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Introduction

We consider the differential operator

(01) Py@,D) = D o4a'D",
lal=1Bl<m \
6p€C, D° = 1t"%n [opl1 ... dugn,
a= (a0 0); B =(fy.-s By of =afr... afn,
in R", n > 2, and assume that P, is elliptic in R*\{0}:

0.2) @, 8= D 8 £0, V(&) eBN0}) x(B™N0}).
ta]=[Bl=m
Baouendi and Sjéstrand [3] studied analytic regularity of the oper-
ator P, at @ = 0. Furthermore, it was proved in [4] that the operator P,
is not hypoelliptic at the origin (under a certain additional condition).
More general results of this kind were announced in [10]. The special case
(0.3) Ly(w, D) = Ar2+ pd/or-r+2,

hueC, =Y, A=) &,

of the operator (0.1) was studied by Baouendi, Goulaouic and Lipkin [2]
in the space of germs of analytic functions at the origin. They gave a com-
plete description of the kernel and the range of the operator L,. The same
operator was considered in Sobolev spaces Hy (2), § € N, by the authors [5].
The aim of this paper is to investigate normal solvability and index of
the operator (0.1) in the spaces H (R") and H,(Q), s> 0, 2 denoting
a bounded domain in RB* with 0 € @ (for the definition of normally solvable

[69]
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70 7. ELSCENER AND M. LORENZ
and Fredholm operators we refer to [9]; the index of an operator A is
defined by ind 4 = dimker A —codimimA4).

We also consider the more general operator (ef. [3], [4], [10])

Po(z, D)+ dp(2)2" D",

laj==|Bl<m

Gap(0) =0,

in a small neighbourhood of the origin.

' As in [3], using the Mellin transform with respect to the radial
variable, we reduce the equation Py = f to an elliptic system of pseudo-
differential equations on the sphere 8"~! which depends on & complex
parameter. We mention that similar methods have been used by Bagirov
and Kondratiev [1], [7] in the study of elliptic equations in unbounded
domains.

1. Preliminaries

1.1. From now on, we denote by Q the whole space R™ or a bounded
domain with the following property:

The boundary I'of Q is a (n—1)-dimensional infinitely differentiable
variety, Q being locally on one side of I

Let H (), s > 0, be the usual Sobolev space with the norm

[Du (@) — Du(y)*
[w _y,n—m(s—[s])

(1.1) dady

Wiz = D' [10upae+ )

o1<Te] & lal=[s] A% 2

(but without the second term for seN). Furthermore, we introduce’

the spaces Hy,(92) = {u € H(Q): #"D% e H(9), |a| = || < m} with the
canonical norm

1.2) D a0l

lal=IFl<m
When'Q is bounded and 0 ¢ 2, the spaces H,, (2) and H,,, () coincide
(algebraically and topologically). H,,(Q) is a Hilbert space and we
have Py € £(H,,,(R), H,(Q)), i.e. the operator Py: H,, — H, is linear
and continuous.
We set OF = {ueCQ(R"): 0¢suppu} and H (Q) = {weH,(Q):
D*u(0) =0, |a| < s—n/2},0 € 2. In virtue of Sobolev’s embedding the-
orem, H, is a closed subspace of finite codimension in H,.

[lls m =

Imvma 1.1. OF 45 dense in H,(R™), s> 0.

The proof is similar to the proof of Lemma 11.1 in [8], Chap, 1 (but
simpler).

©
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We obviously have Hy = H, = L,. Now,let Q c R*, n > 1,72 = 2 5
k2

and g, = (L4775 t,s e R. The linear set Ly(Q;0,,) = g, L.(8) is
a Hilbert space with the norm |ul| = floj}ully. Furthermore,

Hym (825 01,5) = {w € Ln(Q; 0,): #*DPu € Ty (02; @) lal = Bl < mi,
t>0, is a Hilbert space with the canonical morm and the relation
Hy (25 016) = 05 Hom (2) holds.

Denoting by & the (n-dimensional) Fourier transform, we get the
commutative diagram
P, H,,,(R") —> H (R")
17 ¥
—Pl): HD,m(Rn;QO,s) —> LZ(Rn; Qﬂ,a)
Cas(—1)'DP2%, which is also elliptic in

lal=[fl<m

(1.3)

with the operator P, =
R™{0} (cf. (0.2)).

1.2. In analogy to [3] we reduce the equation
(1.4) Pou =f

0 a system of pseudo-differential equations of first order. The operator P,
can be written in spherical coordinates (r, 6)

m
Py(6, Do, 1D,) = > A;(0, Dy)(rofory™,
i=0
where A;(8,D,) are differential operators. of order<j on 8" with
analytic coefficients. It follows from (0.2) that A,(0) %0, 6 8.
Setting B, (0, Dg) = —Aq(6)7 4;(0, D), U = (u)7*, u; = A (r0]erYu,
j=1,...,m, 4= (148" where § is the Beltrami operator on §*!,
F =)' fy =0, j <my fp = As(0)7'f, and

0 4 01
y = sl
B, ™™+l B, A B,

we obtain from equation (1.4) the system
(1.5) WU =rd[or-U—s,U = F.
In view of (0.2), &7, is an elliptic psendo-differential operator on §*~*
{(cf. [3]). The operator «, has the following properties ([3], [11]):

(i) There is only a discrete set of different eigenvalues A, ke,
of the operator «, in the space LF(8*7!). (1) Each cigenvalue 1, has
finite algebraic multiplicity m,. .

(*) By X™ we denote the space X x ... X X {m factors).
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72 ' J. ELSCHNER AND M. LORENZ

(i) The operator ¢l —sZ, has an inverse 4, e Z(Z§(8™™) for all
% # k. Furthermore, there exist a cone K = {z e C: & < |argz| < =—s},
¢ €(0, ©/2), and numbers ¢, M >0 such that .

(1.6) By < eI Y B o] >

‘ Tn order to investigate the equivalence of equations (1.4) and (1.5),
we state two lemmas. The first lemma is a generalization of Lemmas 1.1
and 1.2 in [5]; the method of the proof is the same.

Levma 1.2. 60'3" is dense in H,,,(R") and the norms (1.2) and
Wlom =, 14%ro[er)uly
itism
are equivalent in the space H,,,(R").
LeMMA 1.3. With the above notations we- have
Wlo,m ~ [Tloq = Tl + rédr- Ul +1ATlly ~ Tl + rd]or - Tlo+ 15Ul 5
Y u e Hy,(RY). (?)
Proof. The relation |uly, ~ |Ul,; is obvious. Furthermore, thanks
to the ellipticity of &, on 8", we obtain for all » e (5° and fixed 7, > 0
5T s Oy 1T Ol sy ~ 1T Tos Oy
and

T 1ro, O)I ~ 14T (7o, O)llm

s Zsn—t)

(cf. [8], Chap. 1) uniformly with respect to 7,. Since 6’{,"’ is densein H,,,(R"),
the result follows by integration with respect to 7,.

COROLLARY 1.4. The equation (1.4) with f e L,(R™) has the solution
% € Hy ., (R”) if and only if the system (1.5) admits the solution U e Hyq(R").

Analogous assertions to Lemmas 1.2 and 1.3 and Corollary 1.4 are
true for the spaces with weights g, 1> 0.

1.3. The Mellin tramsform
(s, 0) = (Mu)(z, 0) = f iy, ) dir

is an isomorphic map from ILy(R™;gnse) = La((0, 0); )@ Ly(8*)
onto the space Ly(R™; 0,0 = Lo(—o00, 0)@Ly (8. In virtue of

®) sl ~ |z}, # e X, means that there exist constants "1:"z> 0 such that
oyl < Il < eylinl, @ € X.
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the relation M (r0/0r-u) = izMu the operator M is also an isomorphism
of H,,(R";0,p,,) onto the space Ho 1U{RY; Ona0) = {ih € Lo(R"; 0,10 0): 2,
Afi € Ly(R"; 0,,.)} (with the canonical norm).

Let ¢ = n/2, s > 0. We denote by L,(Il, ;) the Banach space of the

functions which are analytic in the strip IT,, = {z e C: —t+n/2 < Imz
< —t+s-+n/2} with the norm

= sup f l#(o+it)Pdo, &= otir.

T—nf2&(—t,5~)

lfi (2)1P

Then the Mellin transform is an isomorphiec map from L,(R"; 0,¢) onto
the space L,(R"; 0s) = L»(Hl J® L (81 and we have

) 1
el = 5 f f (M) (o +it, 0) dodt,

—c0 gn—1
Vu e Ly(R"; 0, ,)Vv € (t—3,1)
(cf. [12], p. 247, for = = 1).

Furthermore, M: Hy; (R*; g,,) — Hy 1 (R 0,,) = {i € Lo(R%; 0,,): #ii,
Adi € L,(R" 3 0,5)) I8 an isomorphism.

2. The operator P, in L,(R")

Let P, be the operator defined in (0.1) and A, k € J, the eigenvalues of
the operator &7, (cf. 1.2).

THEOREM 2.1. Under the hypothesis
(2.1) Rel, = —n/2, ked,
the operator Py e £ (H,,,(R"), L,(R™) is invertible.

Proof. Thanks to (1.3) and OCorollary 1.4 it is sufficient to show
that the operator ¥, = rd/dr— 7, is invertible in & (Hp{R"), L7 (R™)
under hypothesis (2.1). Now we consider the operator
By = 1YW, = 13|t — ly— (n)2)] € Z(H7 (B™; 0p0.0) Lo (B Onjz0))
and the commutative diagram

Bo: Hya (R"; 04,0 —> L5 (B™; 0pya,0)
(2.2) . e M

Bo: Hyy (B™; gy ,) —> L2 (R; upo,0) _
with Bii(z, 6) = (ie—(n/2)] — g Gi(z, 6) (cf. 1.3). We have to prove
that B, is invertible under hypothes1s (2‘1). It follows from (2.1) and (1.6)
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that the estimate
”@iz‘“"lzHE(L’;"(S"“I)) <e(l+e)t, VzeR,

]aolds. Therefore, we obtain

[0S e s P LA VI e I (R"; 0ua0)

and %By,_,p. is the desired inverse of 580

Remark 2.2. One can prove that the opemtm Py e Z(H,,,(R™,
L,(R™) is not nommlly solvable if the condition (2.1} is violated.

Applying Theorem 2.1 to the operator r—*Pg*, we get

CoROLLARY 2.3, Let u=0. If Rel, = —nf2—pu,ked, then the
operator Py e & (Hy (R 0,5 Lo(B"; Q) 18 invertible.

Tt follows from Corollary 2.3 that the operator P, is always locally
solvable at the origin.

3. The operator P, in H(R"), s >0

We denote by 2(s) the sum of the algebraic multiplicities my, of the eigen-
values 4, k € J' = J, which satisfy —#/2—s < Rel, < —n/2. The set J’
ig finite (cf. 1.2).

TurorEM 3.1. Under the hypothesis
(3.1) Rel, = —nf2, —nf2—s5,ked
the operator P,e L ( (B, H, (R”)) is a Fredholm operator with
dimkerP, = 0 and oodlmlmP = 2(s).

Proof. As in the proof of Theorem 2.1, we consider the diagram (2.2)
with the spaces with the weight g, . instead of Qnjz,0+ First, we prove

the relation codimim QSD = #(s) for the operator 230 € .?(II"‘,( 5 Oujae) s
IM(R*; 0,pr,5). We choose mutually disjoint neighbourhoods Ule,) < I,

={zeC: 0 <Ims<s} of the points z, = —il—i(n/2), & ed'. Then
it follows from (3.1) and (1.6) that the estimate
(3-2) |1-%iz—n/2|‘$(L;nz(Sn_1)) <o+, VeellN IcLe'.}F Ul(z),

holds. Further, there are Laurent cxpansions
(33)  Bypup = 2 (e—z)Af, Afe E(L?(S%l))’ ny, eN,
I=—ny
" ze UR)\{#}, ked’,
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where A% and I—A® are projections on the subspaces kers™ and
im T3k, Ty, = iz —(n)2) I — o/, and the relations A%)_; = 77 4% 1> 1,
hold (‘rhls follows from Theorem 5 in [6], Chap. 13, since %z_n,, is com-
pact in ZP(S8""!) for some z € C).

Now we consider the equation

(34) ‘ BT =F, FellP(R; o,

In virtue of (3.2) there exists a solution UeHo"l(R”, Onpa,s) Of (3.4)
if and only if the function .@w_n,,l?‘(z 0) is analytic in all sets U(z,c) ked,
with respect to 2. The representations (3.3) imply that F elm.‘Bo if and
only if

i

Q 1
CUND) G A (&2 B, 0)) =0,
1==0

j=0,..,m—1,ked.

It can be shown that condi’gions (3.5) determine my, linearly independent
continuous functionals on Ly*(R"™; g, ) for each kedJ’. Therefore we
have codimim B,y = z(s). A

Next, the inequality codimim Py, = codimim P, < codimim %,
= codimim %0 = z(s) holds for the operators P, € .‘?(H (B, HS(R")),
Py e 2(H,,(R"; 05), Lo(R"; y,,)) and Ay € £ (HP (R"; 0y,0); LI (R 0y,0))
(cf. 1.2). For the proof of the converse inequality, we note that the system
WU =F, F = (f)" e&’;""", has the solution U = (w;)7 € Hpy(B";0,,)
with

;= A™ (13| orY "y — 2/1’—3 (rojary=Y, §=1,...,m,

if the equation Py = f with

m j—1

f= mzZZ%%wmwm“W%ww

i=1 i=
admits the solution % € H, ,,(R"; g, ;) and that 5’§° is dense in Ly(R"; g ,).
Finally, Theorem 2.1 implies dimkerP, = 0. The proof is complete.
¢
4 The operator P;-in H,(2)
Let 2 = R" bea bounded domain with 0 € 2 and 1‘-3[_‘J m(8) = {u e Es ()

wﬁDquﬁs(Q)’ la] = |f] < m}. We mnote that the relation me(Q
B,m(g)nﬂg(g) holds.
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TrEOBEM 4.1. Under the hypothesis

(4.1) Rek, # —n/2—s, ked,’

the operator Py e £(H, (@), H,(2)) is right invertible.
COROLLARY 4.2. The equation Pou =f, feH,(RQ), has a solution
w € Hy , (2), if and only if the algebraic system
(D"Pyu)(0) = (D*f)(0

with the unknowns Du(0 ), la} < s——'n/2, is solvable.

Proof of Theorem 4.1. The assertion for s = 0 eagily follows from
Theorem 2.1. Let s > 0. First, we prove the relation

lo} < §—n/2,

(4.2) PO(Hsm(Q))+N = H,(2),

N being a finite-dimensional space. We consider the equation Pyu = f,

feH{(Q), and extend f to a function g e H,(R") with compact support

and [ gdw = 0. Applying the Fourier transform & to Pyu = ¢, we obtain
Rr

the equation
(4.3) § = 7.

Since § is an entire function with §(0) = 0, we have §e L,(R"; g,,4.)
for some z> 0. It is possible to choose ¢ such that Rel, = —n/2+¢,

~nj2~—s, k e J. Analogous to the proof of Theorem 3.1 we get the relation

(4.4) "5 Osea)) < 00

But each solution & e Hy,,(R"; 0,,.5) of (4.3) belongs to H,,,(R"; ¢y,)
and thus (4.4) implies (4.2).

Further, the operator P, is invariant under the transformation
» — cmy ¢ > 0. Thus it is sufficient to prove Theorem 4.1 for small balls
=0 ={weR": |5 <r}

From (4.2) we obtain the 1e1at10n

130'!2 =£7’

dim L, (R"; ea,e+s)/P0(H0,m(R

(45)  Po(Hy (@) NH(2)+ Ny = H,(2), dim¥,< co.

Now, thanks to Lemma 1.1 5‘” i dense in H (R™.
= {u e 0°(2y): 0 ¢ suppu} is dense in H (Q

o
Hence, 0%({,)
1). Therefore, we can. assume

that the space N, in (4.5) is the linear hull of functions f; & o= 8),i=1,...
.y ¢ = dim N, (ef. [9], Chap. 1, Lemma 2.2).
Now we choose 7, 0 < r < 1, such that Q,Nsuppf, =@, i =1, ..., ¢,

and we prove that the equation

(4.6) Pouw=f, f ef?s(!?r),

icm
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has always a solution « eﬂos;m(!?,). In order to do so, we extend f to a
function & e H,(£2,). In virtue of (4.5) there exists an element hy= > ¢f;

€Ny, o; € C, such that h+hy € Py(H, 4(2,) NH,(L2;). Thus the equation
Pyu = h+hy admits a solution u, € H,,,(2,) and (4.6) has the solution
v = g, € Hypn(2,). Finally, setting

pz) =

la|<s—~n{2

—1? (D){0) 2"
al

we obtain Py(v—p) = f—Pop-e H,(£,). Since f € H,(£,), we have Pop = 0
and % =v—p eH,,(£,) is a solution of (4.6). This finishes the proof.
‘We now consider the operator

P, = 05(m) 2" D",
tal=[Bi<m

c,5(m) € 0°(2),0e Q.

THEOREM 4.3. Assume that the operator Po= >
condition (4.1). Then the assertion of Theorem 4.12‘11.1—1%?7;"%0 for the operator
P,c2 (Ho',,m(!)),ﬁ's(!))) for all sufficiently small domains Q.

Proof. It is sufficient to prove the theorem for small’ balls ©Q,. The
map Y,: u(w) —>u(go/'n) is an isomorphism of bis o (£y,) onto fIs(Ql) and

of Hsm( Q,,) onto H,,,(8,). Furthermore, the relations

Cap(0)2°D° satisfies

Py = VP, ¥, and P, =P,+T = ¥ P+T,)?,
hold, where

T= [0ap(@) — 645(0)]0°D",
lal=|Bl<m

Tp= D) [0up(0/n)— 00 (0)1sD"

la]=[Bl<m

Using the norm (1 1) we get I\, ety ) Hyt) = 05 1 — 0. There-
fore .P0+T e.?(Hsm(Q) L (2,)), Vi 2> my, is right invertible. Hence,
P,e& (H“,, (21), ), H (D)) is right invertible for n > n,.

5. An example

We consider the operator (0.3) Py = L, = Ar2+pd[dr-r-+4 = (roor)2+
+y1¢3/6r+11——6 where py = p+n+2, 4, = A+ p-+2n. Then we have
= (1] + pgrd|dr + 29— 0, pa = 2n— iy, Ay = Ny +n*—npy, and

0 A
o, =(( o2 A _/‘2) (cf. 11,1.2).
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The operator sZ, in I3(S"~") has the eigenfunctions

()“I?Ahlpk,a(e)) 1
-Pk,a(o) 7’

which correspond to the eigenvalues

= Hp+2—n) £ [(n+p+2)2+ 40k +n—2)—

o< a(k) = (2k+n—2)(n—Ek+3)! [(n—2)K!1T71,

420+ p+ )17},
keZ,
Py .(0) denoting the spherical harmonies.
The algebraic multiplicities of A# are equal to a(k), if AF % A7. For
X% =, the algebraic multiplicity of 4, is 2a(k).
Now one can derive most of the results of [5]for arbitrary s >
Theorems 2.1, 3.1 and 4.1.
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The following theorem is a standard tool for existence proofs in the theory
of non-linear elliptic boundary value problems, cf. [2], [13]:

THEOREM 0. Let B a reflevive Banach space with dual B* and let
T: B -» B* be a continuous mapping which satisfies the monotonicity condition

(1) (Tu—Tv,u—v)>0, wu,veB
and the coerciveness condition
(2) (Tu, u)/jul]| -~ o as Jull— oo.

Then T is surjective.

Many generalizations of this theorem have been given, cf. [1], [2],
[11], [14]. In applications to elliptic equations, the space B is a closed
subspace of the usual Sobolev-space H>P(£) over a domain £ of R",
containing the space OP(2) of testfunctions. The mapping T: B —B*
then is defined by

Zwau,

a 0

(3) (Tu, ) . PPu)0%dr  (la|<<m), wveB.

The notation uses multi-indices a = (ay, ..., a,) and the abbreviation
& = [[(8]0m)" (i = 1, ..., n). If one agsumes only an ellipticity condition

for the principal part of the operator Y (—1)#°4,, and corresponding

growth conditions for the A4, (|a| Qm) one cannot derive the “full”
coerciveness of T as required in Theorem 0. With appropriate growth a?ld
ellipticity conditions it is possible to derive only a “Garding-type in-
equality ”

(4) (T2, %) =

oltully,  — Ellelly —

[79]
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