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Step 3. “Translation” of the singular values of 4 to thosc of B
by a diffeomorphism ag. ‘

Step 4. Construction of the final homeomorphism.

Indeed, after Step 3 we find

(13) oy Aaya, = (a(t, ), w).

Using Step 4 of Part I, we represent the right-hand side of (13) as the
composition Bp, where ¢ is a diffeomorphism H — H. Thus

(14) o Aa,e, = B,
which is the desired equation.

4. Stability of the methods introduced under a perturbation of g

Under a ("-perturbation of 4 in the sense of the metrie in H, our analytical
results of Step 1 carry over to study perturbation problems.
Indeed, we prove

THEOREM. Under a switably restricied C*-perturbation of A, the number
of solutions of the perturbed problem is exactly the same as in (2), mway
from a neighbourhood of the singular values.

Moreover, in this case, the solutions of (2) are acourate approvimations
to the perturbed problem.

The proof is based on a careful analysis of the steps in Part I above.
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1. Index theory for elliptic differential equations

Let M be an oriented Riemannian manifold of dimension n, and SM the
covariont sphere bundle of differential forms of “length” 1. A linear differ-

M
Fig. 1

eﬁtial operator of order m, operating between smooth sections of ¢®-vector
bundles & and ¥ over M of fibre dimension k can be written in local coor-
dinates in the form

4= D aa)D",

laj<m

4 \1 o \*n
where ©e M, D*= D1 % := (-52—) (W) y lali=a+ ... +a,
1 n

and @, a matrix valned C®-function. 4 is called elliptic if

o(A)(@, &)= D a,(@) &1 ... £n e GL(E, C)
Jal=m
for all (v, &) e SM.

3 — Banach Cenfer t. X

[33]
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It A is closed, it is well known that

kerd := {u e C* (M, B); Au = 0}
and
coker A := 0% (M, F)[A(0(M, E))

have finite dimensions and that their difference, the inder indA of 4
is stable under small perturbations of the coefficients of A. The same holds
for compact manifolds with boundary, if additional elliptic boundary con-
ditions are posed (ef. §3).

Bounded operators on topological vector spaces say complex separ-
able Hilbert spaces with finite dimensional kernel and cokernel are called
Fredholm operators. Their index belongs to a series of integer valued topo-
logical invariants which have been largely examined in the context of
geometry, complex analysis and “analysis situs”, as

— the Euler characteristic of stereometry, i.e. the alternating sum

2(M):= D (1Y
7
where v; is the number of j-simplices for a given triangulation of a compast
topological space IM;

— the Betti numbers f,(M):= dimH (M, C) in homology, counting in
some sense the numbers of “holes of different dimensions” in a topological
space with the relation

2(M) = D] (—1)9,(M);

— the genus g(M) of a Riemann surface M in the geometry of complex:
algebraic curves, which can be interpreted as the number of “handles”
attached to a sphere 82 in order to obtain the surface M and which satisfies
the relation

¥ (M) = 229 (M);

— the winding number deg(f) of a continuous map f: 8' — O\{0}
counting the number of times the path “goes round” the origin;

— the local indew I,(x) of a vector field v: M — THM in the theory of
ordinary differential equations, expressing the local mapping degree of v
in points # € M where v(2) = 0, thus giving a characterization of different
types of singularities of dynamical systems;
— the number of fized points L(f) of a continuous map f: M > M of
a topological space M in itself.

In partial differential equations, it was F. Noether who found in
1921 that a certain singular integral equation, arising from the elassical
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Riemann~-Hilbert transmission problem (cf. § 7), has non-vanishing index.
Since the early 50ies when Hellwig discovered that some differential oper-
ators of mathematical physics have non-vanishing index and Vekua
‘was able to express the index of the regular oblique boundary value probleny
in the plane by purely topological means, there has been continued
interest in the index of elliptic differential problems.

The key result in that field is the formula obtained by Atiyah and
Singer [10], [17], which takes the following form in the “system ease?”,
when the above mentioned bundles # and F are trivial:

ind4 = (—1)* [ o(4)wA n*r.
SM
Here, w is a differential form on the Lie group GL (%, C), which is eanoni-
cally defined like a “world constant”; o has to be lifted to a differential
form on SM along the map

o{d): SM - GL(%k, C).

The “Todd form?” 7 is a differential form on M defined in terms of the
curvature of the Riemannian manifold M which has to be lifted to a differ-
ential form on SM, too, along the mnatural projection n: SM — M. One
integrates over SM the (2n—1)-dimensional component of their alternating
product.

More refined formulas were obtained in the bundle case. As to elliptic
boundary value problems over the compact manifold X with boundary ¥,
similar formulas hold when extending the domain of integration from S8X
to the closed manifold SXUBX|Y and lifting o back to that manifold
by a continuation of the symbol defined explicitly by the boundary condi-
tions (cf. § 3).

In fact, the above mentioned, and roughly speaking all integer valued
topological invariants can be interpreted as indices of the Cauchy~Riemann
operator 0/0z, the Liaplace operator 4 or of other standard elliptic differ-
ential operators associated with the underlying complex or Riemannian
structure of the spaces involved. Moreover, the famous classical theorems.
on these invariants can be obtained as special cases of the index theorem.
E.g. the index theory reproves and partly generalizes
— the Gauss-Bonnet theorem of differential geometry

@m( [E+ [s) =2(X),
X ¥

where X is a compact Riemannian surface with boundary ¥, K the total
Gauss curvature of X, and s the geodesic curvature of ¥ in X; ,

— the residues theorem of complex apalysis which in simple situations
takes the form (2mi)~1[f~1f =degf = N()—P(f), it f: & —C\{0}
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is a differentiable approximation for the path f, and if f is a ﬁn}te Laurent
series approximating f, and N (f) is the number of zeros and P( f ythe mum-
ber of poles of f in the interior of the unit circle, counted with their re-
spective multiplicities; )
— the Riemann—Roch—Hirzebruch theorem of algebraic geometry which
in its most elementary form provides the relation

=T (P) = 18| —g(M)+1,

where @ is a “divisor” of degree |9} on a Riemann surface M, i.e. a finite
set of points on M with positive or negative multiplicities adding up to
atotal of |#]. g(M)is the genus of M, and I(#) is the dimension of the linear
gpace of meromorphic funetions on M with zeros and poles as preseribed
by &, U(9) being defined in a similar way;
— the Poincaré—Hopf formula

D L(@) = x(3)

xeM

for the number of singularities of a vector field » on a manifold M weighted
by the “local indices”;
— the Lefschete fiwed point formula

L(f) = D) (—1) trace HYf

for a continuous map f: M — M, if
Hf: HY(M, C) — H(M, C)

are the induced homomorphisms in the cohomology;
— de Rham’s theorem

dim H?(Q(M)) = B,(M)
in the “Hodge theory” of Riemannian manifolds, which gives an iso-

morphy between the space of “harmonic” g-forms on M which can be
identified with the gth “cohomology”

H“(.Q(.M')) 1= kerd,/imd, ;
of the complex
Q) 02 2 o B ... > o) >0
of exterior differential forms, and the gth singular cohomology of the

underlying topological space;
— the Noether—Muskhelisvili index formula for singular integral operators,
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e.g. of convolution type over the half axis
Wyut):= [ fi—vu(rdr, uecI*(R:), >0,
[}

with feIL'(R) for which one has
ind(Id+W;) = deg(f+1),
where f is the Fourier transform of 1

— the Vekua formula for the Laplace equation on the dise with boundary
conditions given by a non-vanishing vector field &/0v with winding num-
ber p:

ind(a/%v) =2(1—p).

Moreover, index: theory has been applied to a wide range of problems
reaching from number-theoretical problems [37] to the determination
of the number of parameters entering the gemeral self-dual Buclidean
Yang-Mills configuration with a given topological charge in non-commmu-
tative gauge theory of quantum field dynamies [10].

Many of these applications yield examples for “using the Atiyah—
Singer theorem, one of the deepest and hardest results in mathematics,
to prove a series of perfectly elementary identities, which can be proved
much more easily by direct means. This may seem to be a rather pointless
course requiring justification”, as noted by Hirzebruch and Zagier [37].

They explain why many aspects of index theory are still presenting
an “enigma to the members of the mathematical community, for their
puzzlement or entertainement as the case may be” and merit method-
ological attention as follow:

“Of course, one can defend it simply by saying that both the number-
theoretical and the topological ideas involved are important and far-
reaching ... The Atiyah—Singer index theorem probably has wider rami-
fications in topology and analysis than any other single result: — and
therefore any relationship between them, however nebulous, cannot fail
to be of interest. Nevertheless, it would be nice, and would possibly have
important consequences, if one could understand the real reasons for the
relationship. ”

2. Comparison of the various proofs

Opposite the widely diversified and hardly comparable approaches to the
different above mentioned special and earlier index formulas, we can
distinguish two major directions in proving the general index theorem,
namely roughly speaking, whether K-theory is essentially used or not.
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K-theory is a cohomology theory especially shaped for the investi-
gation of homotopy invariant aspects of manifolds, i.e. locally linear spaces,
and is made up of stable equivalence classes of vector bundles instead
of simplices in “orthodox” singular homology and cohomology. For a short
account see [32]. The main theorem of K-theory is the Bott periodicity
theorem

E(M) =~ K(MxR), M locally compact,

which can be interpreted as a parametrization of the Noether—Muskhelifvili
index formula, identifying the space K(R?) of “clutching functions”

f: 8 - GL(%k, C), ¥ large,

for bundles over §° with the space K(point) =~ Z of winding numbers.

There exists a global version of the Bott theorem for compact complex
manifolds, namely that the tensor product for-vector bundles which induces
a Ting structure on K (M), via the projection, makes K (Z'M) a free module
over K (M) with generator [¢(3)], where 3 is a certain invariantly defined
“classical” differential operator on M, the Riemann-Roch operator.
Here TM is the cotangent bundle. The isomorphism

E(M) - E(TH),
[E] = [B]-[0(3)]

can analytically be realized by comstructing to every F a generalized
Riemann~Roch operator 9 with “coefficients” in . Modulo torsion,
the same isomorphism holds for all compact oriented Riemannian mani-
folds of even dimension, if one substitutes the Hirzebruch signature oper-
ator D+ for -g.

The three geometry-guided proofs elaborated by Atiyah, Bott, Patodi,
and Singer are closely related to one of these Bott theorems respectively:
The standard Bott periodicity states that from the point of index theory
essentially there exists only one elliptic operator on a sphere, let us say
of Wiener—Hopf type or equivalently (see§7) of standard Riemann—
Hilbert transmission type or whatever, and that all other elliptic operators
on the sphere can be “deformed” into these standard operators, if not
on the symbol level, so on the K-level. This yields the index formula in
the Euclidean case for operators being the identity at co. The general
formula for an arbitrary manifold M follows by embedding I/ in Euclidean
space and applying again the Bott theorem (in the Thom form)

E(TH) =~ E(TX),

where N is an open tubular neighborhood for the M embedded and T'N
is considered as a complex vector bundle over T M. '
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That proof (from 1968) was shaped after Grothendieck’s proof for
the Riemann-Roeh—Hirzebruch theorem, and is conceptionally the most
elementary proof since it is based on its very heart on the notion of Wiener—
Hopf operators only — and on the concept of pseudo-differential operators
permitting the necessary deformations. However, the conceptional sim-
plicity has to be paid by the rigidity of the embedding procedure which
generally will destroy possibly present symmetries or other nice features
of the original operator, if e.g. the embeddings are not complex algebraic.

The original proof (from 1963) is hased on the global Bott theorem
for complex manifolds which shows, roughly speaking, that the Riemann—
Roch-Hirzebrueh theorem is not just a special case of the index theorem
but a typical one, containing the general case. Since every even-dimensional
manifold is “cobordant” to formal sums of spheres and complex projective
spaces, one has in a certain sense only to show the Riemann-Roch theorem
in those standard cases, and then to combine the results. The performance
of the caleulations claims an arithmetic virtuosity, demonstrated earlier
by Hirzebruch, which is not always sufficiently transparent, however.

The “heat equation proof” (1973) is conceptionally and technically
the most advanced proof of the index theorem involving some ideas on
parabolic equations and a great deal more differential geometry. It is
based on the global Bott theorem in its generalized version, executing all
the caleulations with classical operators directly on the manifold, with
every operation bearing its concrete geometric meaning, and expressible
in ewrvature terms or in characteristic classes.

These three K-theory based proofs are compared in greater detail
in [17). They were supplemented by the work of Fedosov [30], [31], and
recently by Hérmander [44] and also Rempel [57], who were able to obtain
the index formula in the Buclidean case by straightforward calculations
for operators with arbitrary coefficients. The caleulations are in spirit
«closely related to the performance of cancellations of higher derivatives
‘when having regard to the very concrete form of the operators involved.
Thus they have removed the K-theory from the scene totally, since Hor-
mander had earlier in [43] shown a way how to procure the embedding
Pprocedure, investing more analysis instead of using K-theory. The use of
K-theory in index theory is, however, as natural as is the concept of
vector bundles and homotopy classes of matrix-valued functions for
analysis at large (cf. the historical note [35] by Graunert and Schneider).
Thercfore the challenge of the Fedosov—Hoérmander approach is found

‘less in the puristic concept of avoiding K-theory than in the explicitness

of the caleulations which shed new light on the interaction of analysis
and topology present in index theory. (Note that on the other hand,
Atiyah has in [6] given an idea of proving the index theorem, by the use of
much more refined topological means, avoiding pseudo-differential operators


GUEST


40 B. BOOSS AND B.-W.. SCHULZE

altogether. These deformation methods for polynomial symbols and related
vector field problems of “hard” topology were elaborated by Lusztig
but unfortunately not published.)

3. Elliptic operators of the Boutet de Monvel class

The above remarks about the index theory show that the corresponding
methods have contributed not only results about topological questions
on elliptic operators but also new aspects about the analytical properties.
This concerns also elliptic boundary value problems, and the interest
is not only confined to a proof of an analogue of the index theorem. In con-
nection with the usual theory of elliptic boundary problems in sense of
[1], [46] and the papers [18], [28], many open questions arise (a part
of them of more technical nature). In order to discuss such problems,
we recall some notations and definitions about a class of operators de-
seribing boundary value problems.

Let X be a compact C*-manifold with smooth boundary ¥
(n =dimX). If ¥ is a complex vector bundle over X, we denote by
0® (X, E) the corresponding space of smooth sections. Analogous notations
are used with respect to ¥. By B we denote the class of operators of the
form

rA+rB K\ C°(X,B) (X, F)
(1) A = : @ — @

e gl ox,q) =T, @

introdueed by Boutet de Monvel [18], [19]. Here B, F and J, ¢ are complex:
veetor bundles over X and Y respectively. r+A is a pseudo-differential
operator over X satisfying the transmission property, »'B a Green operator,.
7'T" a trace operator, K a potential operator and @ a pseudo-differential
operator on. Y. As usual the operators are described by homogeneous
principal symbols o(4)(z, &), ¢(B) (o', &, v, 7), o(T) @, &), oK),

o(@) (@', &), and the order of o(4) has to be an integer a. The nota-
tion (&, ) means a decomposition of a covector near ¥ into a tangent
and & normal component & and » respectively (a Riemannian metric.
on X is fixed), and = is an additional variable in R.

If ¥, denotes the Fourier transform on the #,-axis R (¢ = (, @,)
near ¥ in local coordinates), we put H+:= T, (& (R;)), Hy := F, (#(R-)).
Here #(R,) denotes the space of Schwartz functions on the half axis
Ri, infinitely differentiable at the origin. Let H’ be the space of poly-
nomials in v, H™:= Hy ®H', H:=H*@®H". By IT*: H - H* we denote
the projection along H~ and by II’: H - C the map with II'h:= 0
for heH™ and II'h:= lim p(,) for h:=F,p, ¢ e &(R;).

n
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If the given symbols o{4), o(B), o¢(T), o(EK) belong to an operator
in B, they are over ¥ clements of H, (H} @Hy, Hy, HF) for & # 0 with
respect to » or (v, 7). Let SY be the cosphere bundle over Y induced by
the Riemannian metric and p: 8Y — ¥ the canonical projection. Then
the bundle morphism

to(4)+1T'6(B)  o(K)\ p*(H*QE)  p*(H*QF)
@) ople) = e - @
IT's(T) o(@) T 76

(B :=FH|Y, F':=F|Y) is called the boundary symbol of «7; for details

sec [18], [62], [58], [54], [69]. In conmection with this tmmmol(m'}

we call o(4) also interior symbol of o7 (6(A) =: oo(), Q:= X\T).
The eomposition (if defined) of operators in B belongs to B. The compo-

sition corresponds to compositions of interior and boundary symbols.
If

(3)
are the orders of ‘homogeneity, we assume a—1 = orde(B), i.e.

o(B) (2, 18, 1y, tr) = 0 (B) (', &, »,7), ©>0.

a=ordo(d)eZ, y:=orde(T), i:=orde(XK)

Then «/ has a continuous ewtension as operator between Sobolev spaces

(4) o BY(X,B)QETMY,J) -~ H(X, QB Y, &)

(t:=s—a, s sufficiently large), In the definition of the scalar products
in the Sobolev spaces we have fixed Hermitian metries in the corresponding
bundles.

An operator o €B -is called elliptic (or an elliptic boundary value
problem) if both op(4): a*B - o*F (n: TX\N0 - X) and op{#) are
isomorphisms. The standard properties of -elliptic operators in B (elliptic
regularity in Sobolev spaces, Fredholm property, index theorem) have
been investigated in [18]. The index theorem for elliptic boundary value
problems for differential operators was proved in [8]. The Fredholm
property and elliptic regularity of more general operators of a matrix
form similar to (1) (without the transmission property) was studied in
[14], [78], [74], [78], [78] (cf. §5). _

Suppose that an elliptic symbol ¢(4): »*H — #*F is given satisfying
the transmission property in the above sense. Then

(5) I+o(A): p*(H+*Q@F') - p*(H+*QF)

is a family of Fredholm operators over S¥. Thus we get an index element
(6) indI*e(4) e K(8Y).
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The condition
(7) indIIte(A) ep*E(Y) (p: 8Y = T)

is necessary and sufficient for the existence of an elliptip operator & € B
with o,() = o(4). For & in the form (1) and ¢(4) = go(A4) ecan be
eagily proved

(8) indII*o(4) = [p*G]1—[p*J].

Tf V is a vector bundle over a space, we denote by 1, the identical bundle
morphism. In the case of a trivial bundle of fibre dimension N we write
also Iy. The set of symbols o: #*B — n*F (w: TXNO — X) on X with
the transmission property with respect to ¥ which are homogeneous
of order m shall be denoted by A™. By ™ we denote the set of all
elliptic symbols in A, By G shall be denoted the set of all elliptic
symbols o in A® for which there exists a neighbourhood U of ¥ in X
(depending on the symbol), so that o is independent of the covector &
.over U (this means ¢|U is an isomorphism of bundles over I'U including
the zero section). For ¢ e & we have obviously ind[It¢ = 0. In [18]
is proved the following

PROPOSITION 1. Let o e € gnd indIIto = 0. Then there exwists an
integer N >0 and a homotopy ¢@® Iy ~ oy in € so that o, belongs to V.

This is a consequence of the next theorem. Let y be a real non-negative
C*-function on Ry := {f{ > 0} with

_Jo fori<e,
X(t)'_{l for ¢ > 2¢

(e >0 is fixed and sufficiently small). Put

3(8) := z(1€1/1ENIE]-

‘Then the symbols (&) 44 (defined near Y) are elliptic and have the
transmission property.

The symbol 2:= (3(&)—1v)(6(£)+4iv)~* is also defined near ¥ and
elliptic. Any vector bundle over ¥ can be lifted to some bundle over
a tubular neighbourhood U (=~ ¥ x [0, 1)) of Y. We use the same letters
for objects over U defined as pull backs with respect to a projection
U — Y. Thus we have over U elliptic symbols #*-ILug, 2 Iy (J, G

€ Vect(Y)). One can prove (cf. [18])
Ind I+ (87 Lwg) = [p*G], ndIT*(z-1,s;) = —[p*J].

TeroREM 2. Lot o € €. Then the following properties are equivalent:
(i) there ewist bumdles J, G € Vect(Y) with

{9) indII+e = [p*G]—[p*J];
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(ii) there ewist bundles J,, Gy, L € Vect(Y) and in a neighbourhood U
of X a homotopy through symbols in E©

s 0 o *Lyug, 0
~gq
0 Ly 0 2+ Ipsy,

with [p*G]—[p*d] = [p*@,]—[p*J,)] and & bundle isomorphism a: B'®
@L—~V'DL.

(For a proof of Theorem 2 cf. [28], [63].)

CoroLLARY 3. Let o e G Then condition (7) is equivalent to the
existence of some integer N >0, so that there ewists mear ¥ a homotopy
o@ 1y = o, through elliptic symbols (not necessarily in G9), so that. o,
belongs to GO,

To any o e G® one can assign a difference element d»(o) ¢ K (R® X
% 8Y) (cf. [18], [62]). The above statements are then closely connected
with the following

TueoREM 4. If f: K(SY) > K(R*xSY) 4s the Bott isomorphism,

(10)

then

(11) B(indIT+o) = dy(0).

A proof of this theorem is given in [59]. It is similar to the analytic
proof of the Bott periodicity theorem (given in [47]). Theorem 4 is an
essential part of the proof of the index theorem for boundary value prob-
Jems given in [18]. Introducing an Abelian additive group EI(X,Y)
of equivalence classes of elliptic operators of the form (1) ([59], [62])
one can formulate the index theorem as follows:

TaroREM 5. There exists a homomorphism

(12) d: BlU(X, ¥) - E(TQ)

{Q:=3X\Y), so that ind, =ind,od. (Here ind,: EIl(X,¥) - Z and
ind;: X(TRQ) - Z are the analytical and topological index respectively.)

4. Some problems about boundary problems

‘We can now formulate a question concerning an immediate generalization
to the G-equivariant case. Suppose that an action of a Lie group ¢ on X
is given, inducing an action on Y. Then we can consider G-invariant
elliptio operators of the form (1) ([38]). An analogue of the corresponding
index theorem is not yet proved. Such a generalization geems to be not
obvious gince the corresponding versions of the Theorems 2 and 4 are
not trivial ([60]).
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Theorem 2 is also of independent interest. It means that near ¥
there exists a collection of typical symbols, so that the stable homotopy
class of an arbitrary symbol in % can be represented by such a simple
symbol. This fact enables one also to prove the following

TrEoREM 6 ([63]). Suppose M is a dosed compact manifold, M
= XTuX~, where X= are compact submanifolds with common boundary
Y (XtnX~ =Y). Let A: O°(M, E) -0 (M, F) be an elliptic pseudo-
differential operator on M satisfying the transmission property with respect
o ¥. If «2* are elliptic operators on X* of the form analogous to (1) wilk
operator part

rEA; C°(XE, BE) - 0% (X5, FE)

in the left upper corner (B* : = E|X+ ete.), then there exisis an elliptic pseudo-
differential operator S on Y such thai

(13) inds/++ind o~ = ind § +-ind «7.

In some sense this is a counterpart to the following so called Agra-
novié-Dywin formula ([2], [18], [62]).

TuEoREM 7. Let X be a compact smooth manifold with boundary Y
and oAy, A B elliptic with og(Ly) = og(f). Then there ewisis an elliptio
pseudo-differential operator B on Y with

(14) ind o, —ind o = ind B.

I o, is fixed, the choice of an elliptic operator R on Y depending
on o so that in case of ellipticity of o the formula (14) holds is called
a boundary reduction of s£. A boundary reduction is possible also for
certain non-elliptic operators in B. In such cases one obtains on ¥ oper-
ators R for which the ellipticity degenerates on a subset Z of Y ([65]).

Another question about elliptic operators in B concerns adjoints
with respect to Green formulas. If we have an elliptic operator

o (X, B)D0®(Y,J) - 0°(X, HO0(T, &)

with o,(#) = o() and if o*(sZ) is the adjoint of o(sf) with respect
to fixed Hermitian metries in B and Frespectively, we can ask for an elliptic
operator

2% 02X, F)@0”(Y, Gy) -~ 0%(X, B)@ 0= (Y, J))
with o,(#*) = o*(&) and operators
#: (X, F)@0°(Y, &) —~ 0 (X, F)®0~(Y, &),

&1 (X, B)@0=(T, J) ~ (X, @0 (X, J)
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in B, so that

(15)

for all
fe0?(X, B)®0=(Y, ),

(LS, Rg) = o(Ff, og)

g€ 02X, )@C*(Y, Gy).

Here y and o are Hermitian sealar produets in the I*-spaces H (X, F)@®
@H Y, @) and H'(X, B)®H'(Y, J,) respectively.
Bxpressions of the form (15) are deduced in [64], [66]. The Green

Jormulas for classical elliptic boundary value problems ([46]) are express-

ions of the type (15). One question is how to arrange the constructions
in [64] for general elliptic operators in B, so that the classical Green for-
mulas are reproduced in some sense. Green formulas for boundary problems
are useful in the investigation of more precise regularity properties in
Sobolev spaces with p £ 2 and uniform estimates ([64]). If W*Y(X, E)
denotes the space of distribution sections in F belonging locally to the
Sobolev space W27, the regularity of elliptic operators in W?* (L < p < o)
means that

(16) of: WP( X, B)@® WP (Y J) = WPHX, F)@ WPs—r~Un(Y, @)

(with :=8—a,1/p' :=1~—1/p) is a Fredholm operator (a:= ordes(4),
yi=ordo(T), A:=ordo(K)) ([69]). This implies the corresponding a
priori estimate.

In the proof of the Fredholm property of (1) the symbolic caloulus
(specially for the boundary symbols) ([18], [68], [69]) is an improvement
from a methodical point of view. It gives more insight and simplifies
many things in the theory of elliptic boundary value problems. Under
such a point of view it would be also interesting to have an analogue
of the Schauder estimates for elliptic operators in B, which are not yet
proved.

In connection with the usual theory of classical elliptic boundary
value problems a lot of other things should be generalized to the class B,
for instance speciral properties of the study of problems where boundary
conditions have discontinuities ([28]), sometimes called mized boundary
walue problems.

The general index formulas for elliptic operators on closed compact
manifolds or for elliptic boundary value problems are sometimes rather
“theoretical”, i.e. it can be difficult to calculate the index explicitly.
On the other hand there is a lot of papers in which special cases are investi-
gated (e.g. in [2]). It is desirable to collect systematically the results
and methods and to enlarge the classes of examples. One should compare
formulas of Vekua, Calderon, Seeley, Fedosov and others and try to find
interpretations with simple geometrical meaning.
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5. Further Fredholm mappings connected with elliptic
pseudo-differential operators

If X is a manifold with boundary ¥ as in §3 and if a pseudo-differcntial
operator
17 r+d: C°(X, B) - (C*(X, F)

is given satisfying the transmission property and having an elliptic symbol
o(4), it i3 quite obvious that (17) is in general no Fredholm mapping
(this is true only for certain special cases). In order to connect with (17)
a Fredholm mapping one defines (if possible) additional operators »'T, I, @
(trace operators, potential operators and operators on Y). This gives
rise to the class of operators in 8 and the concept of ellipticity. We men-
tioned a necessary and sufficient condition for the existence of an elliptic
A €B with oo(H) = o(4), namely (7). The investigation of Fredholm
mappings connected with an elliptic symbol is an interesting general
question and not limited to the above special situation. We shall discuss
here some aspects of this problem.

Let «Z €B be an operator of the form (1) with an elliptic interior
symbol o, (7). Suppose that the boundary symbol is bijective only over
Y\Z, where Z is a smooth submanifold of ¥ of codimension 1. Then one
can ask for the existence of an operator

rtA+rB K Ky C°(X, B (°(X,F)
@ @

(18) #T Q@ K,|:0°X,J)— ~(¥,&
@ @

I, T, @ 0°(Z,J,) 0°(Z,Q)

which is a Fredholm operator. Here J,, G, are vector bundles over Z.
The existence of a Fredholm operator (18) means that one can define
additional conditions, namely trace and potential conditions with respect
to Z so that the corresponding problem has a parametrix in the C®-gpaces.
In [65] is given a construction of Fredholm operators of the type (18)
under certain conditions about the nature of degeneration of the Sapiro—
Lopatinskij condition of #7. The method in the construction of (18) is
a reduction to the boundary which yields an operator on ¥ with degener-
ating ellipticity over Z. One has then to investigate so called nierior
boundary value problems on ¥ ([69]). The question in general is as follows:
Given a pseudo-differential operator 8: C*(¥, J) — 0 (Y, @) on a closed
compact manifold ¥ which is elliptic on ¥\Z, where Z is a submanifold.
of ¥ of codimension k. How can one define a matrix of operators

8§ K c°(Y,J) C*(Y,&)
: @ - &)
VAN 1 0*(Z,Jd")y ©0*(Z,6)
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which is Fredholm (J', G’ suitable vector bundles over Z)? The answer
gives a solution of a corresponding problem with degenerate Sapiro—
Lopatingkij condition over Z ([65]).

Interior boundary problems (for % = 1) have been considered by
many authors (e.g. [69], [27]). The case % > 1 is clear only in very special
cases. Moreover the type of degenerations of ellipticity considered in the
papers mentioned should be generalized. Such problems can also be studied
in various distribution spaces. Extensions of the operators with respect
to suitable norms preserving the Fredholm property are not so simple
as in the elliptic theory. In the simplest cases one is led to subelliptic oper-
ators ([25], [26]). A classical special case for the situation of degenerate
ellipticity of the boundary conditions is the oblique derivative problem
([13]).

Another problem of independent interest is how to connect with
an operator (17) a Fredholm problem, if the condition (7) is not fulfilled.
Tor certain special important operators this problem has been considered
in [9]. One should study systematically the phenomenon ind I7+¢ ¢ p*E (X )
under this aspect, because many simple differential operators (such as.
the Cauchy—Riemann operator) arve of this kind. The study of problems
with degenerating Sapiro-Lopatinskij conditions could contribute a new
agpect here. If boundary conditions can be formulated for the given
elliptic operator such that the ellipticity degenerates on a submanifold
Z of Y of the desired type and the corresponding interior boundary value
problem can be treated, then a Fredbholm problem can be found by adding
new conditions over Z. At this point it should be useful to treat also micro-
local versions of the constructions given in [65].

In the usnal theory of elliptic boundary value problems it is a stan-
dard assumption that the boundary has codimension 1. But in the
analysis the study of elliptic operators in more general open sets is of con-
siderable interest. There exist many papers devoted to this question under
various aspects ([67]).

From the point of view of general elliptic boundary value problems.
the class of bounded domains 2 is comparatively simple for which the
components of §2 are C*-manifolds of dimensions n—kfor k =1, ..., n.
Boundary problems for such domaing are usually called problems of Sobolev
type. In [70] boundary problems are studied for the polyharmonic operator
A™ in a bounded domain in R", where on the components of 12 the normal
derivatives of the solution are prescribed up to an order depending on
the codimension %, the dimension n of 2 and m. General differential
operators and general boundary conditions satisfying an analogue of
the Sapiro—Lopatinskij condition are treated in [71] where also the exist-
ence of ‘a parametrix is proved. Various K-theoretic aspects and-the
index of problems of Soboley type for pseudo-ditferential operators are
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discussed in [72]. One has then operators of matrix form similarly as
in the msual theory (cf. also [50], [51])

4 K H(X, B) B(X, T
L (&) - )
T Q) XEHZ, ) X H(2y, &)

where Z, denotes the component of 902 with dimension k. Here J;, and
@, are vector bundles over Z;. The orders in the Sobolev spaces are fixed
and depend on the orders of the operators, the dimension of X and of %.
TUnfortunately the last papers are partially unintelligible, and some
propositions are not proved. Thus it seem to be still a problem to build
up a systematic Fredholm theory for Sobolev type boundary problems
inelnding the topological aspects. Also further analytical questions are
of interest, motivated by the theory of ordinary elliptic boundary problems
discussed in § 3, such ag the symbolic caleulus (for boundary symbols),
the algebra of operators and the type of the parametrix of a given problem.
The operators in the case of Sobolev type problems are considered in
Sobolev spaces with fixed orders of derivatives. The clags of boundary
problems for a given elliptic pseudo-differential operator depends on the
choice of these orders (this shows a connection with the question of remov-
ability of singularities of solutions of elliptic equations). The correspond-
ing effects should also be studied more systematically. Moreover regular-
ity in I* and in Holder spaces can be studied and the regularity with
respect to other uniform norms ([67]).

Next we return to the case of smooth compact manifolds X (n
= dim X) with boundary Y of dimension # —1. Given an arbitrary elliptic
symbol (homogeneous of order a) o(4): a*E — a*F on X without the
dransmission property, one can consider corresponding operators

(19) reA: H(X, E) - H*(X, T).

Here Hj(X, H) denotes the subspace of those elements in (X, B)
with supportin X (X is an open neighbouring manifold of X of dimension »
and B a vector bundle over X with B = B|X). Operators of this type
and corresponding Fredholm problems

r4 K H(X, B) H(X,F)
(20) o = : @ - @
"I Q HAHR(Y, ) B (Y, G)

(f = s—a) have been studied in [28], [73], [74], [76]. The operators K
and 7T are defined by homogeneous symbols o(K) and ¢(T) respectively
{4 :=ordo(K), y := ord o(T)) and @ is a pseudo-differential operator on ¥.
The Fredholm property of «/ is ensured by an analogue of the Sapiro-
Lopatinskij condition. The form of the operators K, #', T and @ depends
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essentially on the choice of s. Important analytical properties of the oper-
ators of the form (20) are studied in [28] and in the mentioned papers
of Vifik and Bskin. On the other hand some interesting things are not
complete. Here, questions analogous to those in §4 can be raised. The
properties of composition and the type of parametrices of operators (20)
should be studied, and besides the symbolic caleculus and continuity prop-
erties of the correspondence between the symbols and the operators in
both directions.

One should prove also the index theorem analogous to the correspond-
ing Theorem 5 in § 3 for operators (20). For this some properties of stable
homotopy classes of elliptic operators of the type (20) are needed, specially
properties about deformation of elliptic symbols similar to Theorem 2.
A further question consist in an analogue of the necessary and sufficient
condition (7) to o(4) for the existence of an elliptic boundary problem
for (19). One can ask for theorems of Agranovié-Dynin type and of type
of Theorem 6. Finally the investigation of elliptic operators 7+4. for which
elliptic boundary problems (20) do not exist and the construction of suitable
other Fredholm theories ean be a program for further studies.

6. Unique continuation

An operator A over a connected paracompact Riemannian manifold M
operating between sections of vector bundles ¥ and F over M has the
wnique continuation property, if every u eker A vanishes automatically
on the whole of M, if it; vanishes on an open subset Q = M. Without the
condition of global solvability, we may define A having the local umique
continuation property at the point @ € M, iff there exists & neighbourhood
M’ of z in M such that A|M’ has the unique continuation property or
more precisely: Au|M’ = 0 implies w|M’ = 0, if € 0 (M, E) vanishes
jdentically on an open subset @ < M'. ’

By definition the local unique continuation property for all points
implies the global unique continuation property, but not vice versa. For
differential operators of order m the unique continuation property (u.c.)
can be reformulated via the Cauchy boundary value problen, e.g. demand-
ing that all local solutions Aw|M’ = 0 vanish on M’, if they fulfil in
loeal coordinates the conditions

Y .
(% ) %=0; j=0,...,m-1,
n

along the hypersurface #, =0 (ef. also [21]).

Since Holmgren (1901) has obtained the u.e. for differential operators
with analytic coefficients, it has been repeatedly conjectured that u.c.
holds generally for elliptic equations with sufficiently smooth coefficients.

4 — Banach Center t. X
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But Pli§ showed with a series of counterexamples that all these conjectures
were false. Nevertheless several sufficient and a few necessary conditions
for u.c. were established, see e.g. [15], [21], [56].

Some of these conditions are formulated in terms of the dimensions
of M and F and of the order of A ; others gain their information from
a careful analysis of the distribution and multiplicity of the complex
zeros of the operator’s symbol in different directions or from a priori
inequalities for the operator. The mutual interrclation between these
criteria, however, has not been systematically investigated as yet.

In the context of index theory we want to point out a problem posed
by Schwartz [68] which is still unsolved, namely whether w.c. for an
elliptic operator 4 implies w.c. for the adjoint operator A*. Malgrange
[47] has given some criteria under which u.c. holds simultancously for 4
and A%, and most of the criteria given in the literature for w.e. of A vield
automatically u.c. for 4*. But this is niot true for all criteria.

Why is a unified theory still missing which would connect the isolated
bricks of our knowledge of n.c.? Some of the inherent difficultics are
apparently due to the non-homotopy-invariance of that property which
for example follows from the fact that we are able to approximate all
coefficients by analytic ones. Moreover, one of the Cohen [23] counter-
examples (but without C*-coefficients) having the form

Av:= LBy—a(@) Du =0

indicates that w.c. is definitely not dependent on the top symbol alone.

Fig. 2

So it might be interesting to reexamine the whole problem by more refined
topological means, starting with one aspect, e.g. ag in [16] with a theory
of relative indices

indx(A) := dimkery(4)—dimkery (4%

icm
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where X is a submanifold of M of codimension 0 with smooth houndary
Y and

kery(A) := {u; u eker4d and suppu c Jj’},
kerg(4*) being defined similarly.

If u.c. holds, dimkery (A4) vanishes. However, one easily finds pseudo-
differential operators with non-trivial kergx(4) and with indg4d =0,

e.g.if A withind 4 5= 0 has “support in X7, i.e. being the identity outside X.
Then one obtains suppu# < X for all » eker X and hence kery4 = ker A.
Similarly one obtains keryA* = ker A* and, in that case, indzd4 = ind 4.
In the same way, every boundary value problem over X with non-vanishing
index leads to an operator A over M with indx4 = 0. Moreover, the above
mentioned Pli§ example being globally defined gives even a differential
operator A with inded £ 0 where X is the upper halfsphere on the
sphere M.

Therefore the relative index indy(A4) is not meaningless, even if —
and perhaps just because — it reflects only one aspect of the unique
continuation problem. Its study, however, would require analytical and
topological methods beyond the realm of present index theory.

7. The transmission problem

‘We now consider two manifolds X+ and X~ glued together along their
common boundary Y, ie. a closed oriented Riemannian manifold M
with submanifolds X+, X, ¥ such that

XtUX =M and X'nX- =Y.

Instead of looking separately at boundary value problems on (X+, Y)
and (X~, ¥), it is quite natural to look at pairs of solutions u*, u~ defined
on X* and X~ with

Aut =0 on X* and Au” =0 on X,

imposing m “transmission” or “coupling” conditions for u+, ¥~ and some
derivatives of u+, 4~ on ¥. Here m is the order of the elliptic operator 4
on X. The ellipticity of the coupling conditions is then defined in every
point of ¥ by the Lopatinskij ellipticity conditions for the locally folded
up elliptic system A @A.

One may also consider the jump case where P splits in P+ and P~,
or a finite number of manifolds X9, X*, ..., X! glued together along their
common boundary. Motivated by an elasticity problem of civil engineering,
Picone [53] has generalized the problem to include situations where the
boundaries X+ and ¥~ of X+ and X~ have only a submanifold Z of codi-
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mension 0 in common where some trangmission conditions shall be fulfilled,
whereas on ¥Y*\Z and Y~\Z “traditional” boundary value problems
are posed. Schechter [61] and other authors obtained conditions under
which this problem which at the same time generalizes the intricate mixed
boundary value problem (cf. § 4), has a finite and homotopy invariant
index.

A closely related classical situation, with paracompact M = C and
. A = 0]9%, is given by the already mentioned Riemann-Hilbert problem

" where one is asking for a piecewise holomorphic function @ with @ (o) = 0

and the coupling condition

O+(t) = g(t) D™ (B)+h(t), teX,
if
O+(t):= lim @)
Z-,2eX T

and similarly @~ (f) : = ...and if g € C°(X), g(t) # Oforte ¥, and h e L*(Y).

It was shown by Hilbert that the function-theoretical transmission
problem can be translated into the singular integral equation

b
B,u:-—-—-a(t),u—}—-—%i)— f%dr:(}
Y

where ueI*(Y) and g = (a+b)/(a—b) since every solution of the Rie-
mann—Hilbert problem can be obtained by the Cauchy integral
1

(D(z) = m
Y

#(7)
t—7

dr

for u ekerB.

For several reasons the transmission problem belongs to the core
of the index theory:
(i) Historically it was the Riemann-Hilbert problem which lead
F. Noether in [49] to the discovery of non-vanishing indices for integral
equations — against Hilbert’s erroneous conjecture.
(ii) The topological character of the Noether—Muskhelifvili index
formula is most apparent in that particular case since one has simply

indB = deg(g).

So B is one more candidate of a “prototype” operator for building up the
whole index theory, like the shift operator or the other standaxrd operators
which served as examples and patterns in the K-theoretical proofs of the
general index formmula. Bojarski [14] has actually constructed “abstract
Riemann—Hilbert transmission problems” generating all Fredholm pairs
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(in the sense of Kato) in a natural way. This opens the possibility for a
purely analytical proof of the Atiyah-Singer index theorem for general
manifolds by induction over series of transmission problems thus uniting
the Fedosov-Hormander approach for complicated operators on simple
manifolds with the topological approach of emphasizing calculations for
simple classical operators on more complicated manifolds. Since in all

“transmission problems there is-an inherent unity of the topological and

analytical aspects, they may very well play a mediating role in index
theory.

(iii) We can interpret the transmission problems as being the ana-
lytical pendant to the topological problems of reconstructing a manifold
out of its pieces. Therefore it is not surprising that one meets challenging
topological problems along the way. This was discovered by Novikov and
Wall [77] when calculating the Hirzebruch signature of “composed”
manifolds from the signature of their components.

For a better understanding of the difficulties involved one could
follow [16] and replace the general transmission problem with a problem
which deals only with the closed manifolds ¥+, ¥~ which in turn have
a common submanifold Z of codimension 0 with boundary &Z. For pseudo-
differential operators over ¥+, ¥~ the ellipticity is easily explained even
it the operators are amalgamated over Z, and the usual index properties
are obtained; in particular, the index depends only on the symbol data
yt, -,  where 5+ and n~and { are isomorphisms between the correspond-

ing vector bundles over the covariant sphere bundles §(¥* \Zo), 8( Y‘\é),
and §(Z) with the coupling condition

£(82102) = n+\(8Z|0Z)Dn~|(82]0Z).

In [16] a series of conditions was given when one can disamalgamate
the symbol data by homotopies leading to two separate elliptic problems
on Y+ and Y- with indices adding up to the index of the original problem.
However, there exist topological obstructions against this deformation
argument, e.g. if Z is a cell of even dimension. Therefore one has to make
the necessary deformations not on the symbol level, but on the K-theory
level.

Actually, it turng out that one has to switch to the dual “homological”
K,-theory and that Atiyah’s theory [7] of “global elliptic operators”
applies. In the meantime Kagparov [45] and ihdependently Browm,
Douglas and Fillmore [22] have succeeded in determining the exach
equivalence relations on the global elliptic operators generating K-
It might be worthwile at this stage to tackle the index problem. for tmans-
misgion problems-again.
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