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Introduction

In general, we have very little information concerning the structure of
the set of solutions of nonlinear elliptic boundary value problems. If the
operator is monotone, then usually the solution is unique or the set of
solutions is convex. In the nonconvex case, the bifurcation theory gives
valuable information concerning the branching of solutions. Apart°from
these important theories, very little is known and no general method
seems available.

Our purpose in this article is to present a topological approach which
gives generic results concerning the set of solutions of nonlinear elliptic
boundary value problems. Our typical result is that, generically with
respect to one of the parameters entering the problem, the set of solutions
is finite; by parameter we mean for instance the coefficients of the-differen-
tial operators, the boundary data, the open set under consideration.

Our main tool is a transversality theorem which is essentially due to
Quinn [16]. This theorem is recalled in Section 1 where we also establish
an abstract result concerning a nonlinear equation

(0.1) A{w, 0) =0

where 6 is the parameter and % the unknown: under suitable assumptions,
for “most values of 67, 0 is a regular value of the mapping {u A (u, 6)},
from which we infer that the number of % satisfying (0.1) is finite. Thus,
for a given 6, either the set of solutions of (0.1) is finite or this property
is true after an arbitrarily small perturbation of 6.

In Sections 2 through 4 some applications are given. In order to avoid
too many technical details we have restricted ourselves to some typical
cases, although it is our belief that the method applies to many other
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gituations. In Section. 2 we consider second order quasi-linear elliptic
boundary value problems for which a priori estimates and the ‘existence
theory is available in LadyZenskaya—Uralceva [7]. We show that the number
of solutions is finite for almost all values of the coefficients of the linear
principal part of the operator. In Section 3 we consider a more specific
problem:

—Au+g®m,u) =0 in Q,

(0.2)
=0 on 0Q

and we egtablish that the set of solutions of (0.2) is finite for generic do-
mains 0.

In Section 4 we consider the mon-homogeneous stationary Navier—
Stokes equations. Qur main result is that, for fixed viscosity, fixed second
member and generic boundary data, the solution set is finite. (A similar
result for generic second member was given by Foiag-Temam [3] by use
of different techniques.) Some consequences on the global strueture of the
solution set are derived.

These lectures are based on a joint work with R. Temam [17], [18].

Contents

1. An abstract result
2. Genericity with respect to the coefficients
3. Genericity with respect to the domain

4. Genericity with respect to the boundary data for the Navier—Stokes equa-
tions.

1. An abstract result

We first recall the transversality theorem.
Let X, ¥, Z be three real Banach spaces(l), Uc X, V< Y open
subsets.

Let F be a mapping of class % (k> 1) from U x V into Z, such that

(11) for every yeV, F(,¥y): a—F(s,y) is a Fredholm mapping
from U into Z, of index 1, I < .

For the definition of nonlinear Fredholm mapping, the reader is
referred to 8. Smale [20]; (1.1) means that for every m,,y, € U x V, the
partial differential F;(qoo, Y,) 18 a linear Fredholm mapping from X into
Z and that its index (equal by definition to the index I of F(-, y,)) is less
than %.

() Not necessarily separable.
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We agsume that

{1.2) 2, is & regular value of F, which means that the total differential
Fe#(XxY,Z):

F'{@g, Yo)- (5, ¥) = Fr(®o, Yo) -m+11‘;(m0, Yo)'Y

is onto, at every point (x,, ¥,) such that F(x,, ¥p) = 2.
Finally, we assume that F is proper in the following sense:

(1.3)  The set of 2 e U such that F(z, y) = 2z, with y belonging to a com-
pact set in Y is relatively compaet in U. R

We then ﬁave the following result {Quinn [16], Thlenbeck [22],
[23]) (a direct proof is given in the Appendix of [17]).
THEOREM 1.1. Under assumptions (1.1)—(1.3), the set

{1.4) 0={yeV, 2 is a regular value of F(-,y)}

is a dense open subset of V.

Now let us denote by X', ¥’, Z’ the dual spaces of X, X, Z. For (2,, ¥,)
€ U xV the differential I (%,, ¥,), which is linear continuous from X into
Z has an adjoint F. (@, ¥o)*, Which is linear continuous from %’ into X'.
Because of (1.1), its kernel has finite dimension.

From Theorem 1.1 we then derive the following result.

THEOREM 1.2. OQur assumplions are (1.1), (1.3) and for z, given we
assume (instead of (1.2)) that for every (@q, ¥o) € U X V with F (@, Yo) = 2o,
the following condition holds:

(1.8)  If w e Ber (Fy (@, %0))" and <Fy (%o, o)y, w)> = 0 for every y € ¥,
then w = 0.

Then (1.2) (and the conclusions of Theorem 1.1) are valid. For every Yo
an O (cf. (1.4)), the set

{1.6) {we U, F(z,9,) = 2}

is the disjoint union of a finite number of compact and connected differentiable
submanifolds of X of class €* and dimension 1.

Remark 1.1. X (1.3) is dropped and X, ¥, Z are separable, Theorem
1.1 still holds, @ being only a residual set.

If 1 = 0, (1.6) is a finite set, its number of elements is constant on every
commected component of O and, on such a component, every solulion is @
F*-function of y.
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P1 oof. (i) We first show that z, is a regular value of F. For (z,, .}
T{zo}), and for any given h € Z, we must find a pair (#,y)e X x ¥
such that

o (@, o) @+ Fy(o, o)y = h.
For simplicity we write I = F, (2, ¥,), and the equation becomes
(L.7) Lo = i— Fy (@, 90) 9.
Since L is a linear Fredholm operator, there exists o satisfying (1.7)
if and only if there exists y € ¥ such that
- <h—17';(990,y0)'y, wy =0

for every w e KerL*. Let wy, ..
finite dimension.
We must find y € ¥ such that

Ziy) = <ywp, i=1,..
where &; € Y’ is the linear continuous form on Y defined by

Zi(y *<—P Tos Yo) Y Wi,

By a corollary to the Hahn-Banach theorem (which is explicited in
L. Schwartz [19]) we are sure that such a y exists if the linear forms %, are
independent. This amounts to saying that if 4,...,lyeR and &%
N
= M 4,%,, then
=1

(1.8)

., Wy denote a basis of Ker L*, which has
? 'AT,

i=1,..,N.

Ly =0,Yye¥ =>4 =...=24y =0.

N
Let w = 3 J,w, e KerL*. Then Z(y) is exactly
=

<F;(woa Yo)Y, wy.
and the condition is equivalent to the assumption (1.5).

(ii) The conclusions of Theorem 1.1 are valid. Let us assume that
Y, belongs to the set ¢ in (1.4). Because of (1.3) and the continuity of 7,
the set (1.8) is compact. Since 2, is a regular value of F(-, 4,), we immediate-
ly infer from the implicit function theorem that (1.6) is the union of disjoint
connected differentiable manifolds of class ¥* and dimension I. By the
compactness of (1.6) the number of such manifolds is finite.

(iii) Finally, if I = 0, these manifolds are isolated points. Let us
show that the number of solutions is constant on a connected component
0’ of 0. By the implicit function theorem the equation

Flpy),9) =2, yeo,
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admits a unique solution # = y,(y) such that y,(y,) = @,, where @, ¥,
are given, @; € U, ¥y, € 0, F{wy, y,) = 2, and vy, like F, is of class #*. If
By, ..., Ty satisfy

F(#y,Y0) =%y t=1,...,N, 40,
then we get N different functions y; such that w;(y,) = #;, 1<i< N,
and by the implicit function theorem,

w(y) #= vy,

This proves that the number of points #; € U such that F(z;, y,) = #
is independent of ¥, as long as 9, remains in the same connected compo-
nent ¢’ of 0, and that each solution is a *-function of y.

Yyeo, Vi #7.

Remark 1.2. The determination of F,(2,, 9,)* and the verification of
(1.5) will be generally easier in Hilbert spaces. This leads us to the fol-
lowing remark.

We assume that XX, Z=>Z, where X, Z are Hilbert spaces and
the injections are continuous. We assume that L = F, ={%gs Yo) admits
a unique extension I to a linear continuous operator from X into Z and
that (L) (Z) = X. Then if L* e#(Z, %) is the adjoint of L, we can replace
(L.5) by

L5)  if weKerL* and (F, (2, ¥o) -y, w) = 0 for every y e Y, then

w=20.

Indeed, if (1.5') is satisfied, we see, with the same proof as in Theorem.
1.2, that for every % € Z there exist # € X and y e ¥ such that

L# = h—Fy(wo, o)y -

Now, since L (%)« X, it h="heZ then $eX and the surjectivity
of F' is again established.

2. Genericity with respect to the coefficients

Our first application of Theorem 1.2 concerns nonlinear elliptic equations
of the second order. For simplicity we are not aiming at maximal generality
and we only consider the following equations, which are studied in Lady-
senskaja—Ural’ceva [7]: Chapter VI in [7] is devoted to the derivation of
a priori estimates for these equations and the existence results are a par-
ticular case of Theorem 3.3 in the same chapter.

Let Q Dbe an open connected bounded set in R", whose boundary
I'is of clags #%° for some a, 0 < o << 1, in the sense of [7]. Let a;, 1 <4,
j<m, denote n? real functions on 2 with

2.1 a; €€ (D), 1<4,j<n
i
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Let g = g(#; u,p) denote a continuous function on Zx RX R"
such that

(2.2) ge %K), for every compact set K = @x Rx R".
PYR
(2.3) 5%,_;%, 1<i<n, belong to €(K),

VE c @x Rx R*, K compact.

The boundary value problem to be considered in this section is:
n
(2.4) Z aﬁuzz,wj—}—g(m, U, uy) =0 in Q,
=1

(2.5) 4=0 onl,

where u,, = 0u[0z; and u, = gradu.
The existence of solutions of (2.4)-(2.5) is established in [7]if a; and
"¢ satisfy the following conditions:

(2.6)  There exist by, b, € R, by > 0, b, > 0 such that
g(@, u, 0)u< —byut+b,  Voel, VueR.
(2.7)  There exist gy, gy >0 such that

n

l"oZ &<

i=1 ij=1

N

0 () £:& < py Z &, Vee, VieR".
=1

(2.8) There exists g, > 0 such that for every z €2, u e R,

[l <M =Vby[by,  and peR", [g(@,u,p)] < pa(1+IpP).
Then, ' '

(2.9)  Under the conditions (2.1)~(2.2), (2.6)—(2.8), there exists u € #>*(Q),
which satisfies (2.4)-(2.5).

Of course, no other information is available, as regards the set of
solutions of (2.4)—(2.5).
We are going to apply Theorem 1.2. We set
X ={uec?*Q), u=0o0n I},
Y = %2,11(9)752(2)’ N
Z = ¢°(@);

ot ¢ 2('2;)5&0 a certain point in the proof of (1.5) below, ay; € #1°(R) is not sufficient
of. (2.1)).
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these are obviously Banach spaces. We denote by # (or u°, v,...) and a
(or a@° b,...) the elements of X and ¥, a = (Gihicijans G € 62°(@).
Then

U = X\{0},

V =lae¥, 3u = pol@) >0, such that Nay(@) &8 > polél,

Vee@, V¢ ER"}‘
For (v, a)e X x Y we now set

n
(2:10) Pty a) = ) Gythsg (@, %, ).
$i=1 .
It follows easily from (2.1)-(2.2) and the properties of Holder spaces that
F maps X x Y into Z, that F is of class %%, and that its differential at
some point (u?, a®) is given by

(2.11) T (w0, a%)-(u, a) = F(u®, a®) -u+F,(ul, a%)-a,
C F
212) Ty, @) = Y @it (@, 00, ud) ok
i1
1 N 5g 0 g0
n 2’%_ (, u°, uy) Dyu,
i=1 *

n
(2.13) F(u®, a®)-a = 2 g Uz YV(ud,ay e XX Y, V{u,a) e Xx Y.
fi=1

We are now going to verify (1.1)-(1.3) and (1.5).
Proof of (1.1). By Schauder’s theory for linear elliptie equations (see
for instance Agmon—Douglis-Nirenberg [2]), the mapping

n
w > 2 a‘}jumj
ig=1
is an isamorphism from X onto Z (a° givenin V).
The injection of €~ (¥) into ¥°($2) is compact, and this easily implies
that

2 >y by
U > a_i (@, u°, ’Mi)‘?H*Z 2D (@, w0, ug) Dy

f=1
is a linear compact operator from X into Z. Then the linear operator
w — Tl (u®, a%)% given in (2.12) is a compact perturbation of an isomor-
phism. Tt is a Fredholm operator of index 1 = 0 from X into Z (Vu® e X,
Yat e V).

22 — Banach Center . X
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Proof of (1.3). It is sufficient to show that if
(2.14) F(u™, a™) = 2,

with «™ € X, and a™ converging to some limit @ e ¥V, then «™ contains
a convergent subsequence. But (2.14) is equivalent to

n
TN, N m my . 3
Z “ﬁ“x,z,‘*‘!l(m; u™, ut) =0 in 2,

=1
¥ =0 onI.

(2.15)

Since ™ converges to @ in ¥ and a eV, we may assume without loss
of generality that each ™ satisfies (2.7) with some u, and u, independent
of m.

The a priori estimates of [7] (cf. Chapter VI, Theorems 1.1 and 2.3)
imply that for some g > 0, which only depends on 2, M, uy, 4y, &, (cf.
(2.7)~(2.9)), the ¥’-norms of 4™ and V4™ in @ are bounded by some number
independent on m (and depending only on M, u,, fy, ta, £2). By lowering
B, we may assume that § < «, and therefore the sequence

(2.16) gl@, u™, ug)

is bounded in #°(2) and relatively compact in #°(2), 0 < §, < f.

Then Schauder’s theory for linear elliptic equation (cf. [2]) and (2.15)
show that 4™ is a relatively compact sequence in #>#(2).

We now reiterate the reasoning; (2.16) is a relatively compact sequence
of #°(2), from which we conclude that »™ is a relatively compact sequence
of €>*(Q).

- Proof of (1.5). Instead we verify (1.5') in the context of Remark 1.2.
‘We take Z = I*(Q), and for X the space H(Q)NH*(2).(®) Then
L= I, (w0, a®) (cf. (2.12)) is easily extended to a linear continuous operator
L from Hy(Q2)n H*(2) into I*(Q), and if Lu = h e #*(8), and u®, a® € U X
XV, we write y

w e Hy(Q)nH*(Q),

(2.17) 5, o9 ™y g
WU, = h— — (@, u®, ul) u— (@, ul) Du
i; LT ou ’ H ; 517, b 1

® H”E(Q) is the fobolev space of order m; HI*(Q) is the closure in H™ () of
the space of smooth functions with a compact support in 2, cf. Lions—Magenes [10],
J. Neéas [14].
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and by reiterated applications of the regularity results of [7] and [2] we
obtain that 4 ¢ X = €>*(2).(*)
The adjoint of I in I*(Q) is the ordinary adjoint. Saying that
w e KerL* amounts to saying that w e I*(2) and
2]

n
32
(2.18) Zm(a?jWH " (@, u°, uf)w —

> 0
-zl

(2.19) w=0 onl.

The regularity results of [7], [2] show that in fact w e #**(%2). (Here and
below we need a® € #>*(F)" and not only gy

According to the expression (2.13) of Fj(u?, at), in order to establish
(1.3") we must prove the following:

If w e €>(D) satisfies (2.18)—2.19) and for every a e @ (o

ki
0
2 faijumjwdm =0,

1,j=192

i,5=1

14
@pg (m,u”,uﬂ)w) =0 in @,

then w = 0.
By taking a; = @by, ¢ > 0 arbitrary in #**(Q2), we obtain
Awdw =0 in Q.

Now, since #® = 0 on I'and #° 2 0 (u® € U = X\{0}), du® cannot vanish
identically in Q. Then there exists an open set o < Q such that Au®(x)
# 0, © € », from which we conclude that w(z) = 0, & € . The fact w = 0
then follows from the uniqueness of solutions of the Cauchy problem for
the equation (2.18) (cf. 8. Agmon [1], Hérmander [6). The uniqueness
theorems apply since (2.18) can be rewritten in the form

k3 n
0 o
E g Wy E dyw,+ dow = 0,
=

1,f=1
" i s on 0. si 0 o @2 DY:
where d; and d, are continuous on £, since a;; € (2):

n

. o
&= Y e+~ (g?f’fw, , u;;)) :

=1 i
- oy < dg
d = Z &y o (2, 00, ) —}_; D, (5; (2, w0, ).
2j= i=

(*) [7] implies that » and gradw are uniformly bounded in D go that the right-
hand side of (2.17) is uniformly bounded in Q; then [2] shows that u is in the Sobolev
space W27(Q), Vr, 1 <r< oo, 80 that we #L8(0Q), VB < 1. Then we find that
the right-hand side of (2.17) is in #°(22) and finally w e ¢2(0).
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Theorem 1.2 applies. We arrive at the main result of this section.

THEOREM 2.1. We assume that Q is an open bounded set of R™ and that
its boundary I' is of class €*°, for some a, 0 < a < 1.

Let there be given a f'zmctzon g from Q X B X R" into R which satisfies
(2.2)~(2.3) and (2.8). .

Then there exists a dense open subset 0 of V < €%*(2)",

V = {a = (a7'j)1<«:,j<n, a € (gz,u(zg)’

n

D ay(@) 54> Moyf VoeR, ViR, = po(a) > 0}

4i=1 1=1

such that for every a e, the elliptic boundary value problem (2.4)—~(2.5)
possesses & finite number of solutions.

The number of solutions is constant on every conmected component of @,
and on such a component, every solution is a €*-function of the a;;.

Remark 2.1. Theorem 2.1 can be extended in different fashions:
perturbation of the coefficients in the class of symmetric operators, or
perturbation of only one coefficient; cf. [17] for details.

3. Genericity with respect to the domain
We are interested in the nonlinear elliptic problem
(3.1)
(3.2)

—Au+g(w, u) =0
on I,

in Q,
% =10

where £ is a connected bounded open set in R", whose boundary I' is

of class ¥ for some a, 0 < a < 1, and ¢ is a given function subjected to
the conditions:

{(3.3) g is a real continuous function on R*x R, g(z, 0) =0,

[7
(3.4) g and 6_?1. € ¥*(K) for every compact set « R*x R.

We want to obtain generic results concerning the number of solutions
of (3.1), (3.2) when Q varies. We will restrict ourselves to @ local study,
£ varying in the neighbourhood of a given open set Q,.

We assume that £, is the image of the unit ball of R® under a diffe-
omorphism of elass ™ its boundary being the image of the boundary
of the unit ball. We consider open sets £ which are the images of 0,

under diffeomorphisms having similar properties and close to I, the identity
in Diff(R™).
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More precisely, let @ be an open bounded set in R @ > O, and let
T=I1+0e%>* Q)™ with 0 € ¢>*(Q)*, i.e. § and its first and second order

derivatives vanish on Q. If the norm of 6 in €>°(Q)" is sufficiently small:

(3.5) Hﬁuﬁ, oy

5o that the Jacobian of T, detT’, satisfies

o’ﬂ,7

(8.6) detT" = det[(I+0)']1> ¢, > 0, for some >0,

then T(Q) = @, T = I+ 0 is one-to-one in § (i.e. T is globally one-to-one)y
and T-! belongs to €>°(Q)", T~'— I belonging to €3°(9)".{*) Furthermore,
TQ,is an open set and TT, is exactly the boundary I" of 2. In the sequel
we will only consider open sets @ of this nature:

Q =10, I=1TT,

S T = I40, 0 %2(Q)" satistying (3.5), (3.8).

We are going to apply Theorem 1.2 with

U = X\{0}, = {ue®°(Qy), u =0 on I},

Y = eeQr,
V = {6 e €>(Q), 0 satisties (3.5), (3.6)},
7 = €(3,)

and our result is the following:

THEOREM 3.1. Let g denote a real function on R™ X R satisfying (3.3),
(3.4) for some a, 0 < a < 1, and let Ry, I'y and Q be given as above.

Then there exists a dense open subset 0 of V, such that for every 6 € 0
the elliptic boundary value problem (31), (3.2) in & = (I4-6)(8,) edmits
a finite number of solutions.

The number of solutions is constant on every connected component of O
and on such a component, every solution is a F-function of Q (i.e. of 0).

Proof. We have already fixed the spaces X, Y, Z, U, V occurring in
Theorem 1.2. For u € ¥>°(82), 6 € V, we set

{3.8) % =wuol, T =1I4+0;

it 4 e #>*(R) and w = 0 on I, then 4 e X. We denote by  a generic point
in Q and by & a generic point in 2,.

(5) Cf. also [5], [11], [12], [13] for boundary value problems in varying domains.
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For 6 fixed, 6V and Q = (I+0)(£,), we consider the boundary
value problem (3.1), (3.2). This problem is equivalent to
#eX and
~ (A, w) (%) + g (T%, w(TH) = 0, e Q.
‘We denote by F(#%, 0) the left-hand side of (3.8):

(3.8)

(3.9) PG, 6) = — (Au){(T5)+9(T&, w(TH)).

We must first express F (4, 6) in terms of % and 0 in a more explicit manner.
This can be done using some technical lemmas of Murat—Simon [13].
Lemma 4.1 of [13] gives

(310)  F(v,0) = —divs{(desT")-(T") (T') gradzv} +9 (T4, 0),
Vo e¥»(Q,), 0V, T =148

T’ is the differential of 7T'; divy and grad; indicate that these operators
are related to the #-variable.(®) Lemmas 4.2, 4.3 and 4.5 of [13] show that
F is differentiable with respect to 6 and Fj, is continuous. It is obvious,
on the other hand, that F is differentiable with respect to v and that
T, is continuous. Thus F is of class €™

Instead of giving an explicit form of F, and F, at any point (v°, 6°)
of Ux V, we observe that by changing @, we can always assume that
0° =0, T° = I, so that we only need know the differential F (v, 0),
Fy(v°, 0).

As regards Fy, we have

0
(3.11) Fy(v°, 0)-v = -—Am~|—-a—1—(w, 29) 0.

Regarding Fy, we find, using [16],
n

(812)  Fy(or, 0 = X (@vOut)et Y ((LE1HIED08)+

=1 =1

n n §
. oq og
0 7 0). 7. 7 0.z,
+g(@, 0 )dwc+; @) c,+2; 2 (o, o008, .
Proof of (L.1). It is clear that F,(v°, 0) is the sum of an isomorphism
from X into Z (the operator — A) and of a compact perturbation. Then
F,(v°, 0) is a Fredholm mapping of index 0 from X into Z.

(51 Af this point we are essentially working in a fixed domain £, with generic
points @. ’
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Proof of (1.3). We must show that if 4™ e X satisfies
(3.13) F(u™, ™ =0

with 6™ converging to some limit 6 in V, then #™ contains a converging
subsequence. The principle of the proof is the same as in Section 2; (3.13)
is written in the form

n

(3.14) D' (@Bug);, = g(T8, ™) in Q,
1,j=1

{3.15) ' " =0 on I,

where

az.? = [(de’bT;ﬂ)(T;n)“l t(T;n)—I]l',f‘

Sinee 6™ converges to some limit § in ¥, the aff belong to ¥*(2,) and con-
verge in this space to elements ay; which satisfy (2.7) (6 € V). Actually
all the a} satisfy (2.7) with some gy, 4, independent of m. At this point the
situation is exactly the same as in the proof of (1.3) in Section 2.

Proof of (1.5"). Let w° € X satisfy F'(u?, 0) = 0, ie.,
—Aut gz, u®) =0 in Q
(3.16) ( g(=, 03
U = on I,
Let I = F,(u°, 0). We introduce, as in Remark 1.2 (and in Section 2),
X = H)(Q) nHNQ), Z =T

L obviously admits a unique extension L e.?(.i, Z ), and by the regularity
results for elliptic operators, it is clear that L™'(Z) « X, i.e,ifv e Hy(2,) 0

2
AR (Q,) and —Av+a—i(m,u°)v = hin 2o, h e %*(@,), then

v e G (0,).

T is self-adjoint and w e KerL* means w e I*(Q,) (and w € €4 (Qy)
by regularity) and

o .
(817) — dw+ %“’(m, Ww =0 in 2,
(3.18) w=0 on I,.
Now we must show the following: if w e %(£2;) satisfies (3.17)-(3.18)
and ’
(3.19) <Fp(u®, 0)-Z,w) =0

for every ¢ in %3°(Q)" then w = 0.
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Since «° satisfies (3.16 impli i y
o pee (3.16), we can simplify the expression of Fy(u®, 0)-z.

D@V ug 4+ (TET+[E Db, = —Qiv[Z(Au)]+ A(C-gradws),

i=

-

n n

oo NT.69 . 1 g .

g(m, u )(hvéT% = (@, 1o°)~gi+2 —aE(w, w®)ug,l;
i= i=1

o

= div{g (2, u)¢},
whence

(3.20) Fy(u, 0)¢ = div(é‘(.—— Au®-g (@, w0))+ 4 (Z-gl’adu-”),
and in view of (3.16)
(3.21) Fy(u0, 0)¢ = A(¢-gradus).

The condition (3.19) is now written as
A(Z-gradu®) - wdd = 0 Ghe
f gradu?) Viewr Q.
Using Green’s formula and (3.17), (3.18) we obtain
3.2 gradus) 2L G o
(3.22) Qf (e-grada) 20, wywds— [ (¢ gradun)-ar = o,
2y Ty Y

Vi ed(Qr.
It is y D : i
easy to eonstruct a sequence of ¢ € #2°(Q)", which remains uni-

formly bounded in 2, such that ¢ = (grad u%) (—aaﬂ) on Iy and such that
v
the measure of the support of ¢ tends to 0. The first integral in (3.22)

tends to 0, while the second one remains constant and equal to
2
f (gmdu“)?(@) ar.
# v
[1]

At the limit we find, using for i
and (3.3): » using for instance & result of Protter ([15], p. 85),

323) 2 _¢ o
Pl some non empty open subset of I',.
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TUsing again (cf. [1], [6]) the uniqueness of solution for the Cauchy
problem associated to (3.17) (i.e. (3.17), (3.18), (3.23)), we obtain that
w=0.

The proof is complete.

4. Genericity with respect to the boundary data for
the Navier—Stokes equations

We consider the stationary non homogeneous Navier-Stokes problem
in a bounded open set 2 in R", n = 2, 3, with regular boundary TI', whieh
is finitely connected: I’ = INU IV ... UT,.

Given f and g, find % = (%, %, ..., %,;) and p such that

e
—vdu+ Y uDyu+gradp =f in 2,

i=1
divy =0 in 2,
b =@ onI’.

(41)

Here » > 0 is the kinematic viscosity, « and p represent the velocity
and the pressure of a viscous incompressible fluid filling 2, the fluid being
submitted to stationary volumic forces f, and I' moving with the station-
ary velocity ¢. )

Tt is well known (Leray [9]) that (4.1) is equivalent to a functional
equation involving only «; we shall denote by 8(f, », ¢) the set of solutions
(in a function space which will be explicited later) of this functional equa-
tion.

In [3], [4], C. Foiag and R. Temam have obtained several generic
results concerning 8(f, 7, ¢); for instance, for fixed ¢ and », this set is
finite for every f belonging to a dense open set of the function space to
which f belongs. The aim of this section is to complete these results, in
particular for the case where f and » are fized; this corresponds to many
physical situations where f iz 0 and the motion of the fluid is produced
by the motion of the boundary.

4.1. We first recall some notations and well known facts on Navier—
Stokes equations theory. For the details and omitted proofs, the reader
is referred to the books [7], [21].

For s eR, we denote H*(Q) = H(Q)", I}Q)=T'(L2)" We seb
2(9) = {u e C°(Q) with a compact support in 2} and ¥ = {u € 2(Q)";
dive = 0}; V = closure of ¥ in H'(Q), H = closure of ¥ in L}(Q),
P = orthogonal projection in I*(Q) on H.
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Let 0 < & < 1 be fixed throughout the section. We denote by OK’“(F)
the space of functions ¢ in ¢%=(I") such that

(£.2) [omnal =0, i=1,..,m,
Iy

where # is the unit outward normal to I

Let A be the unbounded operator in H defined by Aw = —Pdu.
Then (Cattabriga-Yudoviteh-Solonnikov Theorem), D(4) = Vn H*(Q),
|Au| being a norm on D(4) which is equivalent to that induced by |||,
= |llg2. Moreover, if f e H NC*(Q)", the solution « of Au = f belongs to
o (@)™

It ¢ € 0>%(I")", we denote by u = Aptheunique elementin ¥ n0>*(2y*
satisfying:

— Au-tgradp =0 in @,

(4.3) divu = 0 in £,

w=¢ on I.

For u,v eV we set B(u,v) = P[(u-grad)v]. Then problem (4.1)is equiv-
alent to the following one:
given g, f,» > 0, find w such that

(4.4) vAu+Bu+Ap, u+Ap) = f.

For given » > 0, f, ¢, we shall denote by S{f, », ) the set of functions
« in V which satisfy (4.4).

The following lemma is classieal:

LemMA 4.1. For fe HNOYRY* and ¢ € C»*(I), 8(f,», ®) is non-
empty and is included in C**(@)* N7V,
) Moreover, if f and ¢ remain in a bounded subset of HNC*(2)" and
C>*(I'Y" and if v = v, > 0, then u remains in a bounded subset of C**(Q)* NV .

4.2. A first generic result

THEOREM 4.1. Let v> 0 and f e H NCYEY" be fived. Then there ewists
a dense open set 0 = O(f, ») in C**(I")"* such that, for every ¢ € @, 8(f,», ¢)
is a finite set.

Moreover, the number of elements of 8(f,v, @) is odd and is Tocally
constani on 0.

Proof. We will apply Theorem 1.2 with U =X = VnC>*(@)",
V=X = (I, Z = C*(@"nH and F(u, ) = vAu+B(u+ dp, u+
+ 4¢). F ig clearly 0* (and even analytic!); moreover, ¥ (-, ¢) is Fredholm
of index 0, its derivative being a compact perturbation of an isomorphism.
The property (1.3) holds by Lemma 4.1 and classical argunments (cf. [18]).

TR
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The heart of the proof is to verify condition (1.5). It turns out to be
equivalent to the following lemma (cf. [18] for omitted details):
LevMa 4.2. Let a € C2* (@Y and w e 0**(2)* NV be a solution of

{4.5) ——vAw,.—D,.(aojwi)+(D,-a0j)w,-—i—Dir =0 in Q.
Moreover, suppose that
(4.6) [ Uao: V) 49+ (Ag- V) aolwde = 0 Yo e Cho(T)".
Q2
Then w = 0.

Proof of Lemma 4.2. We write (4.6) in the form (with summation in
i, j, and setting ® = Ag)

#.7) [0, D, @00+ Jw;®:D;80,d0 = 0.
Q Q
Integrating the first term by parts, one gets:
(4.8) Ff ay, pyw;ndl + ,,f B, D, (o, w;) dw— nf @ (D; 00 wydw = 0.

But the first term in (4.8) is zero since w vanishes on I'.
On the other hand, (4.5) implies

(49) — [ »dw;®;do— [ Dy(ay,0,) @0+ [ (D; ) w; 8,40+
2 2 2
+ [ Dyrd;dw = 0.
Q
Taking into account this equality in (4.8), we get
(4.10) —» [ dw;®;d0+ [ Dyr®;de = 0.
Q 2

And by Green’s formula (using w = 0), we have

ow;
@11 ~ [ Dy = —» [ w4040 [SZyar.
Q2 Q r

But by definition, 4D is a gradient and fw; A®;dw = 0 since weV.
Q
On the other hand, integrating by parts and using dived = 0, we get

[ Dyrdo;a0 = [ rp-nal’
Q r
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and (4.11) becomes

(4.12) f (np,.nf -v%‘%lpj) ir =0 Vge (),

Ir

where #/ is the jth component of n.

Let us first suppose that I' is connected. We decompose ¢ & C>*(I")® )

into

n
¢ =¢—@-+p where g = il fqn-nd]‘.
) if r

Then
(4.13) f(w n—v——— qa)dl“ f[ P—)* n~v~61”~ (co—t“p)]dPJr

4 on

STy (qu “chp)(fydp)*

r
ow
-7 (fqa mll’)f—é—-ndl’, Vg e 0¥ (T},
Ir
where I} = fdal. -
I

The first integral on the right-hand side of (4.13) is zero since p—p

€ 6"2"’(11)". Since 7 is defined up to a constant, we may choose r such that
[ral’ =0, and (4.13) reduces to
I

ow
4.14) f(wp%——v%-qi)dff: —e fqo-ndr, Vo e0 (),
r r

f ——-ndl’
with ¢ = ——F7—
1T
Finally, (4.14) gives
ow
4.15)° —_—— =
(4.15) rm (r+eyn =0 on I.

In the general case where I"is multi-connected, we proceed similarly
to -obtain

P .
(4:.16) V—a—'nj —(r4e)n =10 on Fl}

ow frdﬂ ’
(417 'v%——( T +c) =0 oI, i=29,..,m,

(r is now uniquely defined by the condition f rdly = 0).
Iy
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To summarize, we arrive at the conclusion that w and r satisfy the
system

—vAwi—Dj(a.ojwi)+(Diaoi)wj+Dir =0 in @,
divw = 0 in @2,
wyr =0,
(4.16) +(4.17).
The proof of Lemma 4.2 is now reduced to showing that (4.18) implies

(4.18)

w = Y.
Taking the divergence of the first equation in (4.18) and using divew
= diva, = 0 in Q (since a,, w € V), we see that w, r satisfy:

A9~—2D,.aoj-D,iwj—{—Aa(,j'wj =0
vAwi—l—anj_Djw,;—i—(Diaoj)wj—D,.r =0
wir =0,

| (4-16) 4 (4.17).

But, using (4.19) one can show that the Cauchy data of r, w are zero

o ow 17 ‘
on I, la. wyp = —3T|z~: =y = .

Hence, by the uniqueness theorem for the Cauchy problem associated
to elliptic equations ([2], [6]), one obtains that » and 7 vanish identically
in Q.

This completes the proof of Lemma 4.2 and of the first part of The-
orem 4.1.

The assertion concerning the oddness of the number of elements of
8(f, v, p) follows from a classical degree theoretical argument and may be
found in [18].

in Q,
(4.19)

or

=0 (see [18] for details).

4.3. Genericity and analytic structure of the solution set. Using similar
techniques one can get the following generic result on the global structure
of the solution set (cf. [18] for a detailed proof):

TusorEM 4.2. Let f be fized in 0°(@)"nH. Then there exists o residual
set ¢(f) in C**(I"Y" such that for p € O(f), 8= U;S’ (fy v, 9) @8 a {not necess-

arily connected) 1-dimensional analytic submamfold of Vo> (@Y x
X 10, oof.
Remark 4.1. Theorem 4.2 shows that, for fixed f and generic ¢, there
is no bifurcation phenomenon with respect to the parameter ». W
. The next theorem gives a more precise information about the analytic
structure of S(f, », @) for generic . A less precise result was given in [4]
for generic f.
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THEOREM 4.3. Let feHnC"’(ﬁ)” and @ e0(f) (of Theorem 4.2).
There exists a subset B = B{f,¢) of 10, o[, BNy, +oo being finite
for each v, > 0, such that

(i) If » € 10,[\E, 8(f, », 9) is a finite set;

(ily If » € B, 8(f, », 9) is the disjoint union of a finite number of con-
nected 1-dimensional analytic manifolds, and of a finite number of points.

Proof. Let 8 = 8(f,»,¢) and II: 8 - 70,00[ Dbe the natural
0

>

projection. Let, further, 8, = {(x,») €8, »> v}, 8,, is clearly a one-
dimensional analytic submanifold of V n0**(2)" % 10,00[. Moreover,
H‘S"o’ 8,, = o, ool is analytic and proper (this is a consequence of Lemma
4.1). By the analytic version of Sard’s lemma, the set E,, of singular values
of ]Z,Sv0 is discretoe (in fact, at most denumerable) and closed (since II, s,
is proper). Moreover, B, is bounded, since ITig, is an isomorphism for »
large enough (cf. [4]). Therefore B, is a finite set. Forvel,, S(fiv. ¢
is a compact analytic set of dimension 1, and hence & finite disjoint union
of connected analytic manifolds of dimension 0 and 1. ‘

Remark 4.2. (i) Results similar to Theorem 4.1 for nonlinear elliptic
operators of the type considered in Section 2 are derived in [17].

(ii) Results similar to Theorems 4.1 and 4.3 hold for time-periodic
solutions of the 2-dimensional Navier-Stokes equations (c¢f. [18]).
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