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1

The aim of this article is to give some conditions sufficient for the hypoel-
lipticity of a pscudo-differential system with a diagonal principal symbol.
A1l results which will be formulated Dbelow are a logical generalization
of the relevant theorems of the sealar case and can be deduced from them.
The hasic facts of the scalar case used here have been already published
[3], [5], [61, [8]. Tt should also be noted that the study of a pseudo-differen-
tial system with an arbitrary principal symbol faces considerable difficulties
even in the case of the so-called simple characteristics. An examination
of systems which are, in a sense, close to the scalar equation is necessiated
by this circumstance.

2
Tn a domain 2 = R™ we shall investigate some systems of pseudo-differen-
tial equations with the following symbol:
(1) P(@, &) ~0uIly+Pn 1t Pust -

where 93, (¢, & is a scalar function, positively homogeneous of order m
with respect to & and I, is the identity operator in C¥. The remaining
matrix-functions p,,_;(@, £ are positively homogeneous with respect to
£ of order (m—j) (0rd;Py_; = m—j). We remind that the subprincipal
symbol p,,_, is defined in the following way: :

. 2 0

L —?_.pl (w’ E)IN‘

Dy (m) §) = .pm—-l(m7 &+ ) < amjagj

Tt is known that the subprineipal symbol p,,_, of the operator (1) is in-
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variant under homogeneous canonical transformations at those points
(@, &) for which p,,(2°, &) = grad, .}, (°, &) = 0.

Suppose that B is a.real finite-dimensional symplectie space in which

n
there acts the standard symplectic form o = 2 a&;A da;. Then each

symmetnc quadratic form @: B — C* posses%es cm pol&lnod form Q:
E % B — (', which is symmetric over the complexification & of the initial
space B. Owing to the non-degeneracy of ¢ we conclude that there exists
a linear map Fy: B — B skew-symmetric with respect to ¢ such thas
(2) QX,Y)=0o(X,Fo¥), VX, Nelxh.

DEFNITION 1. The map Fj defined by (2) will be called a funda-
mental (Hamilton) map of Q.

Denote by I' a closed angle in C' whose opening is strictly less than
= Assume that §(X) e I', VX € B. Then it is quite clear that the eigen-

1
values of — F, belong to I' or (— I'). In the sequel we shall denote those
%

eigenvalues which lie in I'by 4. In the special case of §: B - R', Q= 0
it is easy to understand that spec(Fy) = iR' is symmetrically situated
with respect to the origin.

Here N, stands for the linear subspace of CV which consists of all
generalized cigenvectors belonging to the eigenvalue -0 (e, XeN,
«3keZ : F* 0, F*X = 0). Suppose that the space CV is supplied
with the standard Hermitian 5calar product.

Let ‘us note that if pj,(a°, &) = grad, p%,(s°, &) = 0 then the
Taylor expansion of pf, (z, £) in a nelghbourhood of (2, &% begins with
a symmetric quadratic part which may be denoted by Q(X), X

eT (T, ) (£2)). All the results of linear algebra mentioned above are
valid for @ it we define #, = 1/" 0 20
00
After these preliminaries of linear algebra we pass to the formula-
tion of the basic results.

THEOREM 1. Let P (%, D) be an operator of type (1) with a real principal
symbol p,,. Suppose that for each ¢ > 0 and each compact set K € Q there
ewists o constant C (K, &) such that
(8) Re(Pu, u)+a1unm_ C(K,s) ]['Lt]lm—z, YueCP K, CY).

Then the estimate (3) is equivalent to the requirement that the following alge-
braic conditions be fulfilled:

() Pz, £)=0,

(i) at each point (a°, £) € T* (2)\ {0} for which pl,(2°, £) = 0 we have
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the inequalities:

n
7@, €4 D (@, =0, k=1,..,7,
i=1

where v, (a°, &) are the eigenvalues of the Hermitian part of the matriz
1 *

)]

Let £ denote the characteristic set of the symbol p,:

N0} phle, &) = of.

Then we have two corollaries to Theorem 1:

COROLLARY 1. If the condition (i) 4s satisfied for the system (1
at each point (z, &) € ENK the. inequalities

Pnr (2%, ) (L. yp(2®, £°) e spec
Z =@, e T"L2
) and if

(@, s>+2u,~(w, H>0, k=1,2,..., N
j=1

are fulfilled, then there exist constants C(K) > 0, C,(K) such that:

Re(Pu, u) > O () fuln + C, (K) Julm-2, VueOP(E, CY).
2 2
COROLLARY 2. Suppose that the principal symbol of the system (1) is
non-negative and that the matriz p,,_, is skew-symmetrie (i.e. p:,;-l = —Pn_1)
Further, suppose that for each point (20, &) e X' either the fundamental

matria F 0 0,80 has a non-zero spectrum or the matriz p,,_, («°, £°) is non-

degmemte Then the system (1) is hypoelliptic with loss of ome derivative
with respect to elliptic operators: the conditions Pu e Hy,, uwe & (R, CV)
imply e Hif™ ™ty Py It € B, p0Iyu e HGE, §=1,...,n; Vs
eR.

And now we present a theorem on the hypoellipticity of a system
of type (1) whose principal symbol p;, describes a closed angle I' with
opening strietly less than =:

(4) oz, & el, Y(z, & eT*(ON{0} (I'c Y.

THEOREM 2. Let the principal symbol p3, of a system (1) satisfy condition
(4) and let it vanish precisely to the second order on the smooth manifold X.

Suppose that for each compact set K € Q and for each real number
8 one can find a constant C(K, s) such that

(5) el s < O(K, 8) (1Pl + [8lgmz)s Yo eC0F (K, CV).
Then the estimate (B) is equivalent to the accomplishment of the algebraie

condition (iii) at each point (2°, &) e Z:
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(ill) yy (o, &)+ Q(T, 0)+ 3 2+ p(a’, &) # 0, k=1,...,N;
VoeN,, Vo eZ,, where y(a°, £) are the eigenvalues of the subprincipal
matric p,,_; (2, &).
Under the assumption of (iii) the operator P(», D) is hypoelliptic
with loss of one derivative in comparison with elliptic operators.
Obviously there arises the problem of investigating the hypoellipticity
of systems for which the range of values of the principal symbol p, is
a half-plane or even the whole plane. Before formulating the respective
theorems we remind that the principal symbol €5, _, (#, &) of the commuta-
tor [pSF, p,,] may be represented as:

” § - 2Tn 2”@ p5,
am—1(®; &) = lj=1 2t o, .

Further, we impose two conditions on gra,dx,gpfn(w, £) and 03, _, (=, £):

(iv) (a) (a", &) € Z, grad, ph (2, &) # 0 = 03,1 (2", £°) > 0;

(iv) (b) if (2%, &% e X and grad, .p%,(2°, &) = 0 then one can find
a conic neighbourhood o > (2°, £°) and constant ¢(w) > 0 such that

Comnr (2, §) > o(w)(Igrad,phl® |61+ lgradepy* |&1),

(v) the fundamental matrix F o8

V(z, &) € w;
S has a non-zero spectrum
, &) e X at which the condltlon (iv) (b) is satisfied.

THEOREM 3. Suppose that for a system (1) the conditions (iv), (v) are
Julfilled. Then the operator P is hypoelliptic (of the lower order terms being
without importance) and it admits loss of one derivative in comparison with

elliptic equations.

COROLLARY 3. Let us assume that the characteristic manifold X of the
Junction pj, is symplectic, i.e. olzzy 18 a non-degenerale 2-form. Besides, let
grad, . po, 1z = 0 and let C3,_, vanish precisely to the second order on Z,
Con1 ling > 0, where U is a certain neighbourhood of X. Then the operator
P is hypoelliptic, the lower-order terms being without importance.

On getting acquainted with Theorem 2 there arises the problem of
investigating the system in the case where condition (iii) is violated.
This question is interesting even in the scalar case. That is why we present

a result which to a certain degree is opposite to that formulated in The-
orem 2.

at eaeh point (2°

DermvrrioN 2. Call a polynomial p(t; &, ), t € R, z, e R (&, 1)

€ R' x B*™ quasihomogencous if there exist real constants o > 0, r such
that:

P4 X506, ) = Fp(h; &, ), Vi>o0.
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THEOREM 4. Suppose that a scalar
satisfies the following requirement:
dimker (P (¢, 1, D) nS(R*1)) £ 0
(dimker (P(t, —1, D) nS(R"*™) + 0)
and P(t,1,D,) (P(t, —1, D) is elliptic. Then P* is locally nonsolvable in
the class of distributions D’ in each neighbourhood of the origin.

(S(RY) denotes the space of smooth functions rapidly decreasing
at infinity.)

quasthomogeneous operator P

COROLLARY 4. Let P be a quasihomogeneous second order differential
operator in R* with non-vanishing coefficient before D . Assume that

dimker (P(, 1, D;) 0 S(R") # 0
(dimker (P(t, —1, D)nS(RY) == 0).

Then P*(t, D, D,) is locally non-solvable at the origin.
Evidently, P is a non-hypoelliptic operator if the requirements
of Theorem 4 are satisfied.

3

The proofs of Theorems 1 and 2 follow with insignificant alterations the
proofs of Theorem 3.1 from [5] and Theorem 1.1 from [6], respectively.

" That is why we shall restrict ourselves only to the formulation of two

basic lemmas, matrix analognes of Theorem 2.4 from [56] and Theorem
3.3 from [6]. The remaining arguments are completed by using the method
of localization, in much the same way as it has been done in the two
articles just referred to.

Let us consider in CV the following system:

0y’ D Iyu+Au =f, ueCP(R*, CY).

2 a'ﬂ' ¢?£* is a polynomial
laAl=2

with real coefficients and A is an arbitrary (¥ x N)-matrix with constant
elements.

1
alf!

le+Bl=3

In the above equation, Q(z, &) =

LemMA 1. The imequality
(6) Re((Q(m,D)IN—l—A)u, u)>0,

holds if and only if:
(v) @z, &) >0 V(3,8 e T*(R"),

Yu € CF(R*, C¥)
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ki3
(Vi) Pk D> 05 k=1,..., V.
. =

We should remind once again that

*

1 .
¥y € Spec y ‘ujegpee(TFQ), w=05 §F=1,2,... %0

_A * A
To prove this lemma, let us note that 4 = +4 + 4-4

+4,. Since 4, is a Hermitian matrix, (4,4, u} is real, while (A u, u)
is purely imaginary. We know from linear algebra that there exists
a unitary matrix U such that U*A,U = diag(yy...,yy) where
diag (y1, ..., yy) denotes the diagonal matrix with the real eigenvalues
Y1y «-o3 ¥a 0f 4, on its diagonal. Let us set v = Uv. Then (6) is equiv-
alent to .

Re((QIy+4,) T, Uo) >0, VvelP(R, CY),
i.e.
Re((U'QU+ U 4,U)v,9) > 0.
Since U* U = I, then (6) is fulfilled if and only if

N
() Re D) (Q(@; D)o+, 1) >0, Yo €07 (E).
I=1

The sealar theorem of Melin, applied to the inequality (6"), gives the
desired result.

Let us consider the following differential quadratic. form:

1
C@D) =5 D S WD) =@, D)+ S,

lal=1
S}Ippose that the condition (4) is fulfilled for @, i.e. the range of Q is

contained in a closed angle I' = C" of opening strictly less than = As in

Lemma 1, A will be an arbitrary matrix of the type N X N.

y

Leywma 2. Assume that the symbol Q satisfies (4), W € spec (i FQ)
i

#; € I'\{0} and let N, be the space of generalized eigenvectors of By, belonging
1o the eigenvalue 0. Then the estimate:

(7) hulle < 0| (@* (@, D)Iy-+ A)uly,  VueOR (R, C¥)
(0 = const > 0) is valid if and only if Jor each y, e spec(A)
7t Q@ 0)+ Y (20+1)y # 0

=t
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forveNyand 0<e;eZ; k=1,...,N.

One can easily deduce from the proof of Theorem 3.3 from [6] that
the inequality (7) holds only under the following condition:

(@°(w, D)Iy+ 4o =0, veS(R*,CY)wv=0.

In fact, Q°Iy+ A is a Fredholm operator whose index is equal to
zero. Let a matrix B transform A into the Jordan normal form: B™'AB
= J = diag(Jy, ..., J3), where J, is the corresponding Jordan block.
Let us consider the equation (Q°(w,D)Iy+A4)v =0, veS(R*, CY).
After setting v = Bw we get:

B-1Q°Bw+B'ABw = 0 = (Q°Iy+BAB)w = 0,

w e §(R", CN).
For simplicity we write down only the first Jordan block J;:

yi 1,
. . ) * 1
T -V {rxr)
Evidently,
Q°(z, D)yw;+y wy+ws = 0,
Q° (%, DY, + 7w, +w, =0,
Qa(w:D)wr—l_‘ylwr =0.
Then according to the scalar theorem of Hormander
w, =0 <
(8) nt+Q(B,0)+ D (2g+1)g #0, YoeNy, 0< geZ.

The above fact leads to the conclusion that (8) implies: w,_; = w,_3 = ...
... = w, = 0. Thus everything is proved.

A short proof of Corollary 2 will be given here. To this end it suffices
to apply Theorem 1 to the following operator T':

Tys(®, §) = |1 P+ (P*—P)*(P*—P)+4[P*, P].
Thus we obtain an a priori estimate:
(9) oy, < CEV(IPUR+ i), Vo eCP(E, C)
(C(E) > 0). (In fact spec(pp_,Pm-t) = BY.)
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The well-known inequality

lgrad,pl,|? [£]71+2 + [grad,pl,I° |£5F* < constypl, | &2+

shows that for each compact set K € Q and for each real number s one
can find a positive constant O (K, s) such that:

(10) 2 (18 (@, DYl s+ 1P, (@5 DY0lE_y0)

< O(K, 8)(Ipm (@, DYuli+ 6l imn)y Ve CF(K),

where

171 a m
O, 5 =2 S (0,8 and paglo, ) =3 (@, ).
: 7

The two estimates (9) and (10) give us the desired hypoellipticity [6].

Remark 1. Theorem 2 can be proved without using the method of
localizations in the special case when the subprineipal matrix has a full
system of single-valued econtinuous eigenvalues y,(w, &), ..., yy(@, &).
It is sufficient to apply a special pseudo-differential partition of unity and
Theorem 4.4 from [11].

4

The proof of Theorem 3 is quite different from the proof of the correspond-
ing result in the scalar case since it is not obligatory for the matrix p,,_,
to be normal. That is why a detailed proof will be given here.

In order to make our exposition clear we now formulate two results
regarding the scalar case [9].

Levwa 3. Assume that the symbol pl, satisfies the conditions (iv) and

(v). Then for every compact set K € Q there ewist o constant F > 0, depending
on K and the principal symbol py, but independent of the lower order terms,
and a constant C(K , P) > 0, such that

(9" bl < B(E) [Pullo+ C(K, P) ully—s, Vue0P(XK).

Leyua 4. Under the assumptions of Lemma 3 for each real mumber

8 and for each compact K € Q one can find a constant C (K,8) >0 such
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that

D (199 (@, DYull sy + [P,y (@5 DYUlE_sye)

J=1

< O, K)(“Pgn(‘”: Dyul;+ ““"54-1”—1)7 YueCQK).

Since p,,_, (@, & = |&™ ", (®, £[|&]), it is sufficient to examine
the matrix p,,_, on the umit sphere 8t = {£eR": |£| =1} only Let
us fix an arbitrary point (2°, &), & S" ! and suppose that 1,(z°, &)
& spec(p,,_,(2°, £°)). Then there exists a non-degenerate matrix B w1th
constant elements such that B~'p,, (2, £°)B = (, is represented in
the Jordan normal form: €, = diag(J,,..., J3). According to Theorem
4.4 from [11] one can find in some nelghbourhood of (2%, £) a non-degen-
erate matrix @ (z, £)smoothly depending on the parameter (z, &), £ 8™,
and such that

G Y=, &YB ' p,,_, (v, &) BG(x, &) = O+ Sylvestre matrix D = L.

Let us remind briefly that the Sylvestre matrix D can be written
as follows:

r : T (" )
(20 0) 1
~ N
(F1) \\.\ \1
D= (o) Co= \)ﬂoﬁﬂ
B e Ao(af, £
(@) N
r (8) (73) )\: 0, £0 ‘
s N k. 251
L |1 oo A

The non-zero elements of the matrix D are marked in bold ‘type print.
They are smooth functions of (z, £) and vanish at the pqmt (=0, &9.
Therefore the following sketeh is justified in a certain neighbourhood
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of the point (a°, £°): (1 71 )
e \\:\\‘
N @
2 =
(11} (BG(m, 5))—11’7:»—1 (BG(“’} E)) = . Ay 1.
\\\\\
(a) AN
B >t
7 L.,
L (8) 232
-/

This normal form is olftained on the manifold 2 x8"! when
[€— &) < g £e8" ! and |z—2a°] < & for some & > 0.

Further, we continue the elements of G (x, £) to positively homogene-
ous functions of order zero with respect to & in a conic neighbourhood of
{#", £). Finally, we continue the elements of D and C, to positively homo-
geneous symbols of order (m—1) with respect to &.

Thus

(B&(@, &) Ps (@, &) (BG(w, £)) = [£™* L(w, £/I£]),

ord, (BG (=, £)) = 0 in some conic neighbourhood I's (2°, £°). The desired
hypoellipticity will be deduced from two estimates of the type (9), (10).
We shall also need the following auxiliary facts:

Lemya 8. Consider the pseudo-differential system with the symbol
p(z, &) "'PgnIN'*'Pm—l"*'pm—z";' teey (@, &) ET*(Q)\{O}'

Suppose that the function p;, fulfills conditions (iv), (v) and the matriv p,,_,
has representation (11). Then there emist constants Cy > 0, C, > 0 such that if

_max  (le+ B+ ) < G
: zeK o K,fe8n—1
then

(12) ltll -y < Co(E) (IPully + lullm—s), VueCPE,C).

Thus the estimate (12) is valid if the uniform norms of the elements
(2)7 (8)y (y) of the matrix (11) are sufficiently small (when 2 ¢ X 5 K,
K=K, E€Qand £e8™, of course).
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Without any loss of generality Lemma 5 will be proved in the special
case where the representation (11) consists of two Jordan blocks only.

Let us remind that if y(«, D) is a scalar pseudo-differential operator
with symbol y(z, &), ord;y = m—1, (2, & e T*(2)\{0}, then for each
¢ >0 one can find a constant C(K, &) such that

relo< ( max |y|+e)lulln+C(K, &) illp-n, VuelPE).

ek, teSM—1

(K is a compact neighbourhood of K.)

_ Thus
5 N
r‘z_ [gm—? 1) f Uy ( fa A
NN\ ! !
\\\ \\‘ 1 : :
. m— H [}
N ]
:IJ',’,.IN—l- ay——==-i+ala 41— Apyg Uy = I
Y1 m—1 m
] [N 1&] . T+l f,-+1
| \\ \\ s E
i e | E
N i !
i 1
N 2 i el ﬂa) ] \‘u'a+rJ \fa-r-rJ
Therefore,
P+ Nuy = fi— A"y,
(Pt Aty = fo— A g,
P+ Aty = ooy — A",
r—1 rts
[Pm+(;‘+ar)]’u’r =fr_2 a; Uy — 2 Uy
i=1 i=rtl

Dt p) Uy =Frn—nt "Am—lur—rﬂ

8-1
Pt (1 BVt = Frra—Vath— D) Bithrsss
1=l
where / stands for an operator with the symbol |£| and u; € O (K). (ord u
= 0rd;q; = ord,f; = ord;y, = ord,A = m—1.)
The fact that the constant E from Lemma 3 does not depend on the
Iower order terms plays an important role in our proof. In what follows
the symbols g,, &,, 05, 2 =1, ..., r-+8 will denote non-negative functions

18 — Banzch Center ¢ X
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of max (la]+|B]+ ly|) which tend to zero as the above-mentioned uniform
Exgn—1 )
norm tends to zero. Const stands for any constants which are bounded as
2, =0 (&0, > 0)-
So

Nty ol < B (K)

0 + 0 (”’“”m—z) ’

81
Frra— Vsl — 2 Beters
=1

ie.,

§—1

Wrsallmms < B frgalo + B 0y (st ) W ilns) + O (bl -

i=1
It follows analogously:
”ur+s-1”m—l < E(K) ]lfr-}-s—l“n +E (K) er»{-s——l “ulum—l + %E (K) I[ur-ks”m—l —I_
+ O ([llp—s) s
Mt 11 < BE) gl -+ B () 0pr 0 g + %E(K) oty o llin—z +
O (lelln—s)s

' r—1 8+
Wty < BE) o + BE) 00 3 Wtsloa ) Whllns) +
i=1 i=14r

FO([lullm—s) 5
ty—alb—1 < BE) [y sl + 5B (E) ey + O (14ll—2)
ts sy < B (E) sl -+ 3 B (E) kgl -y + O ([l —2)
Consequently :
”ur—.Ls—l ”m-‘l < E (-K) ”fr-i—s—l ”D + E(K) gr-{-s—l "ul “m—l + %EZ (K) ”fr-ks”l) +
§—1 .
FEE)S,yos (Wala + ) Whpgllms) + O ([0l—s)
im1 .
and we find that for sufficiently small [ RINRE

§—2

Ity 51l —1 << €ODSE|flly + 07164 (ilulllm_l + 2 ”ur+'l”m—-1) -+
i=1

+ O([ull—s)

(.f = (f1, ~~-:fr+s))-
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By induction we conclude that:

§—~j—1

l]’tt,+s_jl]m_1 < const ”f"0+ Qz/-+s—j (”u1"m—1 + Z I]ur+i”m—1) + 0(”““1:;-—2)7

t==1

for sufficiently small o/, ;.
Thus

oty 11 << cOnst [Iflly -+ Q;‘-}-l o1 iz ~+ O (16| —s) -

Therefore there exists a number & > 0 such that if g, < &, p = r-+
+1,...,7+s, then

1ty gl —z < cOnSE{|fllg + & oty iy =+ O ([hll—s) -
Further,

r—1 ris

Wty < BE) ot €0 ( ) Wihmos ) Wilns )+ O (tllns),

i=1 i=r+l
which implies that

r—1

s < CORSBf o+ 07 Y tellm—2 4 O (Itlls) -

i=1

Using induction once again, we find that -

j-1
oty lls < cOnSEUSly+ 05 ) Wbillm—1+O (Mllms)s

=1

2,..

T

The assumption that the norm max (la] + 1B+ |yl is small enough
Exsn—1

implies the following inequalities:

letillm—y < constfiflly + O (llm—s), Vu; € 07 (K),

t=1,...,7+38,
ending the proof.

LuMMA 6. Suppose that o comples-valued matriw g, smoothly depending
on the parameter (x, E) is defined in a conic neighbourhood I' of the point
(2, £"). Assume that g, is positively homogeneous of order k with respedt to
& and detq, + 0 in I. Then one can find a conic neighbourhood €T,
(#, &) e I', and & smooth elliptic matriv q(z, £), ordq = &, (@, &) € T*Q\{0}
Jor which qi|p = qlr;- o

In this way every complex-valued elliptic matriz has a smooth elliptic
continuation over the bundle T* (2)\{0}.
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Proof. Let & belong to 8*' and ¢e[0,1]. Evidently ¢ (s, &)
=1q;(2°, £)+(1—1)¢:(2°, &). On account of the homogeneity of @
we can restrict ourselves to the case of £ € 8, Note that the set of the
non-degenerate matrices is open in the set of all matrices M. Therefore
for each te[0,1] there exist a pair of open neighbourhoods Vot
U (2, &), U,c 2 x 8", such that: ’

det (tgy (2, &)+ (1—1)gs(a*, &) 5 0,
VieV,and Y(x, &) e U,.
Let V;,..., ¥, form an open c.ozcring of the unit interval [0,1]
and consider the interseetion U = N U, 3 (4°, &°). Then the matrix
g=1

~ =
4(@; §) = 1g:(®, &)+ (1—1)gs(, &) is non-degenerate for each e [0,1]
and each (z, §) e U. Moreover, § € (*(U). Consider the function

DelP(Rx8), 001, suppbc U,

which is equal to 1 in some neighbourhood of the point (2°, &).
Let us define the following matrix-valued function:

(@, §) = Pgs(w, &) +(1— ) gy (2", &).

Obviously, ¢(#, &) € C°(Q x S2~*) and (#, &) € U imply that detq(z, &)
7 0. On the other hand, if (, &) ¢ U, then q(z, £) = ¢,(2°, £&). To make
the proof complete, the matrix ¢ has to be continued o a positively homo-
geneous function of order % with respect to &

) Our subsequent considerations show that the operator P fulfils the
estimate (9). This fact together with Lemma, 4 will give us the hypoellipticity
sought for. The inequality (9) will be proved by using a special partitio;x
of unity and by applying the results of Lemmas 5 and 6.

‘We suppose that X is a compact set with & 5 K and we consider the
set K x 837", Then in a neighbourhood of each point (z, &) € X the matrix
f:;i;% ea;r‘x lze reprgsented in the Sylvestre normal form. Therefore there

& finite number of bounded open sets o, 1M M . C ) €
x 871, Msatisfying the following cgnditions{: Wity (iSss o € 0 € 0

L Uw o (Ex8Hnz,
i=1
2. Py has the Sylvestre normal form in o’ i i
subsst o 2 x B ;. In fact, X is a compact
It is easy to see that onli‘al can find two open bounded sets w, € 0,
Pr,oy = Q such that oV Jw) > Ex 82 and Pml= 1is an elliptic
symbol. - A
Then we construet a pseudo-differential iti i
! ; partition of unity {y,(z, &)}
subordinated to the covering {w,}2, and we continne the function’s ¥
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to positively hom;!)geneous symbols of order 0 with respect to & Thus
suppy; < o; and 3’ p;(w, &) =1for each x belonging to some open neigh-
j=0

bourhood of K when &e 8" If w e CP(K) then w = X ypu+(L—Dy)u.
According to the pseudoloeality of a pseudo-differential operator, 1— Yu;
ig an operator of order (— oo) in CP(E, C). 8o our considerations should
concentrate on the study of w;(z, D)u. Obviously, y;(x, D)u e G (pr,wj,
CY). We can agsume that each o, 1< j< M, is an open ball with centre
at (#7, &) and sufficiently small radius. :

As proved above, there exists a smooth non-degenerate matrix &
defined in w; and such that

G7pp G =C+D =1 in o

The matrix L will be continued to K x 82! without increasing the
uniform norms of its elements.
To this end the following cut-off function & is defined:

heCRE X8, hlo,=1, helP(w).
Denote D) = hD = L—L = (h—1)D. Thus if the diameter of wj, 1<J
< M, is small enough, then the estimate

5 8z < O NP Ly +L) (95 0) o+ O ([0l m—s)

holds for any % € OF (K, CV).

(We may assume that the constant ¢ does not depend on j, since
there are a finite number of neighbourhoods w;.) .

According to Lemma 6 (diam wj being small enough), one can continue
the matrix @ outside ] 50 as to get

ord,G = 0, det@ 50 in 2x8.
Denote this continuation by &. Then
ord,G =0, é[mj = Glo
é_lpm—lélmj = G_l.pm—lalmj = Lle = Elmj'

Now form the difference (@ 'p,,_,G— L)oy;. In view of the fact that the
compact suppy; is in w;, the pseudo-differential operator under consider-
ation has a zero symbol, i.e. its order is equal to (—oo).

Therefore

Iy ll—y < CHP% Iy +G 0010 @) (99) g+ O ([llmos)
VueCPE, ).
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In.the above estimate the operator G *opf,0G will be written every-
where instead of p), Iy. Simple calculations based on the principal results
from the algebra of pseudo-differential operators [2] show that

~_1 -~ i
G oppof = ?mIN‘I' IZI(Pm,(l) Tl.(-l) +p£2 TZ,O) +0uT 1+ T,
=1
where T ;) are matrix-valued opelmatc;rs of order (—1), T,
1 § — of ord
T_, (T_,) of order (—1) ((—2)). (7 T of oxder 0 and
8o we conclude that for a convenient constant C; > 0 holds:

g s < C G0 90 G+G 0 p,,_10 @) (9, 4)]y +

00 [ 3 (2wl + 102 (py0)ll)| + € 980 (5 0)] s + O (Itls),

=1
YueOF(x,CY),
ie.,

1958l < OG0 (9 Iy + Prna)0 G (9yu)ly +
+0 2 U+ 1952010+ G lpmtls-+ Ol o)

In the nllequa]ity obtained just now, change y;(z, &) by (9,6 (z, &
Then (y;,G™")(w, D)u & O (pr w;, CY). Obviously, (y,G~')(= JD) = é“c;
oy I+ T_ (%, D) where T_, is a matrix-valued operJaJtor Whyose order i
equal to (—1). Because of the ellipticity of 12 i

WG ) sy = 1E (95 lgy + O ([[0l_s)
2 Oy lps%llm_y + O (Jtllys_s)

C,>0, C, = const since o0 v )
) ce YU € Cy(pryw;, CY). Bearing in mind that
G is a bounded operator, it is sufficient to consider the operators, as follows:

0 75 7y
OnIn+Pu)oGo (G loyIy+ T ) = (9%, Iy+p,_)0 (0 Iy+GoT_y)
= (PnIn+Pu1)0 v+ Go T_10 (P Iy+Pmos) +
+ [pgnIN—l'pm—l ’ Go T.,].

The commutator [p? T, - G i
" " N+ Pm_1,GoT_,] is of — i
oI v 18 a diagonal operat;nr. ’_[‘husmwlé get: il 18 of oxder (m—3) sino

160 T_s0 (Do Ty + P_s) ully < const |(p%, Ty +p,_p)ull_,

< const ph, wl_; + O ([ullm—) »

icm°®
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ie.,

[0l _1 < const (ll(ng‘IN+pm—l) (; ) lo + [P w1+
+ D (pmgulls + 1R ul) + O (lils)s ¥ €GP (K, €.
=1 ’

Lemma 4, applied for s = —1/2 yields the estimate: )
Nyl -1 << COmSt ([[(D5 Ly + P} (520}l -+ P vl age) =+ O (ltel—spe) -
Now we have to consider the commutator
(p?nIN +.’pm~1)o 1/’]' = wJo (.’pgnIN +.pm—1) + [%-7 p?n]I.\"'}_ [ijNﬁ pm—I] .

Then |[w;dy, Proilblb < const |[[#ll,_, (¥;Iy is a diagonal operator).
In view of Lemms 4

My .'pqnn] ull < const ”(P?nIN +Pm—r) W1+ O (l[wlly—sp2)
Yu e OP(K, CY).

Combining the above results we can conclude that there exists a con-
stant ¢; > 0 such that
(13) l; wllm—y < G; (“ (P Ly + Pon—z) o + “'”’”m—a/z)y

VueCPK,C),j=1,2,.., M.

The proof of Lemma 6 can be completed by studying the behaviour
of our operator in w,. To this end we continue the principal symbol 2%
to an elliptical symbol B, , orde Dy = M, defined in the whole space T% (2)\
N{0} (Brn oy = Prnlay)- Since SUppyy < @o; then py(z, D)% € O3 (Prz 00, cv).
The ellipticity of $3, implies that

gl < € (“(f)gnIN’[“Pm—l) poll_y+ Hu“m—-z)y VuelP(K, cr).

Now replace P,, by Dy, According to the pseudo-locality of a pseudo-
differential operator, the following estimate is valid:

o ®ollpnmy < € 3Ly + Pm—a) Yo Ull 1 + O (llotllyn—s) -

Thus we get immediately

14 Ielas < Co (D Iy +Pm) Ul O ([lns), Vu e 0P (K, CV).

The two inequalities (13), (14) give

. ‘
(18)  fulps < ) 1058lms + O ([0lns)
¥

=0 .
< OB Iy + D) 8lo+ Iblnsp) V€ OF(E, €T,
. § = const > 0.
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A simple conclusion from this estimate and from Lemma 6 is that
the operator P is hypoelliptic with loss of one derivative.

5

In order to prove Theorem 4, we remind the necessary condition of Hérman-
der for the local solvability of a linear differential operator [1]. Thus, let
an operator P(z, D) be locally solvable in a neighbourhood of the origin
in the class of distributions D’. Then there exist a neighbourhood of the
origin o 3 0, an integer M > 0 and a constant ¢ > 0 such that

(16) | f f(w)fv(m)d:nl <C D sup|D*(z)| 3 sup|D*(P*0)|
laj<BL

lai<2

for every pair of functions f, v € 0P (). (As usual, P* is the formally adjoint
operator of the operator P.) i

Theorem 4 will be proved if we show that for every choice of o= 0,
MeZ,, 0>0 the estimate (16) fails to hold for at least one pair f, v
e 07 ().

Suppose that the function u(i)e S (R™) is a non-frivial solution
of the equation P (1,1, D))u = 0. In view of the elliticity of P(z,1, D,)
we conclude that 4(?) is an analytic funetion, i.e. there exists a multiindex

ay for which D% (0) 5% 0. Using the quasihomogeneity of P we see that
the funet on

Wy (&, 1) = f‘fl)(le)e ik eq(( o009 do, 2 = const > 0

satisfies the equation P(f, Dy s Dyw, = 0 if p e OP(RY), Ew =0, suppy
=[,2] fw(@)de =1.

Thus fix ©30, ¢ = const >0 and M >0 for which (16) is wvalid.
For f; we take the function
(17) fil@n, 1) = Dp(F(#wy, 1)), 2>1,

where F € OF () and [[F(z,, t)do dt = 1.
One can easily see that suppf; = o for 2 large enough. If o' € w is
2 neighbourhood of the origin, take a function 9eCF(0), ¢l =1 and
consider the function defined as follows:
(18) (1, 8) = pw,
= 0@, 1) [p(lg e eu (g H0+01) 4o

(v € CF()).-

icm°®
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We shall prove that the pair of funetions (17), (18) violate the in-
equality (16) when 2 -> co. We begin with examining the bilinear form

[favde:
[[[ D (B2, 20) p(20) g (@1, 1) 6172w (022441 dur, dtdg
= [[[F (e, R t)yp(ag)e™ P (o) 010+ (Diow) x
X (0% g (), 1) dev, dltdig +-

+ 3 O [[[T0Ra, Byl dere(grt)eorlasd
lagl=I7i=1

X @iy, 1) (D=7 ) (A°)0+ 1) dosy Gtdg .

In the above identity ¢, = D¢, ¢, = 0 in o’ and C, are consta.r}ts.h
Applying the change of variables A*@, — @, 2% =1, lp — g, we find
that:

[[ frosdm,dt = 7" [Djou(0) +0(1)], A~ oo.
On the other hand,

sup | DS, < CARM+2lol = const > 0.
lal<M

To complete the proof Pv, has to be evaluated in a domain of the tyI_)e-
0 < 29 < |oy] + ] < 24, where A4, 7 are some positive numbers. To obtain
an upper bound for IDngﬁwl(ml, )| when 27 < |o;]+ |f] < 24 and |+ B}
< M+R, B = ord P, two cases will be considered: I: [{| > #, IL: |z, = 9.

In the case I we shall only use the fact that if 4 e §(R*™!) then Diw.
e S(R™1). So

| plaeree oy (D) 104 de |

<, C v(e)do
oy _Yae 4 <_,"_»Q_AN—Qf____
< [vtaety Tty o< 5 5
(O, = const >0, A% €[4, 24]).
Note that @ is an arbitrary positive integer, while ¥ << M + R.
In the case IT the following identity will be used:

Q
ixqeid s 12\Q iT0d?
— (671%7) = (im, A")¥€ .
deq { ) 1
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After @ integrations by parts in the integral (18) we obtain the fol-
lowing quantity expressing the highest power of 1:

-

W9 [ vl ey u o) g
1 a i 1(146) iz A2
= wa[w(e)(el) u{(@A)H+I1)] gm1¥ e go.
1
For |#,| =7 it follows that
| [ w(3) (7)™ u ()10 01) =% dg| < CgaM 10049, g4 > 0.

If @ is taken large enough with respect to 2n, M+ R, 2M +2|a,|,
we conclude that (16) fails to hold when 4 — -+ oo.

Thus the proof of Theorem 4 is accomplished.

In conclusion we are able to state that the problem of proving local
nonsolvability for a class of quasihomogeneous second order partial
differential equations in R? is reduced to the following one: to find the
spectrum and the eigenfunctions belonging to L*(R') of a second order
ordinary differential operator.
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