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1. Introduction

The singular parabolic equation
(1.1) D+ Ay, = DUy,

where 1 is a real parameter, is known as the generalized heat equation
(see e.g. [4], [B]). It is a special feature of this equation that it ean be
studied by using shifting procedures. These procedures allow to transfer
aresult known for a certain value 1, of the parameter (in many cases 1 = 0)
to another value A 5% 4,. D. Colton [1] and the author [7] used methods
of this type for the discussion of the Cauchy problem. But as it was shown
in [8], these ideas can also be used for the construetion of complete fam-
ilies of solutions to the generalized heat equations. However, the investiga-
tions in.[3] also show that a deterioration of results can be a consequence
of such shifts. So the result of [3] is only an approximation theorem of
compact subdomains. In this paper, a combination of a parameter shifting
with direct approximation steps leads to results free of that restriction.
Moreover, the problem is studied for values of the parameter which cannot
be covered by the method used in [3].

2. Lemmas

The lemmas fall into two groups. The first group ineludes an approxi-
mation result for the related equation

(2.1) B2y + Uy — N2U = 22,  (n €N)

and the second group gives a base for the reduction of the original problem
to the approximation result for equation (2.1).

[405]
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LemmA 1. (2) Let J, (n e N) be the Bessel function of the first kind of
order n and p > 0 be a zero of J,. Then
(2.9) w(w, ) = 1T, (uw)
is a solution of (2.1) for (%, 1) € Rx (0, oo) and we have
w(—1,t) =u(l,t) =0.

(). Let u be the function in (2.2). Then w can be represented in the form

1
(2.3) u(@, ) = o" f (L—y2)" P o(ay, 1) dy,

where v is a solution of the heat equation.

Proof. The first part can be proved by a simple caleulatlon The
second part follows from the representation formula

J,(2) —vzf

for Bessel functions (see [6]) and the fact that

=003 (L)AL (v >1/2, ¢, some constants)

(@, 1) = oy u" e cos(u)

is a solution of the heat equation.
In the following we use the notation Py, for the so-called generalized
heat polynomials (see [4], [5]) defined by

k
Busta,y = o) 1
j=0

2k—~24 i
y+k—j+1/2)
for k =0,1,2,...,»> 0. It is easy to see that any function of the form

/”'(w} t) = mnPk,nq‘—llz (‘v’ t)
is a solution of (2.1).
LeMMA 2. Take the function

™
= Z ,B,-t"
j=0

Then there exists a solution u of (2.1) of the form

(2.4) (B; e R).

m

w(®, 1) = mnz 0Py 410 (5 1)

k=0

(e R)
satisfying the conditions

w(l,t) = gt), w(—1,8) = (—1p(1).
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Proof. From equation (2.1) and from the form of % we see that the
coefficients ay, ..., a, have to satisfy the linear system '

kZ:' ,62“](7")-(;(1—2%— =8 (j=0,1,...

They are uniquely determined by this system because the corresponding
matrix is triangular with non-vanishing elements on the main diagonal.

LeMMA 3. Let ¢ be as in (2.4) and let

K
(@) = o7 3
=0

with (0) = p(1). Then for given T > 0 and & > 0 there exisls a solution of
(2.1) of the form

y M),

(yieR,neN)

(2.5) U@, 1) = 0" Y aPrpip(®, 1) (seN, aeR)
k=0

such that

(2.6) o) —u(l,t<e for te[0,T]

and

(2.7) lp(@)—u(z,0)|<e for axe[—1,1].

Proof. Let u, be the solution of (21) constructed as in Lemma 2.
Define f(%) = y(#)—u, (2, 0). Then the function f is of the same form as
w and f(l) =0 = f(—1). In virtue of results on Fourier-Bessel-series
(see [6]) it follows that f can be approximated like this:

»
1f(m)——2 a]-Jn(‘u]-w)l <¢/2 for we[-—1,1]
j=1
(u#; > 0 denoting the zeros of J,, a; € R). Now we define

Zaexp

This is a solution of (2.1) and in view of Lemma 1 we can write it in the
form

uZ (w t 114(”_‘] )

(2:8) Uup(®, 1) = 3" [ (L—y*"Po(ay, t)dy,

where v is the following solution of the heat equation:

v(x, 1) = ana’ﬂ"](Xp

=1

§t) 008 (4;2).
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From the results of Colton (see [2]) it follows that v can be approxi-
mated uniformly by a linear combination of heat polynomials h,;, of even
order (see the remark in the bracket below). Therefore we can find real
numbers b, k¥ = 0,1,..., ¢, such that

]
@9)  |ol@, )= Y biho,1)|< 62, (2,0 e[—1,1]1x[0,1],
k=0
where hy;, arve defined by

) .
T

B, 1) = (27&)12W.

j=0

(We can assume that all heat polynomials appearing in the linear combi-
nation have even order, because v is an even function with respect to .)

The heat polynomials are connected with the generalized heat poly-
nomials by the formula

1

Prp(@,1) = o1, [ (L—92) " hus(y, 1) Ay

[

(where g, are some constants, see [1]).
From (2.8) and (2.9) it follows that

g
#
(2, 1) —a® 2 Cent112 0P nrugz (€ t)‘ < &2,
_ i=0

o (,1) e[—1,1]1x [0, T].
Finally, the function
L -
Uy (@, 1) = U, (2, 1) +mn291;.;+112bk1)km+112(w7 1)
k=0
is a solution of the form (2.5) of equation (2.1) and satisfies (2.6) and (2.7).
In fact,

q
W =L, D = | 3 oehranbePrnsan (L, 0] < 2/2,
k=0

a
p(@) (@, 0)| = |f(@) =" 3 0k 110 bePrnsaa(®, 0)|
k=0

: < If(@)— (o, )| +e/2 <o

Remark. A result on the approximation of solutions of (2.1) by sol-

utions of the form (2.5) can be proved by using Lemma 3 and a maximum
principle argument.

.
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Lmnuma 4 Let w € 0%((—1,1) x (0, T)) (b= 4) be a solution of (1.1)
1 .
with A %= 0 and define v(x, 1) =~m—um(m, t). Then
(a) v € C¥*{(=1,1) x (0, T)),
(D) @+ (A+2)0, = 0,
Proof. (a) follows from (1.1), namely we have:

M@, 1) = U, (2, 1) —uw(z, ).
Part (b) can be proved by showing that
B (Vg — Uiy + (A= 2) (Ue — U )y — B (e — )y = O

But this follows from (1.1) by a simple calculation.
LA 5. Let w e 0**((—1,1) X (0, T)) be a solution of

(2.10) LUy, — (20— u, = 215, (nEN).
Then DPu(0,1) = 0 for te (0, T), where D} denotes the partial n-th

derivative with respect to 1.

Proof. For n = 1 the assertion follows immediately: (0, t) = 0 and
therefore (—1—%) = 14,,(0, ). From {2.10) it follows that w,(0,?) = 0.
& x=0 )

For n > 1 the assertion is proved by induection.
I w e C*"+3(—1, 1) x (0, 1)) is a solution of @i, —(2n+1)u, = ou

1
then —211(%%)(0, t) = u,(0,1). Define o(z,?) = ;uw(m, t). Then we
may assume Do (0, t) = 0 and it follows that D} u(0, ) = —2nDiv(0, 1)
= 0. .
LevmmA 6. Let u e O*"((—1,1)x (0, T)) be a solution of (2.10). Then
there ewists a polynomial solution w, of (2.10) such that (w—wu,)(0,1) = 0.
Proof. Define )

k

1k =k —=14+9)1 o o
= Y o¥(f) (L m S gty
e et = Y () v
i=
for neN, k=0,1,...,n—1. A simple calculation shows that these
polynomials are solutions of (2.10). Since Lemma 5 shows that (0, t)

n—1
is a polynomial of degree n—1, one can write #(0,1) = Eakt".
k=0
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We now define

n—1
(212) (o, = ) (—~1p2"
k

—2k (”_k_ )

(% 1) ak.pk,n (ml t) .

0

i

(n—1)!
(n—k—1)!
Levua 7. Let e G ((—1,1)x(0,T)) be a solution of (2.10) with
w(0,1) = 0. Then Diu(0,t) =0 forj =0,1,...,20n—1, t (0, T), where
Di denotes the j-th partial derivative with respect to x.

Since 0,1) = (—1y2%* %, we have %(0, %) = (0, t).
pk,n ?

Proof. For j = 0,1 the assertion is frivial. For n>2 and j = 2 we
can prove it by the following argument: Since 4,,(0, t) — (27 — 1) 4,, (0, 1)
= 24,(0, t), it follows from the assumptions of our lemma that u,,(0,t) = 0.
The rest again can be proved by induction.

Let ue ™ ((—1,1)x(0,T)) be a solution of @u,,—(2n+1)u,

= g, with (0, t) = 0. We define »(%, 1) = —u,(, t). Since u,,(0, ) = 0,

then 'u(O 1) =0 and thercfore we may assume Div(0,¢) = 0 for
j= .. 277,—1, te(0,T). But this implies Di(zv)(0,t) = 0 for
j ,2n and Diu(0,t) =0 for j =0,1,...,2n+1.

3. The main result

The polynomials p,, defined in (2.11) are solutions of (2.10), the same
about the polynomials g, defined by ¢,,(#,1) = #™P ,.p(@,1) for
k=0,1,2,... Since all polynomial solutions of (2.10) have to be even
with respect to @ (see [7]), the desired result on a complete family of
solutions must concern approximation of solutions of (2.10) by linear
combinations of the polynomials p,,. (k=0,1,...,2—1) and g,
(b=0,1,2,..).

THEOREM 1. Let u € 02"((—1, 1) % {0, T)) NC([—1,1]x[0,T]) be a
solution of (2.10) which is even with respect to . Then for every e > 0 there

exist agy tyy ...y a,_, €R, meN and /5’0, By ooy B € R such that
n—1
Al
"“(W,t)—z G Dpeyn (@ t)" ZﬁkPkn+1/o @, 1) <
k=0

for (z,%) e[—1,1]x [0, T].

Proof. Since the solution u, in Lemma 6 described by (2.12) is a linear
combination of the polynomials p, ,,, it is sufficient to prove the theorem
for solutions % with (0, t) = 0. In fact, we shall show that in this case
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u can be approximated as follows:
n
(3.1) I“(w7t)”$2n2 ﬁkPk,n+1/2(w5t)|<ey (®,t) e [—1,1]x [0, T].
k=0

For solutions  with %(0, ?) = 0 we can use the estimate

(3.2) iz, 1)) < maxju(z, 8)] for (z,t)e[—1,1]x[0,T]
(z,t)eB

with B = ([—1, 1]x {0})v({—1} x (0, TT)U({1} x(0, T]).

There exists § > 0 such that |u(x, ) —u(z, 0)] < ¢/8for x e [—1,1].
Since Diu(0,8) =0 for j =0,1,...,2n—1, we know that z~*"u(z, é)
can be defined as a continuous funetlon also at z = 0. Now, using the
Weierstra approximation theorem we approach this function by a poly-
nomial f. We may assume that this polynomial is an even function. There-
fore

w(xz, 0)— 2" f(x)| < ef¢ for we[—1,1]

with f(«) 27/ @,

The next ﬁtep is to approximate u(1,?) by a polynomial ¢g. Suppose
that

(1, 8)—g(d) < s/ for tel0,T]
with g(t) =ébjtf. I we define p(t) = g(t)+f(1)—g(0), then we get
W(lyji)—qﬁ(t){ < Ju (1, 0)—g(0)+If(1) —u (L, 0)] +&/8 < /2.
Write :
W) = o"f(z) = o g,‘ yit,

We get ¢(0) = f(1) = p(1) and using Lemma 3 we find a solution » of
(2.1) of the form

m
0@, 1) = 0" Y BiPrnpaa (@ 1)
k=0

such that |p(t)—o(1, )| <e¢/2 for te[0,T] and [p(®)—v(z, 0)] <s&/2
for #e[—1,1]. Put w(w,t) = a"v(w,1). Then w is a solution of (2.10);
moreover,
Ju(z, 0)—w(z, 0)] < lu(z, 0)
for #e[—1,1] and
lu(l, &) —w(l, < u(l, H—e@)+lpt) —v(1, )] < e

— o f(@)|+ |2" p(2) — "0 (7, 0)] < 3&/4
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for ¢ e [0, T]. Since u—w is a solution of (2.10) with (v—w)(0,1) =0,
the estimate (3.2) holds for » —w and if follows that |(u—w)(z, t)| < & for
(=, 1) e[—1,1] % [0, T]. But by the definition of w this estimate is ident-
ical with (3.1).
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Let X be a smooth closed Riemannian manifold of dimension » and B
a smooth Hermitian vector bundle over X. If A: (*(X, B) - (°(X, B)
is a self-adjoint elliptic operator of order m > 0, then A has a disercte
spectrum {Ahon With |4;] = oo as k— co ([6], part XII, Theorem 14).
In [1] Atiyah, Patodi and Singer introduced the function

n(d; 8) = D 'sign(h) -4l
]
holomorphic for Res > n/2m. More precisely, it is known ([1], [4]) that
this function has a meromorphic extension onto the whole complex plane
with only simple poles and that there is no pole at s= 0. This function has
then been used to define an invariant ind(4; D,, D,) depending, for
fixed flat connections Dy, D,, only on the operator A.

In this paper we compute this invariant in a special case, where it
has a clear interpretation. In particular, we obtain an expression for the
index of the family of self-adjoint Fredholm operators over §* by an integer,
which is a spectral invariant of the family, the so-called spectral flow. The
main properties of this invariant, which were mentioned in [1], are also
proved.

1. Extension of a pseudo-differential operator to an auxiliary
flat vector bundle

DerFNrTIoN 1.1. Let V be a smooth Hermitian vector bundle over
a smooth manifeld X. V is called flat if it has a trivialisation {U;, ¢} with
constant transition functions.

If this is the case, the exterior differential d acting.locally on the

sections of U;xC¥ = V|U; extends to a global connection Dy on the

[413]
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