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1. Introduction

In this paper the following stationary free surface problem is considered.
Aheavy viscous non-compressible capillary fluid slowly moves in a container
under the influence of sources and drains which are concentrated on the
bottom. The free boundary of the liguid and the veetor of velocity are
sought for.

Let us give a mathematical formulation of the problem. By & container
we mean a modified semi-cylinder ¥V — R*® with a smooth boundary
S e ("2, 1 being a non-integer > 0. We suppose that V., = {z € V:a> 0}
=oxR, (@ =(@,%) co,5>0,0cRand V_= Y\ 7V, are bound-
ed domains and that the projection of ¥, onto the plane @, = 0 coincides
with .

The gravitational force is supposed to be parallel to the vector
(0, 0,—1) so that the domain @ = ¥ occupied by the liquid is determined
by the inequality ; < (@), o' € @.

The vector of velocity ;;(m) == (vl(w) , Ua(7), vs(w)) and the pressure
p(») satisfy in £ the Navier-Stokes system

(11) P+ (® Vo +Vp =0, V5 =0
and the boundary conditions

’—l; lz = 7;,
(1.2)

-

TR =0, S@m—n[m-8@m)p=0,
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] 9 0
g =(%;’%;%;)’
.?; = figr+fage+fogsy & =8n02,

I'=0\X ={zeV: o = @)} is a free surface, #is the unit outward
normal vector to 9@, 8 (3) is the matrix with elements %—I— gvj
Xy b;

. We
agsume that
suppa < §_ = {we S, m;< 0}
and
fa-nas =o.
s

The function @(2') satisfies the equation

(1.3)] —bp = W(=p+R-80) 8)|pyopeyy ¥ €0

.o
Vit |V
and the boundary conditions

th-;

(1.4) =y
Vit |Pel®

= cosf,
do

dp op\ > .
where Vp = (-8—51'"6;;)’ v = (vy,¥y) is the unit outward normal to

Ow, W, B, ¢>0 and 6 (0, =) are given constants. Finally, the function
¢ is subject to the condition

- (1.5) [oa)da’ =1,

[}

which is equivalent to preseribing the volume of the liquid.

The result of this paper is an existence theorem for the problem
(1.1)~(1.5) with a sufficiently small Reynolds number s.

The rigorous mathematical analysis of free surface problems for non-
compressible fluids takes its origin in the classical investigations of
cerfain ideal flows carried out by Helmholtz and Kirchhoff more than

hundred years ago. The basic tool in the analysis of such problem is the
theory of holomorphic functions.
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More recent investigations of free boundary problems for viscous
flows. are based on the theory of elliptic boundary value problems (see
for instance [1]-[3]) and on regularity theorems for weak solutions of
boundary value problems for the Stokes system in domains with smooth
boundaries [4]. The most convenient for mathematical treatment are flows
in which the free surface of the liquid has no contact with the walls of the
container. Such flows are considered in the papers [5}-[8], where the
solvability of corresponding boundary value problems is established
in the Holder classes O Tf the surfaces under consideration do have a contact,
then the line of the contact is, as a rule, a ridge on 22, In this case the
funection p () and the derivatives of ¥ (%) may have singularities depending
on the angle 6 of the contact. For 6 = =/2 the singularities vanish. The

. problem of this type is considered in [9].

The solvability of the problem (1.1)~(1.5) for arbitrary 6 € (0, =) was
first established in the two-dimensional case [107, [11]. The three-dimen-
sional case, that requires a somewhat more detailed analysis of a lin-
earized problem, has been treated by the author [12] and by V. G. Maz’ya,
B. A. Plamenevsky, L. I. Stupialis, whose paper is published in 1979 in

“the proceedings of a seminar on differential equations at the Mathematical

Institute of the Academy of Science of Lithuanian S8R (Vilnius).

Important results in the general theory of linear elliptic boundary
value problems in domains with singularities on the boundary have been
obtained by V. A. Kondratiev [13], [14], V. G. Maz’ya and B. A. Plame-
nevsky [15]-[19]. Nevertheless, up to the recenti time this theory was not
able to deliver all the information that is necessary for treating free
boundary problems. Therefore a significant part of the papers [11], [12]
is devoted to the analysis of a linearized problem under appropriate restric-
tions on the boundary 2Q.

A linearized problem is considered in Seetions 3-6 of the present
paper. In treating the reference problem in a bihedral angle we use the ideas
of V. A. Kondratiev [137, [14], V. G. Maz’ya and B. A. Plamenevsky [19],
{20] concerning the estimates of the solution in weighted L, and Holder
spaces and the definition and estimates of Green’s matrix. Section 7
contains the main theorem.

The results of this paper are more general than those of [12]. A few
propositions which have been only formulated in [12] ave now supplied
with proofs. Several proofs are simplified.

The results of the paper were formulated in the author’s lecture ab
the Banach Center semester on partial differential equations in 1978.
Tt is the hope of the author that the article will draw attention of math-
ematicians who are interested both in free surface problems and in the
theory of elliptic boundary value problems in domains with singularities
at the boundary.
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2. Auxiliary propositions

2.1. Notations and definitions. The following notations are used in
this paper:

V, 8, 2, v, Z, I are domains and surfaces defined in Section 1,
M =ZnT.

ds = R is the angle of the size 0 € (0,2x), ie. a domain 0 << 6
where ¢ = arctan(m,/o,) denotes a standard polar angle; y,, yo are the
half-lines ¢ =0 and ¢ = 0.

Dy = dg X R (& = (1, @) € dy, @ e R') denotes a bihedral angle
in R® with the sides I'y = yox BY, Iy = y,xX B! and edge M = I'\nT,
= {m e R, o, = o, = 0}.

K <e> (@ eDy: lo—&| <o}, £ Dy

— el <o), Eell.

Z (t) 13 an infinitely -differentiable monotone function with £(¢) = 0
for t>> 2 and ¢(t) = L for i< 1.

@) (I>0 being a non-integer) denotes the space of functions
defined in a domain ¢ < R" with a finite norm

W@ = [+ D) 1D°ulg,

la]<l
where
oy
— Cpy —
a=(Gyeeny tn), Du a1 ... ouin’ laf = a;+ ... +ay,

Da a
oo = suplo@l, [ = 3 smp T oD 20ON
2eG o [I] 566 |2 —yi

C(@, F) (F c @ being an m-dimensional manifold, m < n) denotes
the space of funections defined in @\ F and having a finite norm

],z sup @4 (@) [ D%u (w)| 4
G(G’F) l¢112<lmEG\F )I

+ sup ¢%(x) sup (D%u(w)—D%u(y)) o —y|B"
|a1§[z]we0\3' lr—v)<ie(x) (@)= Dl yl
where o(») = dist(z, F). )

(@, ) (I > s > 0, 1, 8 being non-integers) denotes the space of func-
tions with a finite norm '

Wy = WIS+ D) SUD -2 (o) D*u(a) +

AN

- Du(x) — D u(y)|
+ sup ¢*(a) sup @) DUyl
It%:] ZeGN\F le-yi<ielz) o —y =
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Clearly, Co’ﬁ(G, F) is the subspace of C}(@, F) consisting of funetions
vanishing on F with their derivatives up to order [s]. For s < 0 assume
06, I) = O(G, F).

02(@, F) is the set of all infinitely differentiable functions vanishing
near F and also for |¢| » 1 (if @ is unbounded).

H’;(G, F) (k being an integer > 0) denotes the completion of oy (G, F)
in the morm

il = D=t 2010 o)
H]li(g’m (0<%;kéf )
Lz,}n(G: F) = H(;);(G: 7).
H.(G, F) denotes the completion of 05°(&, F) in the norm

“u”HL(G,F) = ( ¥ |Deuf* D do+
lal<i
1Du(2) — D°u(y)*dy \*
+ 2 f o (x)dw 7 — gt
la|=0] & lz—yi<ielz)

H%!(D,, M) (+ being an integer >0) denotes the completion of
07 (Dy, M) in the norm

My 2 12
H",,(Do.m) '

[W"Hk,t

D =( e
o (Dg, M) “~ Ord

For the spaces whose elements are vector functions the same notations
are used.

The spaces H: were 1ntroduced and used for the study of e]hptw bound-
ary value problems by V. A. Kondrat’ev [13], [14], the spaces 0’ by V. G. Ma-
z’ya and B. A. Plamenevsky [16].

2.2. Imbedding and extension theorems, interpolaﬁon inequalities.
In this section Dy = R 2 X dy = R*: (B -y Bys) R (By 1y @) € dlgy
Ty, Iy, M are the sides and the edge of D, (for n = 2 Dy = dyy Iy = 70,
Ty = yo), & = (1, +.vy Bpa)y L(z') e Cm(Rn—l):

suppl < B, = {&% -+ ... +0 o+ (¥ —20) < 0%}

¢

LEvvA 21. If g(a) e Oy(Tyy M), then v(@) = [ L(E)p(a'+ &x,) a6
By
€ C (Do, M) and the following estimate holds:

(2.1) lo lol(D M)\ Cq ltplcf,(rn,m'
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If p(#") e CY(R™Y), then v(x) € O(RY, R*Y) for oll v > 1 (R% is a half-
space m, > 0) and

(2.2) l”ior(Rn -l S < Glolcirn-1)-

Proof. For all f and o, |o| >0, we have

(2.3) Diu(a) = Y [ Dio( +&w,)L,(8)dé,
17/=181 By
2.4) D*o(a) = a7 D' [ [Dho(a' + fv,) — Do (@)]1L,,(£) a&,
171=18l By
where I,, L,, e07(B,), fL £dE = 0. Since =Vl +a

~ :‘up( @, _, -+ £x,) for w,_,, ®, > 0, we easily derive from (2 3) the estimate
(2.1) B0 [0l 3, < olPlotny (i 9 € O'(B').
Taking now in (2.4) 18] = [I] we obtain
1D+ (@) < oy 1 [p TG

and consequently (2.2).
In the same way the following lemima can be proved

LuvmA 2.2. If g e Gf;ﬂ (I, M) with some integer j <1, then

5= fl: (@' + £o,)dé < 8Dy, M)
and
15l 8105, 020 S OVl gt an°

For n == 2 estimates of this type are established in [11].
TemorEM 2.1. For amy o e 0 (I, M), 4 e Ol -1 (1, M), §

8—3
= 0,..., [l], there exisls a function u e 5,5 (Dy, M) satisfying the conditions

/AY o\
(_i%) Ulp, = '9”1(’0)7 (‘5%‘) %|p, = ’(p)

and the inequality
¢l

2.5 R < @) (6)
(2.5) 18] g2y < © j;o(l«pj |t 0 ™ 17 13, 2

with a constant ¢ independent of 1p§°), w?.
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Proof. We may assume (without loss of generality) that PP = 0.

Take
3]

(2.6) u(o) = f(p) D) v;(a),
=0

where f(g) is & smooth function which equals one for 0 < ¢ < & and zero
for @ > min(n/2, §) —& (e < $min(=n/2, 0)),

—1 :
. O doy

= Nt RS () —
?Jj(m) j! B{ L(E)(p](m +£Wn)d§7 [ P ';}6/ am Lﬂ=09 Po Po -
The function (2.6) satisfies the necessary boundary conditions. The
estimate (2.5) follows from Lemma 2.2.

TemoREM 2.2 [18] If e HE(D,, M) (k being an integer >0) and.
la| < k, then

Duu]poeH[fj-lul—112(fo, M) end |D° u]IHk tol=112zy 20 cl]u]lﬂkw "

For any v e HEI (I, M), ¥ e Hy ™ W2y, M), f=1,...,k—
—1, there ewists a function u(s) eH (DQ,M) satisfying the conditions:

o\ 2\t
—_ = ¥ —
(3”)uro W (a’n)u

k-1
) . (6)
058 0 < 60 3 (195Nt y 1 sy )

g
—1P§)

Ty

and the inequality

For the proof of the second part of the theorem formula (2.6) may-
be used.

TrmoRmM 2.3. Suppose o e HE(K,(8), M), ueCL(E, (&), M). Then.
for any e (0,7), j <k, i <1 we have

jk;
(2.7) “"J”Hk—g(z oS <s IlvHHk(Kr(b‘m+018’ H'UILL,,,‘(K,.(E),MN

I
(2.8) {u] + e, [1 +(ﬁ;_lf_|) e]]l“lle(K,r

< &lul,

A-impoan 1 BlE,an

Proof. The norms

23

( D Do (e (a)o) i]?—_z(z,@))m,

lal <k

[ug~*12 5+ Z IDE(QM_S’M)IK,@)‘F[’“']%),(s)

s<lal<?
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(it s <0, [u]‘s) should be omitted) are equivalent to the norms HE(K,(#))
and CL(K (K, (&), M). Therefore (2.7), (2.8) follow from the well-known
mtelpolatmn mcquahmes [21]

(Y 1wl " <& S M0 0l en) 4 66 ™ 00l

lal=m Iﬂl—m—{—i

1— (i
[wz]gc,,?) € [’wz]K (5)+ 48 =i "/Z)sz“z;za{,@),

2 D% Wyl py < & 2 D% w3 g ey 056~ ™2 sz, e, 09

laj=m laj=m+1i
w18 < & [0 0+ G bl n ™,
where w; = 0", Wy = g%, wy = ug™ .
THEOREM 2.4. For arbitrary u € OFX(Dy, M), D, = R® the inequality
(2.9) |DPu2']% <

holds under the conditions

< Myt

: k
a>p—x, "=k—ﬁl'ﬁz“’(ﬂs+1/2)m“‘1>0

(the constant ¢ may depend on suppu).

Proof. It follows from the estimate (15) in the paper [22] (with n = 3,

g =00,Py =Py =Py =03 =2,1; =1, =k I, = k1) that for zubltrary
v € O (Dy, M), #' < % we have
1/2
]

Setting » = u|2'|* we get (2.9) after simple calculations.

wo@i<anr| [{ 3 wrowi+| S

o Ivi<k

a TRt

2.3. Certain transformations of the domain 0. Suppose that
8 =0Velh, pel(w, fu), >l >0>1

THEOREM 2.5. For a certain d >0 and for every & e # there emists
o transformation T of the domain Q4(&), onto a subdomain of the bihedral
angle D formed by the planes tangent to X and I' at the point & with the
properties:
' T e 03 (Dg M)y T Loy € 02y, 000,

or
(2.10) @) =& — =1,

oz =g
where 0T [0 is the Jacobian matriz of the transformation T, I is the identity
transformation, o, < w i8 the projection of I'y = I' 0 89,( &) onto w.
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Proof. Assume that £ = 0 and that the @,-axis is parallel to the normal
vector to X at this point. Let the domain ¥ be defined in a nelghbourhood
of the origin by =, > h(w,) eG (A) where h(0) = %'{0) =0, 4 =[—d,
d,]. Bxtend h(z,) at first to R' (so that h e C1(R")) and then to B by the
formmula

h(wy, @) = [ L(0)h{s;+tas)dt

where L(t) is the same function as in subsection 2; suppL c [a, 3a].
Suppose that a is so small that

3a
(2.11) [ m@asup v ()] < 1;
a ZeRr!

then |0h/0wz,) < 1.
Consider the transformation ¥, given by

(2.12) @y =Yy, B = Yo+ (Y1, ¥s)-

By Lemma 2.1, V1 € 0’,3 (B, B") for any I; > 1, and in virtue of (2.11)
V, maps R2 onto the doma.ln @, > h(®,) and is invertible. Let Ty = (Va0
#,); Ty e G'Z ([2,1, 8). This transformation maps X; = XN 8Q,(&) onto a sub-
domain X’ of the tangent plane to X and I; onto the surface I given
by the equation y; = ¢1(¥') = p(V1y") erf(B A), where B = {y’ e B :
y'] < o}, @y < dy and A is a rectilinear parb of oB*. Let us extend the
function @, at first to BZ and then to Dy, = {y; € B, 9y, ¥5 > 0} setting

' 1+[l2] 9 '] — s
o) = c( )2 Ak¢1(m(d2—7ﬁ)), WS da

f%(y + &)L (HdE, Y eRL, 4:>0,

‘where f L(&)¢déE = 0 i =1,2, and %, satisfy the equations

1+{la]

1 s
Y a( ) —v et

k=1
It is easy to verify that ¢, € C}f(D,:,z, B, ¢,(0) = ¢, (0) = 0 and
]%lclzw S cllpﬂclzw_,, &
Let the number @ > 0 be small enough in order that

Z [ (51 6a5sm a;f”l

3=1 By

<1.

24 — Banach Center t. X
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Then the mapping V, given by
& = Y1,

SRAG)
B3 = Yz — Z?/i“‘g—g_‘

i=1

2y = Y2,
2
O
+?’1(?/1y Yas 2%7&.}‘
=1 g

maps D = {y eR: y, >0, 1 J3<Zyz ?;1

2 >0, 2; < ¢,(#')} and has an mverse Vil =1T,.

The transformation T = T,0T, is the required ome; (2.10) follows

v v,

q 1 =1, Vy( = I
z=0 0 |ymo
Theorem 2.5 pelmits us to define in a standard way the spaces

oz, ), CUT, 4), 0’(2 MY, Cé(]1 ). With the help of the results

of subsection 2 we can prove the following
TeeEoREM 2.6. Let 1<y, s<o. NV ATRTA

€ O"’ (I'y )y § = 0, ..., [1], there emists a function u e c! (2, M) satisfying
the condmo'n,s

_‘y3)
£=0

} onto the domain {#, e R',
=0

=0

from the fact that V,(0) =0,

For any v € = A0

S st Hu o ,
2 Ml Wyyeo By 72— | =Y, 5| =Y
on' |z T =1 VU Oy Oy | ' |p
and the ineguality
U]
(2.13) Iu]éﬁ(ﬂ:l/) < ngol (I‘I’jfé;:?(z;ﬂ)—*— 11/)”02:?(1":«//))
with a constant ¢ independent of vy, v;.

THEHEOREM 2.7. Let ¢, ¢’ eGZ (co o), @, =Ai>0, ={weV:
s<o@)}, @ ={oeV:an<o @)} If jp— qalozz( iy < 8y, then there
ewists a transformation X e GZ"(Q’ MY R — Q such that Xy =y forye S_
and
(2.14) B N A

Proof. TLet V, = ox (0, o) and let B(€), &'(&) €C2(Vy, doy),

= {z e V,: z, =0}, be extensions of ¢ and ¢’ from o onto V. satisy-
ing the conditions

oD op’

95| | &

(these extensions can be defined with the help of operators f Ln)g

<1, |®— qjlclz(y . )\01|<P—‘77’|012(w,am)

oz +
+nz;)dn with a small ¢ > 0 and with use of partition of umty in w).
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Tf 6, is sufficiently small relative to &;, then the function ¥(§)

= @' Z( ES)—,—@(I Q( )) which coincides with @' for y; < 6; and with

& for y, > 26,, also satisfies the condition | —
3

<1

The transformations U and U’ given by
By = &1y By = &y B3 = P(E)— &,
@y = &1, By = &y W= F(§)— &

are invertible and map V. onto the demains o3 < (s') and z, < ¢’ (@),
7’ € w. For & > 26, we have Uf = U'& The transformation X = vyt
with an appropriate 8, is that which is sought; the estimate (2.14) follows
from the formula X —1 = (U0 T

3. Auxiliary problems on the plane

Consider in dy = R? the boundary value problems:

(3.1) Ve =f, Uy, =0, %7‘,:0:
— VW +Vp =}>, 7o = 7,
(3.2) Thy =0, by =22 =0,
Lo %o

TamorEM 3.1. For arbitrary feHE(dy, 0) (k being an integer = 0)
the problem (3.1) has a unique solution
u & H2 % (dg, 0)
and

(3.3) ll“lﬂz+k(d oS “f”Hk(d o’

T ,
(¢ does not depend on f), provided 1-+k—p 7 (m "r%)i with an integer m.

(f1: fe) € d@, 0), reHjﬁ‘“(d\,,O)

TeEOREM 3.2. For arbitrary f
the problem (3.2) has a unigue solution

7= (vy,v) e HE2(d,, 0), peHi(d,0)

and

64 g,

1Py < ST gt g 30,0
provided 1+%—p # Reo where o # 0 is @ root of the equation

(3.5) sin20c = osin20.
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Both theorems can be proved just in the same way as Theorem 1.1
in [13]. We give a short proof of Theorem 3.2. Write the problem (3.2)

in polar coordinates o & (0, o0), ¢ € (0, 0) (see [23], Ch. 2.) Applying the
Mellin transform with respect to g,

fa,9) = [ ¢*fle, 9)de,

we obtain a boundary value problem on the interval ¢ € (0, 6)

a2 dw I
_'__*+(1+/12) +2% —(1+i0)g = Fy,
dzw dg
3.6 - + (1442 2—- — =
(3.6) G TR =2
div e B
% —]“(1—7/}.)1} = R,
- . - - dp
(31) vl¢=6=w]¢=0=07 wl¢=0=£¢_o=0 .
where §, i, §, Iy, #,, £ are the Mellin transforms of v,, v,, 09, 0%f,, 0%, 7
correspondingly, v, = v,C08¢-+v,8inp, 9, = —2;8ing--v,c08¢.

The system (3.6) can be reduced to

(3.6") dX/dp = AX+P,

where X = (§, %, §,# = di/dp), P = (0, B, F,+ dR/dp, 2R — F')).

The corresponding homogeneous problem (P = 0) has non-trivial
solutions if ¢ = — 44 £ 0 is a root of (3.5). If 4 5 i, the problem (3.6), (3.7)
has a solution for arbitrary P. Suppose that the line Imi = & is free of
points 1 = {o; we show that in this case

i)
dg®
diq
dgt

24k df'{')- 5
~ +
P

(3.8) Z(HW‘“"-” f (‘ =

i=0

2)d¢+

1+k 2

+ D) (L AP f

=0

1+k

<e {2 (14 ape+s

=0

where ¢; does not depend on ReA.
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Tt is sufficient to get this inequality in the case &k = 0, since the
estimate of the derivatives )
atiep at+ig d'g
can be obtained from the equations (3.6).

" For [ReA|< R (R» 1 is arbitrary) (3.8) follows from the representa-
tion of solutions in terms of Green’s matrix [24]. In the case |[Red| >R
we make use of the “energetic relation”

8 ~
a5 P dip | . - dw . s . -
l— ——1+(1+AZ>(lv12+1w12)+2(—@;o*—%w*)—qle*]dw

8
= [ @5+ o
o
where a* is the complex conjugate to a. From this relatiQP and from (3.6)
we easily get .

/]

2 i |2 1 & 2:
6o [[D %I(HMW*‘”H _\"‘(1+w“2-” d;l +! N |

ce,[N VN VIR (fmxz ) ]= .

Now multiply the first equation of (3.6) by a[u(p) W™ |dg] |dp,
for 0<<op<O-1/|4],
121(8—g) for 6-1/A<@<P

and integrate with respect to ¢ e[0, 6}. After simple transformations
we find that

ulp) =

B - 1

dp<eN

and consequently
6-1/1A]

[ laPdp+1AP) < .

]

Further,
’ 12 S-1A 12
vy ( [ wrae)" <o [ iatap)
01/ 0-2/1| :

114

]

d 2 -

+1+1M>I’2(f it ; La }) <eVN.
/14

0
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]
Hence [ [q°dp(L+1AP) < {6+ ¢)N. This inequality and (3.9) imply (3.8).
0
Tntegrating (3.8) over the line ImA = % and using the Parseval formul
we get (3.4) with p =1+k—h. -
4. Reference problem in spaces H%(D,, M)

We now proceed to investigate the reference problem

(4.1) —V%+Vp=Ff, V-o=r,

-~ - 6’01 51}3
4.2 = o = = —_— —
(42) Vlppg = @  D2lp, b, 2@, |r, 17 & |r, 2

in a bihedral angle D, = R3. It is equivalent to the problem with the
boundary conditions

Tlry =18, Valy, =b, SEYA— (@ 8@, = d’
(@ =0, & = —dy—08b] 6wy, dy = —dp—0b[0m;).

4.]1. Weak solution. Consider the problem with homogeneous
boundary conditions

oy
0%y

_ vy

(4.3) Vlp, =0, 77211'0 =0, 5 = 3_56‘2

Ty

Let M(D,) denote the space of real-valued vector functions in Hy(D,, M)
satisfying the boundary conditions ;lfe =0, %], = 0 and let J(D,) be
the subspace of divergencefree vectors '3 e M (De). Define a weak solution

of (4.1), (4.3) as a vector 2 e M(Dy) satisfying the equation Vo =rand
the integral identity

3 = -
- > ov - -
(4.4) [5,71= ) f%—;idw= [T i
i=1 Dy  * P Dy
for arbitrary ;7) € J(Dy).

TaEOREM 4.1. For arbitrary f €Iy, (Dyy M), reLy(Dy) the problem
(4.1), (4.3) has a unigue weak solution ; moreover, there exists a unique function
p € Ly(Dy) such that

(4.5) 0,91— [f-pdo= [pV-pds, VgecMD,).
Dy

Dy

* ©
lm SOLVABILITY OF THREE-DIMENSIONAL BOUNDARY VALUE PROBLEM 375

For v and p the following estimate holds:

(4.6) + Plyop < (1 Ny g3 + I ly(op) -

[lo ”H(l)(DﬂaM)
Proof. If follows from the Hardy inequality
1%, _opan < 400,81, Yo cM(Dy),

that ff 97(14); is a continuous linear functional in Mi(D,) and [» , o] may be
consigered as a sealar product in M (D,). Therefore the existence of a weak
solution of the problem (4.1), (4.3) in the case = 0 is a comseguence
of the Riesz representation theorem (see [25]). Taking 7 = v in (4.4)
we get

flv ”Hé(Do) < 0y \f gy y0p. 200 -

Let :f — 0. It is possible to prove just in the same way as in [26]
(Lemma 2.5) that any linear funetional I(p), ¢ € M(Dp) vanishing for

7 € 3(D,) may be represented in the form 1(g) =Df qV-EEdm, q € Ly(Dy)
(]

and its norm is equivalent to |lgllpp,. Hence the formula [4, p] =
f Aw-V $ dw defines a linear bounded invertible operator A: M(D;) ©F (Do)

ﬁLz(De) whose range is Ly(D). Consequently there exists a vector
TeM(Dy) ©J(Dy) satistying for all % eM(D,) ©3(Dy) the relation

[ ran = [,5]= [AuV-3do.
Dy Dy

It is easily seen that o is a weak solution of (4.1), (4.3) with f: 0 and
that [;J), 3] < czurllizw 5 Lence, the existence of a weak solu:n)ion E proved.
Now the functional in the left-hand side of (4.5) vanishes for ¢ = neJ(Dy);
therefore (4.5) holds with some p € Ly (D). The estimate (4.6) follows from
the boundedness of A.

THEOREM 4.2. If 6"‘?/6:0;’” €L, (Dey M), 7y |0a € Ly(Dg)y m =1, ...
ceey by then

oo o
T e Hy(Dy, M), P € Ly(Dy)
3 3
and
at%" 2 atp 2 ( gtf 2 oty |2 )
—_— e |||I— FH— .
&1 o || EiDaID o} Lz(pe)\ | oat L, 1(Dg ) % || z,0p)
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If § e By (D, M), 7 € HEN(D,, M) for some integer %3 0, then

v e HEH(Dg, M), p e HEEH(D,, M)
and

48) 01 - lpl? <a(lfiE 2 .
(48) | ”HIIEE(DB'M)T ]Lpnﬂﬁiwa-m < cz(”‘f”Hi‘H(De,M)_l_ ”r”Hz’Ei}(Da-m)

Proof. (4.7) follows from
I ZHOT] P VAL 99
< o (145 (0) F Iy 20+ 145 (W) 71 )

i
where 4i(R)f() = 3 (—1) (;) F(@yy @2y @;-+jB) is the finite difference
i=o
of order ¢ with respect to @,; > 0 is arbitrary.
To prove (4.8) we use a “local estimate” ([3], Theorem 2.11)

410 3 [p%fde+ Y [1DpPas

laj=i+2 2 lal=i+1 @
<ol Y 676 [ DFpawy Y g6t [ iD*rPam+
lal<i 2, laj<i+1 2

4§22 f I—';Ide—l- §—2i+1) fl?izdm)
2 )

where 2, « 2, Dy, 02,0 M = B, 5 = disb(2y, D\ 2,) > 0, i < & (the
boundedness of the integrals in the left-hand side is a consequence of

regularity theorems for elliptic boundary-value problems and of the
results of the paper [4]). Let

0 = Ui = weDy: 2" o] < 27, m2¥ <, < (m+1)2%,
Q= Uy = {weDp: 27 < |o'| < 22, (m—1)2' < @, < (m+2)2%,
6 = 21,

By a linear transformation of arguments it is not hard fo prove that ¢,
does not depend on J, m. Multiplynig (4.10) by 2%, summing with respect

tol,m=0,+1,..., i =0,...,% and taking into account (4.6), we
obtain (4.8).

4.2. Solvability of the problem (4.1), (4.3) in H%(D,, M).

THEOREM 4.3. Let the numbers k = am integer =0 and u>=> 0 satisfy
the condition

(4.11) win (Reoy, 7/20) > 1+k—pu > 0,

where o, is the root of (3.8) with the minimal positive real part.

e ©
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Then any solution v e H(Dy, M), p e H*(D,y, M) of the problem
(4.1), (4.3) satisfies the inequality

— o2 2
(412) X = ilvllﬂi+k(po,m+IIPHE}‘M(DB’M)

< T I, 27+ Wiy a) = OF

Proof. Suppose that u e [0,1]. By applying the Fourier transform-
ation with respeet to o

fa,9 = [ 1@, a)e sdn,

the problem (4.1), (4.3) takes the form
op

— V"%, + 825, + 2, =f, a=1,2,
(£13) — V%, + E%,+ 18D = fi,
Do Doy igs, -7,
0wy 0wy
. N . N by, 00y _
(414)  Bily, = Balyy = Bslyy = 0, G2,y =0, % 0 - —3?2 % =?

. , 0 0
Transpose in (4.13) the members containing £ and consider (4.13),
(4.14) as problems (3.1) for 4, and (3.2) for 4,, §,, p. In virtue of (3.3) and
(3.4), for all j = 0, ..., k we have

e L Fe 2,
!lvll;iﬁ(m) +12 H;l‘ﬂ‘(d 0) < o{llf ”Hl]‘ @0 +lr []H‘I'+7(de’0) +
+& [I’E“zﬂz,‘.;.j( dn0) + &5 ";]j‘ @ T & lif’]l;i (ae,o));
hence
e = 7 (B+1-9) 7112
o 41— 5
(415) x<cz[;0‘ _fm giter ”nungﬁmdﬂg .{, 3 I]pHH{‘(dmo)dE]

- 2 2
< 6 [T 0T M1, 0+

© [ e [ 1 B B P
—o0 dg ‘

i > 9 JAgiy
where 5.1 = |5, "+ 16,
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Note that w = §&'|%, ¢ = B |#'|* satisfy the system

o 0
_Vlzwa+5-wa+?mg‘=gai a=1,2,

— P w,+ Ewy+18g = g,

ow, 0w,
0wy + 05

2
. o0
g = I [f“+ "””'|_2ﬂ(waﬁ—ﬂ5a——2 g a)]’
g Omg
2
el F -8 . 0%
g5 = o l“[fs—[m | H(MDB+252; g —358_1)]’

2
b= @ Pfr+ 1o ) o)
p=1

-+ z&wa = h

with

and the boundary condition (4.14). Therefore for every complex-valued

-

1 eTL,d,) and
ma

satisfying the boundary econditions ;ﬂ,,o =0, 7|,y =0 the integral
identity

(4.1 — > —
(4.16) f [ﬁéd omg 6m,,+§2w q(aml o, 'ofna)]dw f R

dg

vector 7 = (71, N2, 7s) € Lo(dy) having derivatives

is valid (for complex-valued vectors 3 . ;; = g11} + 275 +g575). To estimate
theright member of (4.15) we substitute into (4.16) ﬁ = % and then ﬁ = ;';,

where % is a weak solution of (4.1), (4.3) Withf = 0 and r = ¢. Making use
of the inequality

| [ eeaz [
e i

<| f ghag f H Im’lz"dm’)l’z( f§2k+4d§f1;7’;24w’)1/2+
[ f g2 g f(4!'uzl + 1B+ |2 1—21,0‘ )dca ]1/2

—0a

X Ei(k+l)+2ud£ 2 1007|242 Foot 112
[_i d_{ 71" 1o'] w]
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and taking into account that, in virtue of (4.7),

J‘ 2+ gg f (15;12_1_52 Ial2+[m'l_2 lilg)dwl
—00 dg

<e f gt g f gl da’,

~00

we obtain (after elementary calculations based on the Holdel inequality)
the estimate

@in [ etag f ([, 12 + £ 0" + gI*) Ao

<e {f&ﬂ"dff |.ﬂ +§2|r12){w 22 dp' -

—0a

+xk[ f gomag [ (s B4 B0+ o 15 2]
8ince

f g2rn-2ge f 1@] 0| da’

—c0

< Xl[(ﬁ—ﬂ) ( f Ezk'}-&—”l‘df f l ‘ dmr)(l—ﬂ)l(z'l‘),

—00

the i.nequalities (4.15) and (4.17) yield
T<aIFe

g0 a0, 0°+
+ [ eema | (5l + 22150+ 1511 aw'].

The functions o % and 7 also satisfy the identity (4 16) (Wl‘b]l f instead of

g in the right member). Taking in this 1dent1ty n = fn and thenn = 1p,

where 1p is a weak solution of (4.1), (4.3) with f = 0, r = p and repeating
the above arguments we geb

[ gmersmag [ (G + &5 1+ 15
—c0 dg .

F ' ¢ (k+2—2 T r— r\12
<[ IF s, m+nfnﬂl,iwmm(~£ plr2 g afsm o'~ |

+“T“Hﬁ+1(DB,M)(_ DJ; gl -2ugr d{ |1’3|2dm')1/2]-
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Thus
oy ¥ + X,
which implies (4.12).
Let y > 1, the numbers p' = p—[p] €[0,1) and &' = k— [u] satisfy
(4.11); therefore

1s +lipl

<6Y.

HZ—Hc (Do) L (g, 01

The higher order derivatives of v, p are estimated in the same way as in
Theorem 4.2; this leads to (4.12).

TeroREM 4.4. Let (4.11) be satisfied. For avbitmryf e HE (D,, M),
r e BN Dy, M), & e HEF(Ty, M), b e HEVR (T, M), d e HEF (T, M)
the problem (41), (4.2) has & wnique solution v e HZY*(Dy, M), p
e H;*(Dy, M) and

(£18) 10l esn gy py+ B, o,

<ellf ”Hﬁ(ﬂe,M} + ”TuflﬁH(Ds,M) +la ”H,’j“’z(ra,m +

+ ol

o
1
stz an l& 1IH§+1/2(P0’ M)) .

Proof. Theorem 2.2 allows us to reduce (4.1), (4.2) to the homogeneous
problem (4.1), {4.3); it remains to prove its solvability at least for f

€ 0P (Dy, M), r € C(Dy, M). By Theorem 4.1, the problem (4.1), (4.3).

has a solution and 0% 0zt e Hit2(D,,

3+l
t>0 and j =0, ..., k. Therefore

M), &'p|owk e HI(D,, M) for all
oty Fip

W}' '67;1 € Ly, (Dy, M) "Ly (Dy) = Ly (Dgy M),

¥ = p—Ipl.
From (4.13), (4.14) (which should be considered as problems (3.1) for

7, and (3.2) for &, #,, ) We may conclude that v e H5¥ (D,, M), p
e HU¥ (Dy, M) with ¥ = k—[u].

Fmally, repeating the arguments of Theorem 4.2 we prove thab
v e H;V%(Dy, M), » eHL“‘(DB, M

4.3. Local estimates.

TeEOREM 4.5. For a solution v € HE*(D,, M), p e HEHY(Dy, M) of
(4.1), (4.2) with k, u satisfying (4.11) the estimate

(£19)  olgriae 0T Wlgiie 0

< 01(#) Lo+ 0y (%) (07" ”;”Lz’ (Egoan e Pl SE D,10)

icm°®
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48 valid in an arbitrary domain

K, (&) = {meDs: lp—& < g}

witﬁ EeDy, o> ¢ |E'| = 0 and with arbitrary = (0, 1). In this estimate

+flal

1
+3/2 s
HET32(0x 0 T 0)

+Iirll

o
Ty = “‘qu"ﬁ(Kg(E),M) Hﬁ"'l(KQ(E),M)

+1 uE,;H,Z oz, 0 Tp20 + l{dﬂﬁrfs/z(mgnrm w'

Proof. We establish (4.19) by means of a method presented in [27],
§19. Let y, € 07 (R®) be a function satisfying the conditions y,;(z) =1
for |o— &< o—A, p(®) =0 for o — §1> e—Al2, Dy (x)] < e, a7 for
a fixed 4 € (0, o). The functions u = 'ugu,., g= py; are a. solution of a prob-
lem (4.1), (4.2) with right members %f —2(Vy,- V)-z; -7 Py, ete. Applying
t0 %, g the preceding theorem we obtain

(4.20) “;“Hk”(xe_a ™ ”pHH"i“(KQ—;.»MI
“““HH-(D m+”q“zr,’i+‘(Do,M)
R+l :
< cs{T M+ ];: 2y, ”H’(KE A2s2) +§ "k—lllpllﬂj(Ke llﬂ'M’},
where
B+
J_ZO‘ lj_k]lfuﬂj /s, M)_;_Z ).f»k—llf’uﬂz(x T
Rl N e
_'_321 2T 1"””111'4-1’2(); . m+j;: Vi llbllﬂi-x-llz(x N Tg. ) +

3
1 kg
T 2 4 "d"zz{fl’z(xenrom )

i=0
Mo estimate the norms of ¥ and p in the right-hand side we use interpola-
tion inequalities (2.7). For any & e (0, 1) we have
E+1

];0‘ lj_k -2 HU ”H] (K 22 0, M) < & ”’U "Hk-}-- (K

k1
21’ M’“Hj(x i M)

e ACT ] AR

”PHBIH—I(K +05(3)1 k- HPI[L;,,,,,(K 3Dy -
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For sufficiently small ¢ this leads to the imequality F (1)< 4F(4/2)+
-+ K (2) for the functions

__ akd2
P) = 0 e o+ Pl )
and
K (2) = (T (2) + [0y o+ Wllzy o0 %) -
Since K (A) is non-decreasing, this inequality yields f(1) < 2K (4). Taking
A = xp we get (4.19).

TEROREM 4.6. Let the conditions of Theorem 45 be satisfied and Tet

>

v 2 &y T+l
e HE(Dy, M), ——- e HEY(Dy, M) for m=0,...,%. Then
oxf oy
ot |1 t
& &p |
@21) (o || s +l_1: i
O B A g 3D) || O ||y 2D
£
m—t 2ot (o —1—F~
<o Z; " (e 1Lz, go,an+ €7 D1y 0 000)
o
where
| eF o |
" oo ek o.0n ' || o H,’i“(KQ(f).M)—’—
| &a &b | omd
Om ||EE P, n 1y, 1) Oay || mE+3 e, 0.y, ) I o |2z ynrg,an

Proof. Let 1> %> 2 > u,>1/2 and let RB,(K,_,,) denote the left
member in (4.21). In virtue of (4.19),

ByE, ) < 6T+ 0By 3 (Byp o) 0 <o

e—x;e

¢
< csZQQ_th‘i‘ cs@—tRo(Kg~x29)

g=1

i
<o }j T+ (e T gy o+ 07 Bz, ) -
< s

Remark. For a fixed K,(§) the estimates (4.19), (4.21) are valid
under the weaker assumptions that o cHEY (K, M), p e HYYY(E,, M)
or v e HEP (K, M), p e HYWEK,, M).

iocm°
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5. Reference problem in CO’Q(DB, M)

5.1. Green’s matrix for the problem (4.1), (4.3). In this section we
define Green’s matrix for the problem (4.1), (4.3) and obtain exact pointwise
estimates for its elements with the aid of Theorem 4.6. The idea of using
Jocal estimates for solutions of elliptic boundary value problems in the
investigation of their Green’s matrices is quite familiar (see for instance
[231).

The estimates of Green’s functions for reference elliptic boundary-value
problems in a bihedral angle were first obtained by V. G. Maz’ya and
B. A. Plamenevsky [19]. In the article [20] these authors announced
estimates for Green’s matrix of a boundary value problem for the Stokes
system with the boundary conditions ?;Jag = 0.

Tn what follows we give an extended exposition. of the contents of
Section 6 in [12].

We recall that the fundamental matrix of the Stokes system is the
matrix of fourth order with the elements

Zyy(w) = s_ln'(’lamﬂfr%)’ B, =1,2,3,
Zylo) = Zu(0) = Jss  Zul@) = 3l0)
(8(w) is the Dirac function) satisfying the relations
3
_sz,c,.+%if = 8;8(2), 2 i}i’: =0,
—V2Z+ ZZ‘ =0, k; Zz‘ = 8(x).

Define elements G, of Green’s matrix ¢ by the formula
(5.1) Gu(@,y) = y(w, NZg@—y)+ G5 @,y), @b=1,2,3, 4,
where v is an infinitely differentiable function of both variables; for

each y € Dy, w(®,y) = 1 in a neighbourhood of ¥ and (@, y) = 0 near i
and for big values of |z|. The functions G, are solutions of the problem

— VG (@, )+ VG = 2(Vy-V)Zy(a—9) + V92— 2 V',
V-G = —Vyp-Zy@—y),

&, lsery = — 9Ly (@ —Y) lgerys G;blzel"o = — iy luerys
oqy opZ oa, opZ,

(5.2) ) _ Wi , 30 - - 30 ,
Oy zel'y Oy zel’y O, zel'y Ty |zely
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where Gy (2, y) = (G, Gus Gl Dy = (Zypy Znyy Zp)y ZusVp = 0, V con-
tains derivatives with respect to .

The following properties of G, may Dbe easily deduced from the defi-
nition.

1. ¢ and G,, do not depend on .

2. Gy{im, &y) = A—Iij(lw’ ¥),J, k=1,2,38,64(iz, ly) = 1‘26!4].(,7;, Y),
Gﬂ(lm; Ay} = it :i4<"”7 y)) Ga.:t(]*”) /1?/) = ]“_ﬂG;‘a(w: 9).

3. G (@, y) are infinitely differentiable with respect to both arguments
everywhere except the sets # =y, @ € M, y € M and satisfy the relations

— @y (@, y)+ VG (@, y) = 0,

(8.3) Vi, =0 (2,9 €Dy oY),
- oG 0@
Coloer, = 0y Gnpleer, =0, —2| =21 =0,
Ly zely aﬂ’z zel'y
. 2e—yl R
Take in (5.1) p(%, y) = ¢ —W . Then in virtue of (4.18)
74 G -
1D;G (=, y)llﬂi+k(Dafm =+ ][DyGAj (o, y)“H};”‘(Dg.m
(5.4) Sogd(y)=rWre=k G4,
ﬁ—)l ﬁ U
|].D”G4 (507 y)”Hi—)'k(Da:M) + ”DVGM ({U, y)"H}f'k(Do.M)

< 0y (y)=S1A+m—E

where d(y) = dist(y, dD,). These estimates are useful if d(y) ~ ly'|.
If y is close to Iy or I it is convenient to use certain other representations
of ¢, namely,

.
?<w,y>=c( 'Ty,ly')@‘°>(w,y)+@'<°><m,y), y DO,
(5.5)
2le—
9(a,9) = t(H2) 000, 04906, 9), g D0,

Here D® = Dy, DY = D\Dypyy, 9© and 9O are Green’s matrices
of(othe boundary value problems for the Stokes system in the half-spaces
B9 ={0<p<n}and RN ={0—n<p<0} (pis the polar angle in
R?) with the boundary conditions :

ety a6y

= = s} _
03 |ocor® O, 0, @& prm =0.

| zedR(0)

6 om0 = 0,

icm°®
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Green’s matrices for elliptic boundary value problems in a half-space
are studied in [28]. In particular, it follows from Lemma 2.4 of [28] that
for any #,y e R, 2 # 4,4,k =1,2,38,

ID;D:'?G}Q(% )| < ¢ lp—y| TP,
(8.6) IDEDEGS) (2, )|+ IDEDLES) (w, 9)| < ¢ lo—y| =>4,
|DEDEGS) (2, )| < o lo—y P31t

(y® is symmetric to y with respect to the plane 8R).
The elements of the matrices ¥'® are solutions of the boundary
value problems

-

— PO VEY = 2(VE-V)EP GOV -G PL,

7am = — Vg.{’;g),

D loary = — L0 eryy O laer, = — 16 Loer
L < o | a6
0y |oer, 0y |oer, 0%y |ger, s |per,

Taking into account the boundary cenditions for a”’, it is not hard to
prove by means of Theorem 4.4 that for y € D

67) IDEO (@, )l

'(7)
L+k(D9yM)+ ”—DﬁGn (2, y)]iﬂ}‘+k(uexﬂf)

< cﬁ]y'{—m—lﬂl—l—ﬂ—k,
e 8 Q)
(5.8) “D‘E,G‘;(w) (=, y)lIH[zﬁk(Ds’ M)+ D62 (w, y)”H}""k(Do,M)
< c7|y:|—5/2—|ﬁ]+u—k‘

Note that the formulas (5.5) have a sense, since for y eD®

U ——] < R¥.

PP ( g

TamoREM 5.1. For all 2,y €Dy, k,j =1,2,3, we have

(5.9) Gir(2,9) = Gy (y,2), Gi(2,9) = ‘—G4j(?/,z):
' G2, ) = Culy, 2)-

25 — Banach Center t. X
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Proof. Let Dy = {weDy: lv—y]>e, [#—2 >c}. Take in Green’s
identity
(5.10) f{[u Vi — Vp)— - (Vo — Pg)] - (qV-5 —p Vo) }dw

D

G ”wz): ? :G4b(w7z)’

('w')(m*), o= uto e el

" Each term in the left-hand side integral contains derivatives of ¢, and so,
for big R, G, = @, in the left infegrand. Taking into account the fact
that @, € L,(D,), &, € Hy(D,, M) it is easy to verify that the left-hand
side of (5.10) tends to zero as R - oo, which leads to
8@;(9; ,8) -

on

{?ﬂ(m, v)- Gy (7)) —

z~y|=2
-

~Gy(a, o (oL —iiatn, ) | as

- 6—, -
= [ {fto o (Bt oo, ) -

|z—2|=e
-

~Goto,0)- (P22 (o, )| 5.

Now letting & — 0 we obtain (5.9).

THEOREM 5.2. Let f e L, ,(D,, M) and v < H, (1)6, M) (pel0,1])
have compact supports. Then for the solutions 3 e H? w(Dyy M), p € Hy(Dyy M)
of (4.1), (4.3) the following representation formulas hold

(2) = 2 me (2, 2)f;(w)dow + fGM (2, )7 (w)dw,
(5.11) =10
p(2) = 2 fG,,, (2, ®)f; () do -+ (2) + fG;4(z x)r(z)de.

7=1 Dy

icm°®
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Proof. We again make use of Green’s identity (5.10) with

. - (lmi) (l-’val)
Di = {zeDy: m—2l>s6r, % =Gy,2)L tl—,

R R
| |455]
q =Gy(®,2)L (—'—) C(—R“)

R
Letting B — oo we getb

(610) [ (6ao, 7@ ~Gy(a, 2) (@) do
D} .
- 3_» - - 65 y -
- _[_ [Gb(m,z)- (5—1~np)_v<m>‘(—%i)—na4é<w,z))]ds

(for b = 4, G, should be replaced by Gy,).
Now consider both sides of (5.10) as elements of L, (D,) and pass
to the limit as ¢ — 0. It can be shown that in the limit we get (5.11).

THEOREM 5.3. For all B, y and aoll x,y €Dy, © %y, the estimates
(8.12) |DLD;G(x, )|

’ By ’ A—yp—
<o (”_I!L!__)A By ﬁ2( : ly'| ~ ) 71 yz[m_.yl-l—ml"lﬂ’
']+ o —yl 1914z —yl

(513)  |DID}Gy(w, )l

2] l—ﬁrﬁz(_ﬂ____)z_l_vr“ —2—1Bi—ly1
<“2(m) I+ o~y o ’

(5.14) |DID;Gy(w, y)l
o] z—l—ﬁrﬁz( W )"71"’2 =2 18—y
<"3("|ZGW§T) '+ lo—y] . ’

(5.18) [Df:DzGM(w’ Y

J!—_)z—l-ﬂl—ﬂz(_*ﬂ__)hlﬁyrh =3Bl
\0‘(Jw'|+1w—y1 '+ le—yl o

hold with any A€ [0, min (Reg,, 7/26)), 4, j = 1,2, 3.

Proof. In view of the homogeneity of @, it suffices to prove (5.12)-
(5.15) for |#—y| = 1. Suppose that |y'| = 2. Then |#'| > |y'|— o' —y'| > 1
and (5.12)-(5.15) are equivalent to the boundedness of DiD}@,, which
follows from the formulas (5.1), (5.5) and estimates (5.4), (5.7), (5.8)-
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Now let |y’| < 2. In virtue of Theorems 4.6 and 2.4,

(516)  IDEDLG, (o, Y)l1&| 7+ DDy Gu (@, )] [0

< (1D} Gb” B i, M)'{'I‘I'D;G‘tbnﬂl-kh‘ )
®

t(KI 1800, 20),

< 6 (”Dszan, (K aton M) + ll-D;G4b|[L2,,,(Km<m)JU))

. r o~ k+2
with h<w—p h<i—p, »=b+tl-h—f—(btd 55 >0,
k1

% =k+1—pi—ps— el

(Bt %) /=,

t an integer >0, %k, u satisty-

ing (4.11).

Consider the problem (41), (4.3) with f(z) = D36, (2, ¥)£(2|o—zl),
r(2) = —(2w—2]) D)@y (2, y). For its solution a similar estimate holds;
namely, we have

D5 ()1 1y’ |7+ D32 () 1172 < ([ ,,1(K1,4<w,1m+”1"”Lo 30

by +2

with hy < #y— m,

By by < %= piy, % = ky+1—py— By~ (Bs+

- k,+1
"y = k1+1*ﬁ1"ﬁz~(ﬂs+%)ﬁ'2'j}_7; My
1

Making use of (4.6), we obtain
D35 )y + 1Dy (9)] [y |
<al [ DG vIc@o—el) det

Ky /2@

>0

(5.17)

+ [ DGz, L2 Im—a)de) ",
Ko@)
From (5.11) and (5.9) we conclude that the right-hand side of (5.17)
equals ¢z |DLv, (9)[V? for b< 4 and ¢|D} p(y ) for b = 4. Therefore it
does not exceed ¢, ly’[™ for b < 4 and G ly ]"1’1 for b = 4and

1D"D”Gj( @, )1 10|~ [y 4 DL DGy (0, 9)] 10 [Py e <

C103

|D5_DVG (o, ¥’ [~*] r-h1-rl+ IDH_DVGM( ©, )| o' {—h+lly f_"1+1 o
gj =1,2,3). ’:[‘his proves (5.12)-(5.15), since by choosing , %, u, ki, i
in an appropriate way we may make h, h and hy, f, arbitrarily close to
min(Re gy, ©/20) — B, — f and min (Re gy, ©/20) — y; —y,, respectively.
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5.2. Solvability of the problem (4.1), (4.2) and estimates of the
solution.

THEOREM b.4. Let
(5.18) 0 < s < min(Rea,, ©/26).

For a'rbitmoy j—? e 6 o (Dyy M), EGZ+1 (Do, M), @ 00"‘”Z (I, M),
be G"“”(I‘o, M), de 0@* ;(1‘0, M ) with compact supjpoﬂs the problem (4.1),
(4.2) has & unique solution ®e O"”’ (Dy, M), p e OéIl (Dy, M) and

(5.19) ]”icl+2(p M)+]plcl+1(p M) lf]cl Dy M)+
+ mé’éﬂ(De,M) +la 15§+2(P0.M) + Ibléy’z(ro,M) + ] loﬁti(ro,M)) .

Proof. In virtue of Theorem 2.1, it is sufficient to consider the case
4=0b=0,d=0. Since f L, ,(Dy; M); reHL(D,, M) with any u
>1-—s, there exists a solution geHi(Da, M), peH,(Dy, M) of (4£1),
(4.3) with 1 —s < p < 1. It is given by (5.11).

Let us now prove the estimates

(5.20)  swpla'| = (@) <oy lswp ' If @)1+ sup [ ir (o)),
)
(G21)  swielp(@) < (Sumw e1f m)1+maa onan)

with an arbitrary small 6 > 0.
Let weDy, D' ={yeDy ly|<
{6.12), (5.13) we have

| [ &, 915 0)ay)
Dy

2@}, D" = DND'. Tn virtue of

< eupi P et [y e -"yﬁz—dy}
3D5 3 P lw_y|1+7-1 o lm_yll+}.2

< alo'"sup e Tl

] me @, y)r d{‘/\
11— [ 712 IJ’|5_2 !
< 8 oo — — a
05311)161”3/ | ["’(?/)“llﬂ’f' I ‘D[ —y (W'l+le—yl)dy
+ |z |2 f(|m~y|+|2/'l)"*——~“!$ly‘”g+az dy}

o
< g lo’ [ suply’ [0l ()]
Do
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with 0 < 4, < min(Res,, ©/26), s < 4, < min(Reo,, ©/26). Thus (5.20)
is proved. Furthermore,

| [ e, vty
Dy

v F g ly'e”
< ey )1 {1 [t s
lg—1 ly')e—*
e Ry T )

< ele’1* sup ly' 21 ()],
Dy
(6:22) | [@l@,9)ry)dy|

Dy
thM %, y)[r(z —7'(9]@]1;+

E1C]
+ir@l| [ G nay+| [ Gu, @y,
() D\ H ()
where
A(#) = {y eDy: lo—y| < yl’]}, 1/4>9>0.
‘We now show that for small # we have

(5.23) | [ @, may| <o
A (@)

Assume that dist(w, 8D,) > 29|a'|. Then, in virtue of (5.4),

Gale, ) < el amd | [ Ghady < ey lo'170 8 (0) <
X (x)
If the point « is close to I'y or I, we use the appropriate formula (5.5), i.e
( 2 Y) = (‘) ,y)+G;(4"(w,y),
where ¢§) = G)(w, y)— 8(®, y) is the regular part of 6.
It follows from the formulas (2.28), (2.29) in the paper [28] that

! f @ :?l)d?ll C10

(the left-hand side may be tra,nsf.ormed into an integral over the spherical
part of 6(x) with the integrand not exceeding ¢, |5 —y|~?). Now (5 23)
follows from the estimate

| (@, )l < o fo’| 2.
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The estimate (5.23) is proved for any # € D,. The other terms of (5.22)
can be easily estimated by means of (5.15), which leads to

’ 5--1
ID{ Gu(@, v)r(y)dy | < o5l2'] lrlé’i_.l(Da’M)'
The proof of (5.20), (5.21) is completed.

The estimate of higher order derivatives of the solution is based on the
inequality

B.24) [+ <eu((FI+ D) 81D Flo+

la]<i

FOIEY 3 8D g+ 67 g, 4 57 loy),

laf<T+1

where Q, ¢ 2, « Dy, & = dist(2y, D\ 2,) >0 (see [3], Theorem 2.2).
Just as in Theorem 4.2 let @, = U,,,, @5 = Uy, § = 2" and multiply
(5.24) by 6'+>~¢. Maximizing both sides with respect to m, » and taking
into account (5.20), (5.21), we get (5.19) for the functions (5.11).

It remains to prove the uniqueness of solution. Let ve Co'i“(l)e , M),
P eog+}(Da, be solutions of (4.1), (4.3) with 7 = 0, f = 0. Then for

-

v (2) (|| /R), V¢ (@] /R) the formulas (5.11) hold with
f= —2(17:-V)5’—$V2c+p|7:, 7= V0.

For fixed € Dy we have

F@l <ol [ lo—y™ 2@ 1 + By dy —0,
EsrONER(O)

which completes the proof of the theorem.
THEOREM 5.5. For the solution of (4.1), (4.2) the estimate

\cl_ﬂ +

(5.25) ! ko

+ ol

.
] sys o
IGﬁ“L (B0, 3) SLH &yt an)

-
7| o al. b| 4
ad L&, 8,30 +lal 2y n Ky ) +1 lcﬁ“(r,, 0 Rppr M) +

+1d]

T+1/2~8 ) 1128
CLEry 0 Kpp, ) Te 191z, +€ 1Pz, )

holds with any 0> 0, £e M.

The proof is just the same as in Theorem 4.5, but instead of (2.7)
the interpolation inequality (2.8) should now be used.
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6. The linear problem in the domain 2

Suppose that § e ¢**2, Lis a non-integer > 0, and that the function ¢ (@, , #,)
which determines the surface I" belongs to (113 (w, dw) with s € (0,1-2).
Consider in 2 the linear boundary value problem

(6.1) VW LVp=Ff, Vo =r,

- —> - > =

(6.2) Py =0, v-alp=0, S@Emn-n(nSE@n)=0.

Let M(Q) denote the space of veetors ® e HL(Q, ) satistying the boundary

conditions v lg=0, 5-5] = 0 and let () denote the subspace of diver-
gence-free vectors in 9 (Q). Define a weak solution of (6.1), (6.2) as a vector
7 eM(Q) satisfying the equation V.o =r and the integral identity

3 .
1 — - - > >
—2~Qf N 8,(#)8,0)an = [Fidw, Vi <3(Q).
Q ij=1 2 . )

THEOREM 6.1. For arbitrary f €Ly, (2, M), 1ely(2) such that
[rdm = 0 the problem (6.1), (6.2) has a unique weak solution and there ewists
2

a unigue function p e Ly(Q), satisfying the condition [pds = O and the
2
identity

1
3]
2

for any @ € M(R). Moreover,

Mw

Sug 5 ( dﬁ—-ff ;dw——ffV q)dm—fpV pdw
2 2

1,j=1

(6.3) 15 3 0,1+ P Vrter < 0 1F lzy yo.my + Plzy(ey) -

The proof is the same as that of Theorem 4.1 (see also [4]).
THEOREM 6.2. For any f eCl_ 2 (R, M), T eOﬁﬂ([),/z’) (frds = 0)
Q

the problem (6.1), (6.2) has & unique solution v e Cé“(.Q , M,y PpeE Co’ﬁﬂ(Q, M)

satisfying the condition [pds = 0, and the inequality
2

-

°1+2(Qm+lpl °l+1(9ﬂ) o(1f g 2(9,/0+]7|C’l+1

(6.4) [ )

(9,.#)

provided 0 < s < min(Reay, x/20), p € O3 (w, dw).
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Proof. As 'show'n in [4], for a weak solution of (6.1), (6.2) the inequality
(6.5) l—':’|cl+2(n') + Iplot+ya)
< 01(]?’07(9")"' [Flgt+1gm + ”7|1L2J1(9,ﬂ)+ ”7'”1;2(9))

holds in arbitrary Q' < ' < Q;dist(Q", ) > 0. To estimate the solution
near , introduce in the domain Q,(£), £ € 4 (we may assume that & =0),
new variables # = Tw, the transformation T being defined in Theorem 2.5.

t/ o 0
It transforms the operator V = (%: ,—a—a;;,—a—m:) into
3 3 3
- 2 0 0
= AV = - .
4 (m2=1 Uy azm ’ 1; Bom azm H mz_‘_‘: O3, 327:1)
‘where
oT, (%)
a(2) = 3;k ) A = {ay}.
Let f(z) = f(T~'2). The functions
- <z 2z 22|
i =30 (28, g = 2(2F)

satisfy the following relations in the bihedral angle D whose sides are
the planes X, and Iy tangent to X and I" at the point &:

— V- Vg = L, (% ,q)+g+cf, V% = Ly(u)-+h-+F,
(6.6) Ulgy =0,  %-Tgln, = Lg(u),

8 (Giyisg —moofTog 8 (@)iie) |, = Ly (W) + @

In these relations

‘I\f
e:>¢,

Petppr, b=t
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Li(i, ) = (P — Pt (V— vmc( e ‘)

(6.7)

~

S(w) is the matrix with elements

3
P 3 @’ll:
Sij(’“)=2(1z a’+,1 :’}z)

=1

Since supp %, supp ¢ < K,(0), the factor {(|21/8) in (6.7) may be omitted,
but we are going to consider the operators I, for arbitrary 32, ¢. The coeffi-
cients of I; contain factors a(s)— 8 or day/de;; therefore for any u

e HA(D, M), ¢ € H,(D, M) (Pt is the edge of D) we have
+ lial

1
H (D,

”Ll( ’Q)"Lz A2 S <6 681(['“” 2 )s

w%(0,m)

68 ITa(@lyy

s )t gy + W) e
#*

(T, D) (g, )

< ¢, 6% ”u” 2(5D¥1ﬁ)
-where ¢; are mdependent of 8 and s,<s. Moreover, for arbltrary
We 0’“'2(3) D), ¢ e()’i*i(i) M) we have

8-
Ly (%, Q_)l(jqum <66 1(]“151“@,% + lmd’gﬂ@,m))’

(6.9) 1L (u)lc’;ﬂ(:n,m + 1L (w)l é’i“(f.,,an) *t ]L4(“)[d§i}(rﬂ,ﬂm
<oy 8wl S mm”

Taking & sufficiently small and repeating the arguments of Theorem

4.2, we easily show that % = (b e HX(D,M), q = Lp e HY(D, M) and

(6.10)  Jfif o + gl

HY(D,M) HI(D,9)

< 63l 0. Wl g0+ g, g 0T 0507 [,
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In virtue of (6.8), this solution of the problem (6.6) is unique. Approxi-
mate g, by d in Ly, (D, M), HH(D, W), H*(D, M) by smooth functions
g™, ¥, d® with compact supports vanishing in K ,,(0) and replace in (6.6)
g, h, d by g™, 1™, d™. Tt follows from (6.8), (6.9) that for sufficiently small
§ the resulting problem has a unique solution

W0 e (D, Mn O (D, M), ¢ e HID, M) n O51(D, M)

and that %™ — % in H3(D, M), ¢™ — ¢ in H}(D, M) as n — co.
By Theorem 5.5,

.
{n) n,

u™ g

l chT2(K,,,4(o>,m) +1g® Jc’* L (B g7a0, D)

)+

e 1
<&(Itf |o"§_2(zc,,/g<m,mz)—'_|c l(,"*l(x,,,g(m an)

+ 02 (8) (10 2o ygion + 10 gtz aon)
Conscquently, in virtue of (6.10),

> .
|l G°_£+2(K,,/4(n),M)+lq[c”‘l(x,,/ o,m S % (f Ia’ (a,«)—l—[”c‘“mm)

Since the point & e # is arbitrary, this estimate and the inequality (6.5)
prove (6.4).
Consider the non-homogeneous problem

—VB4Vp=F, V-o=r,
(6.11) N N o oo
vy =a, 9-np=0b,

(6.12) SEyn—nA- @) = 4.
THEOREM 6.3. Let 0< s < min(Reog,, w/20). For arbitrary

eéﬁ—z(‘gi A) , re&itll([), M), a ‘56’?}'2 (X, ), b Eéf;” (I, #),
e OWY (I, #) satisfying the conditions [rde = fE-%dS—l—fde, d-n=0
Q P r

fuph}

the problem (6.11), (6.12) has a wunique soluiion ° eCn‘Z“(Q, M),
2e0F3(Q, 4) with [pds = 0; moreover,
2

(6.13) +Ipl

~
lv lél-pz(ﬂm c"”'l(n,.ﬂ)

(lficl (ﬂ.ﬂ)+]r|(’}l+l(!).l()+| Io“'-(z_,/()_H lél+-(l,ﬂ)+

+[d] )

AR
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Proof. It is not hard to verify that a vector w satistying the boundary
conditions

- - b
Wz =6, Wy }a:3=m(a;’) = Wy 'm3=¢(a:’) =0, |z3=;a(:c') = 3
3 leg=(a)
cw
3 — 0’
0%y |yl
ow 1—n} My Ny
(6.14) - = byt — b,
O F— ny i
ow Ny 1—mn}
2 = 1 5 2 h]"]' 5 1 hz
ama 23 =q(z’) 3 3

with

7

h, s, -{-%"(2 22 n 0 0 ) b
; = Nyl RN i —
(3 3Y 3 3 o 7 3:27 839‘ %3 a:3=¢(:c’)
also satisfies (6.12). Theorem 2.6 asserts that there exists a vector satisiying
(6.14) and the inequality

w| . <oyl[8] gy . al
lec‘é“(ﬂ,ﬁ)\ 01(lalcé+z(2’ﬂ)+ (2l c§+2(r,ﬂ)+ldlo§‘_"{(r,,ﬂ))

with a constant ¢; independent on 3, b, .
Hence the problem (6.11), (6.12) is reduced to (6.1), (6.2). Theorem 6.3
follows from Theorem 6.2.

7. Ehe non-linear problem

7.1. Neumann probleni for an elliptic equation of the second order..
Consider in @ the boundary value problem

9 o : ou
(1) ) g ) g =P = @), )l Ay

115; = g(m)
7

Do

1,j=1 1,j=1

where v,(¢) are the components of the unit outward normal vector to
do, and A,; satisfy the condition of ellipticity

2
2 Ay&E> pe, VeeR.
i=1
THEOREM 7.1. Suppose that dw € G+ and 4, e C4* (0, dw) with a non-
integer s €(0, 1-4-1). Then for arbitrary f e Ot (w, 8w), g & (*(8w) the problem
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(1.1) has a unigue solution u e Cii}(w, dw). It is subject to the inequalily
(7.2) 18114000y < 11510,y F lon0)s

the constant ¢ being independent of f, g.
Proof. If s >1, then the problem (7.1) has a solution % € C**(w) and

(7.3) [#los 3wy < 01(flos-1(a) + 19losaa) -

Tn the case of s < 1 we write f in a divergence form: f = V-i’),

P=a IE=-2000
Tt is not hard to prove that
Flosie < exsup If(9)]dist (y, 0}~
As shown in [1,I], Ch. IIT,
(T4)  frdossa < 65 Flosgo+ [9lom) < 041y, oy T 1910500

(the solvability of (7.1) can be proved in this case with the aid of approxi-
mation of f and g by smooth functions).
et us estimate the higher order derivatives of u. Since f € 0¥ }{0, do),
we have u € (*3 () for arbitrary o’ < o with dist(e’, dw) > 0. According
to B. Stein [29], Ch. 6, o = | J@;, where @, is a square such that
&

Aist(Qy,, fo) ~ diam @y, (i-e. ¢;dist (@, o) < diam @, < 6;dist (@, o), 65, ¢s do
not depend on %). Let

— (M)
w = %h— Z D"u(m(’c))(m—j—)—,

lal <[8]+1
where #® iy the centre of Q,a! = alay!, (@—a®)* = (8, —a{?)™ x
X (% — a§?)%2, Clearly,
: i ow a, () &)\8
(7.3) Z—A,,.———ﬁw = f+ 0,5 () D% (@) (m — )
i Om; T Omy
=1 1Bl<lal<ls]+1
with 6,,(®) € O (o, dw) for |f] < lal, 6, = const for |B] = |a|. Let us
now use a local Schander estimate for (7.5) in a square @f > @, such that
dist(QF, o) ~ dist(Qy, o\@}) ~ diam@,. We have
(4+3) o o 1+3) 0+1) " i1
[ulg,” = [wl, ™~ < Cv(ff]az +1a{§H |D lez(dmek) +
+ g, o (A Q) ?)
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Now we multiply this estimate by (diam@,)**~*, maximize with respect
to k and take into account (7.3, (7.4). The resulting estimate is equivalent
to (7.2).

7.2. Solvability of the problem (1.1)-(1.3). We are now ready to
prove our main results. The general scheme of the proof will be the same
as in [5], [10], [11].

Consider the problem (1.1), (1.2) in a prescribed domain 2 = {z e V:
7, < p(a')} with ¢ € 073 (o, Bw), s € (0 min(Re oy, 7/26)).

Let ¢ > 0, so that I'nS_

THEOREM 7.2. Suppose that ZEO’“(S_) satisfies the condiiions of

§1. If e (0, &) and & is sufficiently small, then the problem (1.1), (1.2)
has a unigue solution which salisfies the condition [pdx = 0 and the inequality
Q

(7.6) v |5§+2(9-m+ iip]dﬁﬂ(ﬂ,ﬂ) < cela gtz ys

the constant ¢ being independent of e.
This theorem follows from Theorem 6.3 and may be proved, for
instance, by successive approximations.

Let Us(g) = Ot} (w, 8w) denote a meighbourhood W*‘PIOH-( oy < 8

of the function ¢. Suppose that § is so small that all ﬁmetlons in U,(p)

axe positive. Let o' € Uy(p), 2 = {w e V: w, < p(a')} and let 9 eO”"‘z(Q M), -

p'e O‘j*i(!)’ #') be a golution of (1.1), {1.2) in £, satisfying the condition
[p'dz = 0.
&

THEOREM 7.3. For arbitrarye € (0, &), e, < &y and ¢’ € U,,o(q:) (8p 28 the
same ag in Theorem 2.7) the inequality

(1.7) [h—n' l841 0 0y < 210 — 9]
holds for the fumctions

7
o3 (@,00)

M@') = =P8 B0 geyy B (@) = —p S0V grian
the constant ¢ being independent on ¢’ € U,, and e.

Proof. We map the domain 2’ onto 2 by means of the transformation

® = Xz defined in Theorem 2.7. The problem (1.1), (1.2) for 3;', p' in the
new coordinates takes the form

— VRV @V =0, P =
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‘where

V=A@V, (@) = = B(a)n,

A(2) and E’" (3’) are matrices with the elements

2 o on;
g = (a‘ — 1g, ’).
5 ;g; m 3&?,” m 3{6‘,”

X,
Oy = —o _
L 0Oy, |o=X 1,

i

The differences o — o' = 70, p—p' = g satisfy the relations

— Vi + Py
= (P— P2 —(V—V")p ~(w 7y —
Vew=(V—PF)-

-, W V,);:_(;;l, V)—’l;,
’

(
1
Wlp=0, wnmlp=0"@—n)=70B-Im,

S@oyn—n(n-S @) |r = [8' @) — 8@+
18 @)@ —n)+nn (8 @)~ 8 @) n]+
[ (8 @) -8 ()] -
We estimate ?u, g with the aid of Theorem 6.3, taking into account that.
both 7, p and 7', p’ satisfy (7.6) and that in virtue of (2.14)-

.
105(2) = gl 3 g,y < AP =l 7430, 009

The function ¢ = p—p’ satisties the condition
. [qdz = — friae = [ p'(@)[detA™" —11dz.
2 Q 2

Since
| f P'(@)[detd~ —11da| < cselp—0'l prs 0y

the inequality (6.13) yields
]%'o":"""(a,.#)'f-lq}éﬁﬂ(a,ﬂ) < Gelp—9’ Iaﬁfi(m.am)-i_o“ sla lo'+2(s_)|w|0°‘l;+z(a'”-~

Agsumig that 04.92['5|az+z(5_) < 1/2 we obtain

+1ql < 265¢lp —¢'|

-
0l 30, 4TI G100 5w 0m)

and hence (7.7).
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THEOREM 7.4. There exist mumbers &, € (0, &), ho > 0 such that for
mbitmry s €(0, &), h>hy and arbitrary @ e O"F%(8_) with suppa ed_,
f @ -nd8 = 0, the problem (1.1)~(1.5) has a unique solution ¢ e Cii}w, dw),

E? e G, ut), p e CHY(Q, M) with any s & (0, min(Recq, 7/26)).

Proof. Consider first the case s = 0. In this case % =0 and p=p
is a constant which may be computed from (1.3)—(1.5):

—Wplo| = f(v- i

—— —Boldr’ = |0 0—ph
o ﬁtp)w lowlcos0 —p

(lo] = mesw). The function ¢ = g, is a solution of the problem

Ve Ow|cos —fFh
7.__i’“’__2~ﬁ¢0 = —Wp = L]_E_.,
V1|Vl o]
(1.8) -
DoV
e = cosf.
'1+[qu0[2 B

As shown by N. N. Uraltzeva [30], this problem has a unique solution
7o € 0** o). It follows from Theorem 7.1 that g, € Cli}(w, fw). Let us
fix the number %, > 0 in order that ¢y (s) > 0 for h > h,.

We shall seek a solution g(a') of (1.3), (1.4) in U (p); 01 < 8o/2.
Since (1.3)-(1.5) determines a normalization of p,

f (o', g(a))d f 7 -8 (8 Vgm0’ +100] B,

it is convenient to introduce a new function § = p-+c where

[fas =0, o —ﬁ (Blo", §la") — ' S )i gy i)’ -
Q

For the difference y = ¢—g¢, we have

€7~9) V-A V‘P"ﬁ“l—’ = W[_.p+n S( )n'][:cs=wo(z’)+w(z')+

- =

+— (13 =0 S8 )1) ey gyt 4 i) —

1

——2 % [P [ 1089 (g, +trpiary)]

i=1 ]
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Al@) Pyl = —Fv,[w f (L —)BFgy+Vy)atry| |,

where A(z) and BY(£) are matrices with the elements

oF(&) O*F (&)
Ay = L BW(&) = 7
M 651 5=V’Pa(z'), kl( ) aE}ca‘fl
and Fy(&) = &/V1+E+&. The equivalent form of (7.9) is
(7.10) v = Ta(p) +Ts(y) = T(y),

where

Ty(y) = R[W("f’ + 080 1) oy v+

w
+Ta,“|m (EF E AN COT) w— 0]

1
8 .
— . (9) |
= 3[5 awj(m of (1 =BV, ktvy)dtvw),

jwj(w- fl (1-t)BU‘><V%+W¢)dW¢)]
[}

j=1
and R[f, g] is the solution of (7.1). Theorem 7.1 asserts that the linear
operator R: O%}(w, 8w) x (*(2w) — C3fl{(w, 0w) is bounded. Clearly, the
non-lineaxr operator 7', satisfies the condition Ty(0) = 0 and for arbitrary
v, v’ € Us (0) we have

|To(p) —Toly’ )‘alTa( ey S < 6,0,(1+6;)lp—vp Ic’”(«: d)”

Finally, in virtue of Theorems 7.1~7.3,

[Ta(y)]

< CgE
I+ = Yo
O’g i(m,ﬂm) ?

[Ta(w) =Tl )]o;ﬁ(m,aw) < eyl —yp Iom(m’am).
Hence, for y, ' e U, (0) we have

iT(‘;”)lol-rs( ww) < 6;8}(L+6,) + ¢z,

T(p)—T(y )lc;ﬁ(m,a ) <61 0:(1+ 61)+ozellp—v |c,z+.ra(m a)"

I e, 31+ 8y)+epe < 8yy €0:(L+8y)+ 636 <1, then T is a contractwn
operator in Ud (0) and (7.10) has in U"1( ) & unique solution.
The funetlons v, p are now determined by (1.1), (1.2).

26 — Banach Center f{. X
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