain

is true for a sufficiently big s and for all w € Wi Ly (see [1], Lemma 5.7).

Yz — oo for |jullg > o0, u € Lg.

lulig* [ 6 (u
Q

Hence and from (2.5) we obtain Lemma 5.
LEMMA 6. If (2.4) holds, then the assumption IL of Theorem 1 is satisfied.

Proof. From (2.5) we obtain (K;) (see [81). Let be fe W "Ez+ L,
F="Ffi+7s, where f; e W™Hz (fi = (fu; lil <m)) and foeL,. We con-

sider the set of all fe W ™ILg+L, (f = fitfe,ie W™, fi = (fus
li|< m) and f, € L) for which )

_ 2 _
lfu—Fula< = Ih—Rl<1
3

hold for all }if < m, where 7, >1 and C; <1 are from (2.5). This seb
generates a neighbourhood Uz in W™ILg+ L,. Let us chose K such thab

~[2r -
f Glorf)an< K
OS
Q
Let fe Uy and let

CAwy v+ (A, v) = {f1, 2> +(fz, v)

for all » € WP EyNL,. Since Wi B, is dense in Wi Ly with respect to the
o(Lg, ITLg) topology, we obtain (2.6) for all © € Wi'Lgn L,. Thus we

for jijl<m

(2.6)
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have
{Aw, wy+ (M, w) = foh oy di -+ ffzfu,dm
Q lil<m
<éﬂgf ( fh)dm—l—ém!(}( )dm+
Since
Dl
ng( u) C’afG'( ”'1)
and

fG(Zm fu)d +3 f ( (fi— .fu))dw<K+l

) we conclude that

ol

{(see [8]), from (2.5

&3 fofe

lilsm Q

)dm+ fuzdm< c(f, F, %

which implies Lemma 6.
Now, let us consider the equation (E,) with the initial and boundary
conditions

(o)
(B)

u(w, 0) = (@),

Dru(z,t) =0 on 82 for k=0,1,...,m—1

and for a.e. te(0,T), -

where » is the outward normal to ¢£.

Applying the results of Section 1 we obtain

THEOREM 2. Tet ( )—(2.4) be satisfied. We assume that f e C{<0, TD,
Ly(2)) with V (fs Lo(Q)) < o0, ugeD(A)NLy(RQ) and Au,eLy(R).

Then there emsts a unique solution w4 e Lm(<0 >, WeLanL,) of
(B,), (L), (B) in the following sense:

(i) w(z, 1) = w(t): <0, T — L,(R)is Lipschitz continuous and u(xz, 0)

= Uy(@) (in Ly);

.. ou
(i) —3?61300((0,T>,L2(9))y Au e L, (€0, Ty, Ly(Q));
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(iii) The equality

(%’ q;)—l— 2 fD"vAi(m, E(w))ds = ffvdm

fil<m @
holds for every v € Wy Lg N\ Ly, and for a.e. t € (0, T).

Theorem 1 can be applied also to the anisotropic situation. Let us
assume that there exist g,(u) e M ([i| <m) such that g,(u)< g;(u) or
g;(w) < g;(w) holds for all u > u,, where u, is sufficiently large. Then the
growth conditions are of the form

(2.7) 4@, &) < agle)+b > min(lg,(C&)], 1g;(0%))
1Hi<m
for all [i| < m, where b, ( are suitable constants, a; € Eg, and @; arc the

N-functions corresponding to g,(#). Using the @;(%) (|{] < m) we construct
the Orlicz—Sobolev space W"Lg = W"Lg(R):
WmLg = {ueL(Q); Diu € Lg, for all |i| < m}
with the norm
el = ( ) 10"l )™
lil<m
The space W™L, can be canonically imbedded into the space [] Lai
lil<m
= IILy,. Let Wi"Lg be the closure of O7(Q) in IILy, in o(llLg,, IIEg,)
topology. We write @;(#) < &, (%) whenever there exist k > 0 and u, >0
such that G;(u) < G;(ku) for all u > u,. Under the assumption
(2.8)  G;(u) < G;(w) (ie. jr<
the following density result holds (see [1]):

Wi Lg is the closure of OF°(R) in o(l1Lg,, I1Lg,) topology.

for all <1 i for k=1,...,n)

In the anisotropic case we have

Y = Wply, X,= WpEg=WplgnllB,, Z=WT"Iz,
where
WLz = {fed'(@); f = I_¥2<—1>""1r‘fi, fie I}
and )
= WE,
where
WrEr = {fe 2 (@); f= ) (-1)"D, f; e Hg}.

lel<<m

17 — Banach Center t, X
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Sinee (P(R) is a dense set in L,(Q) = H, E@i (for all |i| < m) and the sct

lfeg'(Q;f= 2 (—1)IDf,, fe0P(@)} is dense in Z, and H,
lii<m ) o

we conclude that (1.1) is satisfied. The norm [l is admissible in W' Ly

(see [1])-
Owing to the inequality (see [9])

min(|g;(w)], 1g; (w)]) < 267 {6;(w)),

analogously to the previous case we can prove that the operator A4, (w ) E(w))
(li| < m) maps WiEg into the Orlicz space Lg,- These operators are
bounded on a small ball in W™ Ez centered at 0. Thus, by means of the form

(A, vy = 2 fD"vAi(w, &(u)) do

lil<m 2

for weD(A) c Wrlg, ve WyE, we define the operator A from its
domain D(4A) < Y into Z, where

D(A) = {u e WirLg; Aqlw, £(w) € Lg, for all i< m} .

According to [1] (Theorem 4.1), the operator 4 is of type (ﬁ) with respect
to the complementary system (WiLg, Wilg; WLz, W ™Hz). The
coerciveness of the operator A is ensured by the following algebraic con-
dition:

(2.9) Z & (m, &) = 2 Ci&:9:(&fr)—0

lii<m lil<m

where & e R%, (;> 0 for |i| < m. If for each ¢ with [¢| < m there exists
a j with |§| = m such that G; < @;, then in (2.9) one can take C; = 0.

The proofs that under condition (2.9) the assumptions I, XX (of The-
orem 1) are fulfilled are analogous to the proofs of Lemmas 5 and 6. Con-
sequently we have

TeEOREM 3. Let (2.1), (2.2), (2.7) and (2.9) be fulfilled. We assume
that uy € W Lgn Ly, and Auge Lo(Q). If Gyu) (K< m) do mot satisfy

Ay-condition, we assume also (2.8). Let feC (0, Ty, H) with \ (f; H)
<0,T%
< oo. Then there emists a unique (weak) solution of the problem (B;), (I,), (B)

with the properties (i), (ii) and (iii) (where Wi L, is replaced by Wy Lg)
of Theorem 2.

Remark 3. The nonhomogeneous Dirichlet boundary value problem
can be reduced by a standard transformation to the homogeneous Dirichlet
boundary value problem. More general boundary value problems can be
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solved by the same method using the corresponding subspace @,

Wilge @ c WL, (vesp. Wirlg < @ <« W™Lg).
The results obtained ean be applied e.g. to the following equations.
BExXAMPLE 1.

B S 1D = §,

ot
lil<m

. where g;(u) e M for all ji|<m satisfy g,(u) <g;(u) or g;(u) > g;(u) for

w>u, and i, |j] < m. I G(u) (il < m) does not satisty ,-condition,
we assume (2.8).

EXAMPLE 2.
eu A = ou \*
= 2w la (Yol
where C;>0,i=1,...,N.
EXAMPLE 3.
) 5] -
ot oz oz ox oy \ oy oy
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KPAEBBIE 3AIAYM JUIST VPABHEHUWIA CMEIIAHHOI'O THIIA
B MHOI'OMEPHbBIX OBJIACTAX

I. I. KAPATOTIPARJIUEB

Hremumym Mamemamuxu Boazapexoii Axademun Hayx, Cogius, Boszapus

1

Ilyere D — orpanmdennas obnacTs npocrpadciBa F,,_,, m>=>2, Touek
&' = (@1, By, ...y Bpy_y) C KYCOTHO-TIANKON Tpanuueir dD. 0603Ha'mM G =
= {.’b = (ml7 mm) GEm; 50, ED’ ‘Pﬂ(w,) < L < ‘Pl(w/)}7 rae q’i(ml) € 02(1—))1
$=1,2; Iy: @, = ga), i =1,2, ’ € D; I, — 6oxoBafg TOBEPXHOCTH
G (I'y Iy HEROTOPAS €€ JACTh MOFKET OTCYTCTBOBATD) § % = (Mg My, +. vy Thy) —
eIUHRYHBIL BeKTOp BHemHel wHopmamn k OF = IUIL,UT,. Bymem
TPEeNIoIaraTh, 9ro Ny, > 0 5a I3 U fy, < 0 Ha I,
Pacemorpum B obnacrtu G ypasHeHHe

(1) ILu= aﬁ(w)umixj—1— B (@)%, g (@) %y, B (0) uy Fe(@)u = f(@),

rie ¢¥(z) e CH(G), a7 = o, a¥(w)£,& > AZ‘ & B @, gma moboro BeKTO-
Pa (& ..., , mo1)s 4 = const > 0; k(z) eO’z(G) b(@) e0 (@), i=1,...,m;
¢(z) € 0(@) ) 6g, (2) €0 (&) (mo mOBTOPAWUIEMCA WHTERCAM IPeNIONATraeTCH

cymvmponanne oT 1 mo m—1). Bymem npegnomarars, uro H = a¥n,; i+
+kng, =0 ma IUT,.

Vpasnenue (1) ammunTuro-napabonudeckoe opu k(#) >0 B & u ru-
nep6ono-napaboinyeckoe npy k(x) < 0 B G. Ecur fyuruua k(z) menser
suax B obmacrz @, To ypapuerue (1) ABIsAeTCA YPABHEHHEM CMEITAHHOTO
THIIA.

Hpaepble 3amaum mIA HEKOTOPHX YPaBHEHMH CMEIIAHHOTO THIIA
Bupa (1) paccvarpmsanmcs B padorax A. B. Bunanze [1], [2], T. 1I. Kapa-
Touparnuesa [3]-[6], H. I'. Coporuuoit [7], [8], B. H. Bparosa [9], [10],
T. O. Jauespa [117, [12] u gpyTux aBTOpOB.

B nacrosmeilt craThe paccMaTpHBalTCH [BE KpaeBble 3afauM [IA
ypaBHerua (1).
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