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The notion of complete integrability for nonlinear Hamiltonian systems
is Lased. on a theorem of Liouville. This result states that if a Hamiltonian
system defined on R*V has N independent first integrals in involution,
then the system is completely integrable (i.e. can be integrated by quadra-
ture). This notion has been extended to infinite dimensional Hamiltonian
systems recently be Faddeev, Gardenar, Lax, Novikov (and others)
who have shown that certain partial differential equations are integrable
in this sense provided one lets N — co. In particular, these authors study
the Korteweg—de Vries equation

1) Uy = Uy — U+

However, this notion of complete integrability seems limited to two-
dimensional partial differential equations. Moreover, the methods de-
veloped in those studies, mentioned above, totally break down when a
system “nearby” a given integrable system is examined. Finally, these
methods do not seem to apply to nonlinear elliptic boundary value prob-
lems.

In this article we define a new type of complete integrability for
nonlinear elliptic boundary value problem (in fact, for nonlinear con-
tinnous mappings between Banach spaces), and we show that this new
notion does not suffer from the defects described above.

1. The nonlinear boundary value problem

For explicitness we ghall study the following nomnlinear elliptic Dirichlet
problem:

- {Au +f(w) =g,

Ulge = 0.
Here Q is a bounded domain in RY with boundary 82 and f(u) is a C¥

[27]
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convex function of u (k> 2), with the asymptotic behaviour

3) 0< lim fiy< < hm )<y

t—»—-w
‘where 4, and A, denote the lowest 2 eigenvalues of the Laplace operator
on Q relative to the null Dirichlet boundary conditions.

In [1] Ambrosetti and Prodi showed that for g e 0%*(2) the number
of solutions of (2) is either 0, 1 or 2. We now wish to show how the niethods
we used to study this problem in [2] can be pushed further. In fuct, we
shall define a notion of complete integrability and we show that (2) is
completely integrable in this sense, independently of the domain £ and the
dimension N. Moreover, we show that the methods we use to establish
the complete integrability of (2) are “stable” under perturbation in the
sense that they yield the expected results on the perturbed problem.

2. The notion of complete integrability

‘We now define our notion of complete integrability for problem (2).

To thiy end, let 4 denote a given smooth mapping between two
Banach spaces X;, X,. Then we say that 4 is C*-equivalent to a mapping B
if there ate ¢*-diffeomorphisms a and g such that the following dingram
commutes:

A
X, X,
A A
(4) a 8
X, X,
B

Aa(w) = pB(x)

This just means that the mappings A and B differ by smooth coordi-
nate changes. (Of course, we could extend this idea by assuming B to
be a mapping between two other Banach spaces ¥; and Y,, provided
the diffeomorphisms o and § are defined appropriately.)

Now, since we want to preserve the “Hamiltonian nature” of problem
(2), we shall choose X; = X, to be separable Hilbert spaces. Then 4 cun
be regarded (relative to an orthonormal basis (2, #,, ...)) as a coordinate
mapping
(5) A(wy, @y, @, ..

for each » e X;.

) = (Au-Az;-A-s, )~
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The mapping A will be called C*-completely integrable if there is a
mapping B of the form
B(w,, Tgy T3, ce) = (91(“"1): G2(®2) 5 ga(s), )
such that A and B are OF-equivalent (k3> 0).
To relate this notion to the boundary value problem (2), we define

a mapping A between the Sobolev spaces H = W,,(£2) as follows:
(6) (A, )z = [ (Fu-Pp—f(wg}do

for every ¢ e H. It is easy to show the following

LeMMA 1. A is o C“-mapping of the Hilbert space H
dnto itself.

We now state one of our main results on complete integrability.

. THEOREM 2. The mopping A is (°-complelely integrable in the sense
that there are camonical homeomorphisms such that A is equivalent to the
mapping B: H - H defined by B(y, By, By -.-) = (#3, By, By, -..)-

In this result we can choose the orthonormal basis (%, %,, ...) consist-
ing of the normalized eigenfunctions of the Laplace operator relative
to the null Dirichlet boundary conditions on 0Q.

Simple applications of this result are:

= W)

CoROLLARY 3. The mapping A defined by (6) is ¢ proper mapping.

Proof. The mapping B of Theorem 2 is proper and the notion of
being proper is preserved under 0° equlvqlence

COROLLARY 4. The solutions of (2) can be found ewplmtlxy (provided
they ewist) im terms of the “canonical coordma,te changes® and the eigen-
Sfunctions of the Laplace operator.

COROLLARY 5. All the singular points of the mapping A are “infinite
dimensional”-fold in the sense of Whitney.

Thus the mapping 4 defined by (6) is the “simplest” nonlinear operator
that is associated with a nonlinear Dirichlet problem and exhibits bifur-
cation phenomena independent of the domain 2 and the dimension N.

Additional remark, It we suppose f e (* (k>>2), we may show that
A is 0®-D_gquivalent to B.

To this end we use our results coupled with Nirenberg [3].

3. Idea of the proof of Theorem 2

The proof divides into two distinet parts:
Part I. An analytical part consisting of 4 steps.
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Step 1. Reduection to a finite-dimensional problem.

Step 2. Explicit cartesian representation for the singular points
of A.

Step 3. Explicit cartesian representation for the singular values
of A.

Step 4. Coerciveness estimates for the mapping A.

‘We sketch the main ideas of this part.

We write the mapping A: H — H in the form associated with the
orthogonal decomposition H = Ker (44 4,)@H,, i.e. we write an element
% e H in the form u = tu;+ o (where u, is a normalized eigenfunctions
of 4 on Q associated with 4,) and so %, > 0 in £, with o € H. Then we
show, for a fixed i, that the mapping 4, defined by

(41, ), 9) = [ {Veo-Vp—Ff(ti,+ )@}

(for ¢ € H,) is a global homeomorphism of H, into itself. This is achieved
by using the Lax-Milgram theorem to prove that the inequality

(A{(t; o), ‘P) = (¢/ )l

implies
IL41(¢, )17 < Aofe
The global result now follows from the Hadamard theorem [17].

Then we find out that the singular points and valucs ean be deter-
mined by the coordinate representation

for a fixed &> 0.

(7 Aty + o) = h(t)u,+g,
or, more explicitly, writing « (1) = fu,+ w(?),
(8) Bu(t)+F(u(t) = h(t)t+ g

Let ns examine what happens at a singular value; assume A'(f) = 0.
LeywmA. At a singular value t = t, we have

(9) W () = [ F" {w(®) [ (£) T,

Q
so that by our assumptions k' (i) > 0.

Sketch of proof. Consider (8) and differentiate twice with respect to ¢
assuming &' (f,) = 0:

M (@) (w (@) u' (1) =1 (B)uy.

Sinee &' (t0) = 0, ' (f) is a nontrivial solution of (9) and by the asymptotic
conditions (3) we may suppose %’(l) >0 in Q. (See [2]) Next,

(10) Au" &)+ {w®)u” O+ (w ) [w (T = B () u,.
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Sinee u"’ (f,) is a nontrivial solution of (10) for this inhomogeneous equation,
we have

) {f” (’” (to)) [ ()T — h"(to)’%} LXker[A+f'(u)],

nf [F7 (w0 (t) [’ (k) 2 — B (o) 5]’ (2g) = 0.

This relation proves (9). The result and the convexity of f" (u) yields the
lemma. :

Another important fact is that h(f) — oo as ¢ — co. This follows from
the representation

W) = —hi+ [ fltw+ o),
7]
the asymptotic velation (3) and the faet that as t — oo, the contribution
due to w(f) in negligible via the a priori estimate
(12) lleo” (85 gl < €

These facts lead to the following picture of the mapping A.

(independent of ¢ and g,).

Goo (1)

n(g)

T
i
I
B (1) =0
Fig. 1

From this picture we read off the cartesian representation of the gin-
gular points and singular values of A.

Part II. The second part of the proof is geometric; it consists in
the construction of the diffeomorphisms o and f with use of the facts
of Part I.

This part also consists of 4 steps.

Step 1. Layering of the mapping A in accordance with Step 1 of
Part I by a diffeomorphism q,.

Step 2. “Translation” of the singular points of the mapping 4
to those of B by a diffeomorphism a,.
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Step 3. “Translation” of the singular values of 4 to thosc of B
by a diffeomorphism ag. ‘

Step 4. Construction of the final homeomorphism.

Indeed, after Step 3 we find

(13) oy Aaya, = (a(t, ), w).

Using Step 4 of Part I, we represent the right-hand side of (13) as the
composition Bp, where ¢ is a diffeomorphism H — H. Thus

(14) o Aa,e, = B,
which is the desired equation.

4. Stability of the methods introduced under a perturbation of g

Under a ("-perturbation of 4 in the sense of the metrie in H, our analytical
results of Step 1 carry over to study perturbation problems.
Indeed, we prove

THEOREM. Under a switably restricied C*-perturbation of A, the number
of solutions of the perturbed problem is exactly the same as in (2), mway
from a neighbourhood of the singular values.

Moreover, in this case, the solutions of (2) are acourate approvimations
to the perturbed problem.

The proof is based on a careful analysis of the steps in Part I above.
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1. Index theory for elliptic differential equations

Let M be an oriented Riemannian manifold of dimension n, and SM the
covariont sphere bundle of differential forms of “length” 1. A linear differ-

M
Fig. 1

eﬁtial operator of order m, operating between smooth sections of ¢®-vector
bundles & and ¥ over M of fibre dimension k can be written in local coor-
dinates in the form

4= D aa)D",

laj<m

4 \1 o \*n
where ©e M, D*= D1 % := (-52—) (W) y lali=a+ ... +a,
1 n

and @, a matrix valned C®-function. 4 is called elliptic if

o(A)(@, &)= D a,(@) &1 ... £n e GL(E, C)
Jal=m
for all (v, &) e SM.

3 — Banach Cenfer t. X
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