PARTIAL DIFFERENTIAL EQUATIONS NACH CENTER PUBLICATIONS, VOLUME 10 PWN-POLISH SCIENTIFIC PUBLISHERS WARSAW 1983

ON A CLASS OF ELLIPTIC DIFFERENTIAL OPERATORS DEGENERATING AT ONE POINT

JOHANNES ELSCHNER and MICHAEL LORENZ

Institut für Mathematik, Akademie der Wissenschaften, Berlin, D.D.R.
Technische Hochschule, Sektion Mathematik, Karl-Marx-Stadt, D.D.R.

Introduction

We consider the differential operator

$$(0.1) \quad P_0(x, D) = \sum_{|a|=|\beta| \leqslant m} c_{\alpha\beta} x^{\beta} D^{\alpha},$$

$$c_{\alpha\beta} \in C, \quad D^{\alpha} = \partial^{\alpha_1 + \dots + \alpha_n} / \partial x_1^{\alpha_1} \dots \partial x_n^{\alpha_n},$$

$$\alpha = (\alpha_1, \dots, \alpha_n), \quad \beta = (\beta_1, \dots, \beta_n), \quad x^{\beta} = x_1^{\beta_1} \dots x_n^{\beta_n},$$

in \mathbb{R}^n , $n \ge 2$, and assume that P_0 is elliptic in $\mathbb{R}^n \setminus \{0\}$:

$$0.2) p(x, \xi) = \sum_{|a|=|\beta|=m} e_{a\beta} x^{\beta} \xi^{a} \neq 0, \forall (x, \xi) \in (\mathbf{R}^{n} \setminus \{0\}) \times (\mathbf{R}^{n} \setminus \{0\}).$$

Baouendi and Sjöstrand [3] studied analytic regularity of the operator P_0 at x=0. Furthermore, it was proved in [4] that the operator P_0 is not hypoelliptic at the origin (under a certain additional condition). More general results of this kind were announced in [10]. The special case (0.3) $L_0(x, D) = \Delta r^2 + \mu \partial / \partial r \cdot r + \lambda$,

$$\lambda,\,\mu\in C, \quad r^2=\sum x_i^2, \quad arDelta=\sum \partial^2/\partial x_i^2,$$

of the operator (0.1) was studied by Baouendi, Goulaouic and Lipkin [2] in the space of germs of analytic functions at the origin. They gave a complete description of the kernel and the range of the operator L_0 . The same operator was considered in Sobolev spaces $H_{2s}(\Omega)$, $s \in \mathbb{N}$, by the authors [5]. The aim of this paper is to investigate normal solvability and index of the operator (0.1) in the spaces $H_s(\mathbb{R}^n)$ and $H_s(\Omega)$, $s \geq 0$, Ω denoting a bounded domain in \mathbb{R}^n with $0 \in \Omega$ (for the definition of normally solvable

11/1/w · 1

and Fredholm operators we refer to [9]; the index of an operator A is defined by $\operatorname{ind} A = \operatorname{dim} \ker A - \operatorname{codim} \operatorname{im} A$).

We also consider the more general operator (cf. [3], [4], [10])

$$P_0(x, D) + \sum_{|a|=|\beta| \leqslant m} d_{\alpha\beta}(x) x^{\beta} D^{\alpha}, \quad d_{\alpha\beta}(0) = 0,$$

in a small neighbourhood of the origin.

'As in [3], using the Mellin transform with respect to the radial variable, we reduce the equation $P_0u=f$ to an elliptic system of pseudo-differential equations on the sphere S^{n-1} which depends on a complex parameter. We mention that similar methods have been used by Bagirov and Kondratiev [1], [7] in the study of elliptic equations in unbounded domains.

1. Preliminaries

1.1. From now on, we denote by Ω the whole space \mathbb{R}^n or a bounded domain with the following property:

The boundary Γ of Ω is a (n-1)-dimensional infinitely differentiable variety, Ω being locally on one side of Γ .

Let $H_s(\Omega)$, $s \ge 0$, be the usual Sobolev space with the norm

$$(1.1) \qquad \|u\|_s^2 = \sum_{|a| \leqslant [s]} \int\limits_{D} \|D^a u\|^2 dx + \sum_{|a| = [s]} \int\limits_{\Omega \times \Omega} \frac{|D^a u(x) - D^a u(y)|^2}{|x - y|^{n + 2(s - [s])}} \ dx dy$$

(but without the second term for $s\in N$). Furthermore, we introduce the spaces $H_{s,m}(\Omega)=\{u\in H_s(\Omega)\colon x^\beta D^au\in H_s(\Omega), \, |a|=|\beta|\leqslant m\}$ with the canonical norm

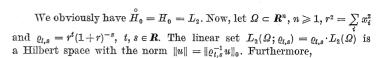
(1.2)
$$||u||_{s,m} = \sum_{|a|=|\beta| \leqslant m} ||x^{\beta} D^{a} u||_{s}.$$

When Ω is bounded and $0 \notin \overline{\Omega}$, the spaces $H_{s,m}(\Omega)$ and $H_{s+m}(\Omega)$ coincide (algebraically and topologically). $H_{s,m}(\Omega)$ is a Hilbert space and we have $P_0 \in \mathscr{L}(H_{s,m}(\Omega), H_s(\Omega))$, i.e. the operator $P_0 \colon H_{s,m} \to H_s$ is linear and continuous.

We set $\overset{\circ}{C_0^{\infty}} = \{u \in C_0^{\infty}(\mathbf{R}^n) \colon 0 \notin \operatorname{supp} u\}$ and $\overset{\circ}{H}_s(\Omega) = \{u \in H_s(\Omega) \colon D^a u(0) = 0, |a| < s - n/2\}, 0 \in \Omega$. In virtue of Sobolev's embedding theorem, $\overset{\circ}{H}_s$ is a closed subspace of finite codimension in H_s .

LEMMA 1.1. $\overset{\circ}{C}_0^{\infty}$ is dense in $\overset{\circ}{H}_s(\mathbf{R}^n)$, $s \geqslant 0$.

The proof is similar to the proof of Lemma 11.1 in [8], Chap. 1 (but simpler).



$$H_{0,m}(\Omega;\varrho_{t,s}) = \{ u \in L_2(\Omega;\varrho_{t,s}) \colon x^a D^\beta u \in L_2(\Omega;\varrho_{t,s}), |a| = |\beta| \leqslant m \},$$

 $t \ge 0$, is a Hilbert space with the canonical norm and the relation $H_{0,m}(\Omega; \varrho_{t,s}) = \varrho_{t,s} \cdot H_{0,m}(\Omega)$ holds.

Denoting by \mathcal{F} the (*n*-dimensional) Fourier transform, we get the commutative diagram

$$\begin{array}{cccc} P_{0} \colon H_{s,m}(\boldsymbol{R}^{n}) & \longrightarrow H_{s}(\boldsymbol{R}^{n}) \\ \downarrow^{\mathscr{F}} & \downarrow^{\mathscr{F}} \\ \hat{P}_{0} \colon H_{0,m}(\boldsymbol{R}^{n};\varrho_{0,s}) & \longrightarrow L_{2}(\boldsymbol{R}^{n};\varrho_{0,s}) \end{array}$$

with the operator $\hat{P}_0 = \sum_{|a|=|\beta|\leqslant m} c_{a\beta} (-1)^{|a|} D^{\beta} x^a$, which is also elliptic in $\mathbb{R}^n \smallsetminus \{0\}$ (cf. (0.2)).

1.2. In analogy to [3] we reduce the equation

$$\hat{P}_0 u = f$$

to a system of pseudo-differential equations of first order. The operator \hat{P}_0 can be written in spherical coordinates $(r,\,\theta)$

$${P}_0(heta, D_ heta, rD_r) = \sum_{j=0}^m A_j(heta, D_ heta) (r\partial/\partial r)^{m-j},$$

where $A_j(\theta,D_\theta)$ are differential operators of order $\leqslant j$ on S^{n-1} with analytic coefficients. It follows from (0.2) that $A_0(\theta) \neq 0$, $\theta \in S^{n-1}$. Setting $B_j(\theta,D_\theta) = -A_0(\theta)^{-1}A_j(\theta,D_\theta)$, $U = (u_j)_1^m$, $u_j = A^{m-j}(r\partial/\partial r)^{j-1}u$, $j=1,\ldots,m,\ A=(1+\delta)^{1/2}$, where δ is the Beltrami operator on S^{n-1} , $F=(f_j)_1^m,f_j=0$, $j< m,\ f_m=A_0(\theta)^{-1}f$, and

$$\mathscr{A}_{\theta} = egin{bmatrix} 0 & A & \dots & 0 \ \vdots & \ddots & \ddots & \ddots & \ddots \ 0 & \dots & 0 & A \ B_m A^{-m+1} & \dots & B_2 A^{-1} & B_1 \end{bmatrix},$$

we obtain from equation (1.4) the system

$$\mathfrak{A}_0 U = r \partial / \partial r \cdot U - \mathscr{A}_0 U = F.$$

In view of (0.2), \mathscr{A}_{θ} is an elliptic pseudo-differential operator on \mathcal{S}^{n-1} (cf. [3]). The operator \mathscr{A}_{θ} has the following properties ([3], [11]):

(i) There is only a discrete set of different eigenvalues λ_k , $k \in J$, of the operator \mathscr{A}_{θ} in the space $L_2^m(S^{n-1})$. (1) Each eigenvalue λ_k has finite algebraic multiplicity m_k .

⁽¹⁾ By X^m we denote the space $X \times ... \times X$ (m factors).

(ii) The operator $zI - \mathscr{A}_{\theta}$ has an inverse $\mathscr{R}_z \in \mathscr{L}\left(L_2^m(S^{n-1})\right)$ for all $z \neq \lambda_k$. Furthermore, there exist a cone $K = \{z \in C \colon \varepsilon < |\arg z| < \pi - \varepsilon\}$, $\varepsilon \in (0, \pi/2)$, and numbers c, M > 0 such that

(1.6)
$$\|\mathcal{A}_z\|_{\mathscr{L}(L^m_2(S^{n-1}))} \leqslant c|z|^{-1}, \quad \forall \ z \in K, \ |z| \geqslant M.$$

In order to investigate the equivalence of equations (1.4) and (1.5), we state two lemmas. The first lemma is a generalization of Lemmas 1.1 and 1.2 in [5]; the method of the proof is the same.

LEMMA 1.2. $\overset{\circ}{C_0}^{\infty}$ is dense in $H_{0,m}(\mathbf{R}^n)$ and the norms (1.2) and

$$|u|_{0,m} = \sum_{i+j \leqslant m} ||A^{i}(r\partial/\partial r)^{j}u||_{0}$$

are equivalent in the space $H_{0,m}(\mathbf{R}^n)$.

LEMMA 1.3. With the above notations we have

$$\begin{split} |u|_{0,m} \sim |U|_{0,1} &= \|U\|_0 + \|r\partial/\partial r \cdot U\|_0 + \|AU\|_0 \sim \|U\|_0 + \|r\partial/\partial r \cdot U\|_0 + \|\mathscr{A}_{\theta}U\|_0 \;, \\ &\quad \forall \; u \in H_{0,m}(\boldsymbol{R}^n) \,. \; ^{(2)} \end{split}$$

Proof. The relation $|u|_{0,m} \sim |U|_{0,1}$ is obvious. Furthermore, thanks to the ellipticity of \mathscr{A}_0 on S^{n-1} , we obtain for all $u \in \overset{\circ}{C_0^{\infty}}$ and fixed $r_0 > 0$

$$\|\mathscr{A}_{\theta}U(r_{0},\,\theta)\|_{L_{2}^{m}(S^{n-1})} + \|U(r_{0},\,\theta)\|_{L_{2}^{m}(S^{n-1})} \sim \|U(r_{0},\,\theta)\|_{H_{1}^{m}(S^{n-1})}$$

and

$$\|U(r_0, \theta)\|_{H^m_1(S^{n-1})} \sim \|AU(r_0, \theta)\|_{L^m_2(S^{n-1})}$$

(cf. [8], Chap. 1) uniformly with respect to r_0 . Since $\overset{\circ}{C}_0^{\infty}$ is dense in $H_{0,m}(\mathbf{R}^n)$, the result follows by integration with respect to r_0 .

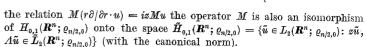
COROLLARY 1.4. The equation (1.4) with $f \in L_2(\mathbb{R}^n)$ has the solution $u \in H_{0,m}(\mathbb{R}^n)$ if and only if the system (1.5) admits the solution $U \in H_{0,n}^m(\mathbb{R}^n)$.

Analogous assertions to Lemmas 1.2 and 1.3 and Corollary 1.4 are true for the spaces with weights $\varrho_{t,s}$, $t \ge 0$.

1.3. The Mellin transform

$$\tilde{u}(z,\,\theta)\,=\,(Mu)(z,\,\theta)\,=\,\int\limits_0^\infty\,r^{-iz-1}u(r,\,\theta)\,dr$$

is an isomorphic map from $L_2(\mathbf{R}^n;\varrho_{n/2,0})=L_2\big((0,\,\infty);\,r^{1/2}\big)\otimes L_2(S^{n-1})$ onto the space $\tilde{L}_2(\mathbf{R}^n;\varrho_{n/2,0})=L_2(-\infty,\,\infty)\otimes L_2(S^{n-1})$. In virtue of



Let $t\geqslant n/2$, s>0. We denote by $\tilde{L}_2(H_{t,s})$ the Banach space of the functions which are analytic in the strip $H_{t,s}=\{z\in C\colon -t+n/2<\mathrm{Im}\,z<-t+s+n/2\}$ with the norm

$$\|\tilde{u}(z)\|^2 = \sup_{ au-n/2 \in (-t,s-t)} \int_{-\infty}^{\infty} |\tilde{u}(\sigma+i au)|^2 d\sigma, \quad z = \sigma+i au.$$

Then the Mellin transform is an isomorphic map from $L_2(\boldsymbol{R}^n;\varrho_{t,s})$ onto the space $\tilde{L}_2(\boldsymbol{R}^n;\varrho_{t,s})=\tilde{L}_2(H_{t,s})\otimes L_2(S^{n-1})$ and we have

$$\|u\|_{L_2(\mathbf{R}^n;arepsilon_{ au,0})}^2 = rac{1}{2\pi} \int\limits_{-\infty}^{\infty} \int\limits_{S^{n-1}} |(Mu)(\sigma+i au,\, heta)|^2 d\sigma d heta, \ orall u \in L_2(\mathbf{R}^n;\,
ho_{t,\, au}) orall au \in (t-s,\,t)$$

(cf. [12], p. 247, for n = 1).

Furthermore, $M\colon H_{0,1}(\boldsymbol{R}^n;\,\varrho_{t,s}) \to \tilde{H}_{0,1}(\boldsymbol{R}^n;\,\varrho_{t,s}) = \{\tilde{u} \in \tilde{L}_2(\boldsymbol{R}^n;\,\varrho_{t,s}) \colon z\tilde{u}\,,$ $\Lambda\tilde{u} \in \tilde{L}_2(\boldsymbol{R}^n;\,\varrho_{t,s})\}$ is an isomorphism.

2. The operator P_0 in $L_2(\mathbf{R}^n)$

Let P_0 be the operator defined in (0.1) and λ_k , $k \in J$, the eigenvalues of the operator \mathscr{A}_{θ} (cf. 1.2).

THEOREM 2.1. Under the hypothesis

(2.1)
$$\operatorname{Re} \lambda_k \neq -n/2, \quad k \in J,$$

the operator $P_0 \in \mathscr{L}(H_{0,m}(\mathbb{R}^n), L_2(\mathbb{R}^n))$ is invertible.

Proof. Thanks to (1.3) and Corollary 1.4 it is sufficient to show that the operator $\mathfrak{A}_0 = r\partial/\partial r - \mathscr{A}_{\theta}$ is invertible in $\mathscr{L}(H_{0,1}^m(\mathbf{R}^n), L_2^m(\mathbf{R}^n))$ under hypothesis (2.1). Now we consider the operator

$$\mathfrak{B}_0 = r^{n/2}\mathfrak{A}_0 r^{-n/2} = r \partial/\partial r - \mathscr{A}_\theta - (n/2) I \in \mathscr{L} \big(H^n_{0,1}(\boldsymbol{R}^n; \varrho_{n/2,0}), \, L_2(\boldsymbol{R}^n; \varrho_{n/2,0}) \big)$$
 and the commutative diagram

$$\begin{array}{ccc} \mathfrak{B}_{0} \colon H^{m}_{0,1}(\boldsymbol{R}^{n}; \varrho_{n/2,0}) \longrightarrow L^{m}_{2}(\boldsymbol{R}^{n}; \varrho_{n/2,0}) \\ & & \downarrow^{M} & \downarrow^{M} \\ \tilde{\mathfrak{B}}_{0} \colon \tilde{H}^{m}_{0,1}(\boldsymbol{R}^{n}; \varrho_{n/2,0}) \longrightarrow \tilde{L}^{m}_{2}(\boldsymbol{R}^{n}; \varrho_{n/2,0}) \end{array}$$

with $\tilde{\mathfrak{B}}_0\tilde{u}(z,\theta) = (iz - (n/2)I - \mathscr{A}_\theta)\tilde{u}(z,\theta)$ (cf. 1.3). We have to prove that $\tilde{\mathfrak{B}}_0$ is invertible under hypothesis (2.1). It follows from (2.1) and (1.6)

⁽²⁾ $||x|| \sim |x|, x \in X$, means that there exist constants $c_1, c_2 > 0$ such that $c_1||x|| \leqslant |x| \leqslant c_2||x||, x \in X$.

75

that the estimate

$$\|\mathscr{R}_{iz-n/2}\|_{\mathscr{L}(L^m_o(S^{n-1}))} \leqslant c(1+z)^{-1}, \quad \forall z \in \mathbf{R},$$

holds. Therefore, we obtain

$$\|\mathcal{R}_{iz-n/2}\tilde{F}\|_{\tilde{L}^m_s} + \|z\mathcal{R}_{iz-n/2}\tilde{F}\|_{\tilde{L}^m_2} \leqslant c \|\tilde{F}\|_{\tilde{L}^m_2}, \quad \forall \ \tilde{F} \in \tilde{L}^m_2(\mathbb{R}^n;\varrho_{n/2,0}),$$

and $\mathcal{R}_{iz-n/2}$ is the desired inverse of $\tilde{\mathfrak{B}}_0$.

Remark 2.2. One can prove that the operator $P_0 \in \mathcal{L}(H_{0,m}(\mathbf{R}^n), L_2(\mathbf{R}^n))$ is not normally solvable if the condition (2.1) is violated.

Applying Theorem 2.1 to the operator $r^{-\mu}P_0r^{\mu}$, we get

COROLLARY 2.3. Let $\mu \geqslant 0$. If $\operatorname{Re} \lambda_k \neq -n/2 - \mu$, $k \in J$, then the operator $P_0 \in \mathscr{L}(H_{0,m}(\mathbf{R}^n; \varrho_{\mu,0}), L_2(\mathbf{R}^n; \varrho_{\mu,0}))$ is invertible.

It follows from Corollary 2.3 that the operator P_0 is always locally solvable at the origin.

3. The operator P_0 in $H_s(\mathbb{R}^n)$, s>0

We denote by z(s) the sum of the algebraic multiplicities m_k of the eigenvalues λ_k , $k \in J' \subset J$, which satisfy $-n/2 - s < \operatorname{Re} \lambda_k < -n/2$. The set J' is finite (cf. 1.2).

THEOREM 3.1. Under the hypothesis

(3.1)
$$\operatorname{Re} \lambda_k \neq -n/2, \quad -n/2 - s, \ k \in J$$

the operator $P_0 \in \mathcal{L}(H_{s,m}(\mathbf{R}^n), H_s(\mathbf{R}^n))$ is a Fredholm operator with $\dim \ker P_0 = 0$ and $\operatorname{codimim} P_0 = z(s)$.

Proof. As in the proof of Theorem 2.1, we consider the diagram (2.2) with the spaces with the weight $\varrho_{n/2,s}$ instead of $\varrho_{n/2,0}$. First, we prove the relation codim im $\mathfrak{B}_0 = z(s)$ for the operator $\mathfrak{B}_0 \in \mathcal{L}(\tilde{H}^n_{0,1}(\mathbf{R}^n; \varrho_{n/2,s}), \tilde{L}^m_2(\mathbf{R}^n; \varrho_{n/2,s}))$. We choose mutually disjoint neighbourhoods $U(z_k) \subset H_s = \{z \in C \colon 0 < \operatorname{Im} z < s\}$ of the points $z_k = -i\lambda_k - i(n/2), \ k \in J'$. Then it follows from (3.1) and (1.6) that the estimate

$$(3.2) \qquad \|\mathscr{R}_{|z-n/2}\|_{\mathscr{L}^m_{2}(S^{n-1}))} \leqslant c(1+|z|)^{-1}, \quad \forall \ z \in H_s \searrow \bigcup_{k \in I'} U(z_k),$$

holds. Further, there are Laurent expansions

$$(3.3) \qquad \mathscr{R}_{lz-n/2} = \sum_{l=-n_k}^{\infty} (z-z_k)^l A_l^{(k)}, \qquad A_l^{(k)} \in \mathscr{L}\left(L_2^m(S^{n-1})\right), \, n_k \in \mathbb{N},$$

$$z \in U(z_k) \setminus \{z_k\}, \, k \in J'$$

where $A_{-1}^{(k)}$ and $I - A_{-1}^{(k)}$ are projections on the subspaces $\ker \mathcal{F}_{z_k}^{n_k}$ and $\operatorname{im} \mathcal{F}_{z_k}^{n_k}$, $\mathcal{F}_{z_k} = iz_k - (n/2) \, I - \mathcal{S}_0$, and the relations $A_{-l-1}^{(k)} = \mathcal{F}_{z_k}^l A_{-1}^{(k)}, \, l \geqslant 1$, hold (this follows from Theorem 5 in [6], Chap. 13, since $\mathcal{R}_{iz-n/2}$ is compact in $L_2^m(S^{n-1})$ for some $z \in C$).

Now we consider the equation

(3.4)
$$\tilde{\mathfrak{B}}_0 \tilde{U} = \tilde{F}, \quad \tilde{F} \in \tilde{L}_2^m(\mathbb{R}^n; \varrho_{n/2,s}).$$

In virtue of (3.2) there exists a solution $\tilde{U} \in \tilde{H}^m_{0,1}(\mathbb{R}^n; \varrho_{n/2,s})$ of (3.4) if and only if the function $\mathcal{R}_{iz-n/2}\tilde{F}(z,\theta)$ is analytic in all sets $U(z_k)$, $k \in J'$, with respect to z. The representations (3.3) imply that $F \in \text{im}\tilde{\mathfrak{B}}_0$ if and only if

$$(3.5) \qquad \sum_{l=0}^{j} \frac{1}{(j-l)!} A_{-n_k+l}^{(k)} \left((\partial^{j-l}/\partial z^{j-l}) \tilde{F}(z_k, \theta) \right) = 0,$$

$$j = 0, ..., n_k - 1, k \in J'.$$

It can be shown that conditions (3.5) determine m_k linearly independent continuous functionals on $\tilde{L}_2^m(\mathbf{R}^n;\varrho_{n/2,s})$ for each $k \in J'$. Therefore we have codimim $\tilde{\mathfrak{B}}_0 = z(s)$.

Next, the inequality codim im $P_0 = \operatorname{codim im} \hat{P}_0 \leqslant \operatorname{codim im} \mathfrak{U}_0$ = codim im $\tilde{\mathfrak{B}}_0 = z(s)$ holds for the operators $P_0 \in \mathscr{L}(H_{s,m}(\mathbf{R}^n), H_s(\mathbf{R}^n))$, $\hat{P}_0 \in \mathscr{L}(H_{0,m}(\mathbf{R}^n; \varrho_{0,s}), L_2(\mathbf{R}^n; \varrho_{0,s}))$ and $\mathfrak{U}_0 \in \mathscr{L}(H_{0,1}^m(\mathbf{R}^n; \varrho_{0,s}), L_2^m(\mathbf{R}^n; \varrho_{0,s}))$ (cf. 1.2). For the proof of the converse inequality, we note that the system $\mathfrak{U}_0 U = F$, $F = (f_j)_1^m \in \mathring{C}_0^{\infty,m}$, has the solution $U = (u_j)_1^m \in H_{0,1}^m(\mathbf{R}^n; \varrho_{0,s})$ with

$$u_j = arLambda^{m-j} (r\partial/\partial r)^{j-1} u - \sum_{l=1}^{j-1} arLambda^{l-j} (r\partial/\partial r)^{j-1-l} f_l, \quad j=1,\ldots,m,$$

if the equation $\hat{P}_0 u = f$ with

$$f = A_0(\theta) f_m - \sum_{j=1}^m \sum_{l=1}^{j-1} A_{m-j+1}(\theta, D_\theta) (r\partial/\partial r)^{j-1-l} A^{l-j} f_l \in \mathring{C}_0^{\infty},$$

admits the solution $u \in H_{0,m}(\mathbf{R}^n; \varrho_{0,s})$ and that $\mathring{\mathcal{C}}_0^{\infty}$ is dense in $L_2(\mathbf{R}^n; \varrho_{0,s})$. Finally, Theorem 2.1 implies $\dim \ker P_0 = 0$. The proof is complete.

4. The operator P_0 in $H_s(\Omega)$

Let $\Omega \subset \mathbf{R}^n$ be a bounded domain with $0 \in \Omega$ and $\mathring{H}_{s,m}(\Omega) = \{u \in H_{s,m}(\Omega) : x^{\beta}D^{\alpha}u \in \mathring{H}_{s}(\Omega), \ |\alpha| = |\beta| \leqslant m\}$. We note that the relation $\mathring{H}_{s,m}(\Omega) = H_{s,m}(\Omega) \cap \mathring{H}_{s}(\Omega)$ holds.

77

THEOREM 4.1. Under the hypothesis

(4.1)
$$\operatorname{Re} \lambda_k \neq -n/2 - s, \quad k \in J,$$

the operator $P_0 \in \mathcal{L}(\mathring{H}_{s,m}(\Omega), \mathring{H}_s(\Omega))$ is right invertible.

COROLLARY 4.2. The equation $P_0u=f,\ f\in H_s(\Omega)$, has a solution $u\in H_{s,m}(\Omega)$, if and only if the algebraic system

$$(D^a P_0 u)(0) = (D^a f)(0), \quad |a| < s - n/2,$$

with the unknowns $D^{\alpha}u(0)$, $|\alpha| < s - n/2$, is solvable.

Proof of Theorem 4.1. The assertion for s=0 easily follows from Theorem 2.1. Let s>0. First, we prove the relation

$$(4.2) P_0(H_{s,m}(\Omega)) + N = H_s(\Omega),$$

N being a finite-dimensional space. We consider the equation $P_0u=f$, $f\in H_s(\Omega)$, and extend f to a function $g\in H_s(\mathbf{R}^n)$ with compact support and $\int\limits_{\mathbf{R}^n}g\,dx=0$. Applying the Fourier transform $\mathscr F$ to $P_0u=g$, we obtain the equation

$$\hat{P}_0 \hat{u} = \hat{g}, \quad \hat{g} = \mathscr{F}g.$$

Since \hat{g} is an entire function with $\hat{g}(0) = 0$, we have $\hat{g} \in L_2(\mathbb{R}^n; \varrho_{\epsilon, s+\delta})$ for some $\varepsilon > 0$. It is possible to choose ε such that $\text{Re } \lambda_k \neq -n/2 + \varepsilon$, $-n/2 - \varepsilon$, $k \in J$. Analogous to the proof of Theorem 3.1 we get the relation

$$(4.4) \qquad \dim L_2(\mathbf{R}^n; \varrho_{s,s+s}) / P_0(H_{0,m}(\mathbf{R}^n; \varrho_{s,s+s})) < \infty.$$

But each solution $\hat{u} \in H_{0,m}(\mathbf{R}^n; \varrho_{\bullet,s+s})$ of (4.3) belongs to $H_{0,m}(\mathbf{R}^n; \varrho_{0,s})$ and thus (4.4) implies (4.2).

Further, the operator P_0 is invariant under the transformation $x \to cx$, c > 0. Thus it is sufficient to prove Theorem 4.1 for small balls $\Omega = \Omega_r = \{x \in \mathbb{R}^n : |x| < r\}$.

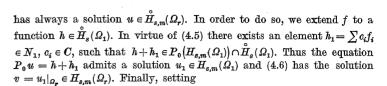
From (4.2) we obtain the relation

$$(4.5) \qquad P_0\big(H_{s,m}(\varOmega_1)\big)\cap \mathring{H_s}(\varOmega_1) + N_1 = \mathring{H_s}(\varOmega_1), \quad \dim N_1 < \infty.$$

Now, thanks to Lemma 1.1 \mathring{C}_0^{∞} is dense in $\mathring{H}_s(\mathbb{R}^n)$. Hence, $\mathring{C}^{\infty}(\overline{\Omega}_1) = \{u \in C^{\infty}(\overline{\Omega}_1) \colon 0 \notin \operatorname{supp} u\}$ is dense in $\mathring{H}_s(\Omega_1)$. Therefore, we can assume that the space N_1 in (4.5) is the linear hull of functions $f_i \in \mathring{C}^{\infty}(\overline{\Omega}_1)$, $i = 1, \ldots, q = \dim N_1$ (cf. [9], Chap. 1, Lemma 2.2).

Now we choose r, 0 < r < 1, such that $\Omega_r \cap \text{supp} f_i = \emptyset$, i = 1, ..., q, and we prove that the equation

$$(4.6) P_0 u = f, \quad f \in \overset{\circ}{H}_s(\Omega_r),$$



$$p(x) = \sum_{|a| < s - n/2} \frac{1}{a!} (D^a v)(0) x^a$$

we obtain $P_0(v-p) = f - P_0 p \in \mathring{H}_s(\Omega_r)$. Since $f \in \mathring{H}_s(\Omega_r)$, we have $P_0 p = 0$ and $u = v - p \in \mathring{H}_{s,m}(\Omega_r)$ is a solution of (4.6). This finishes the proof. We now consider the operator

$$P_x = \sum_{|a|=|\widehat{B}| < m} c_{aeta}(x) x^{eta} D^a, \quad \ c_{aeta}(x) \in C^\infty(\overline{\Omega}), \, 0 \in \Omega.$$

THEOREM 4.3. Assume that the operator $P_0 = \sum_{|\alpha|=|\beta| \leqslant m} c_{\alpha\beta}(0) x^{\beta} D^{\alpha}$ satisfies condition (4.1). Then the assertion of Theorem 4.1 is true for the operator $P_x \in \mathcal{L}(\mathring{H}_{s,m}(\Omega),\mathring{H}_s(\Omega))$ for all sufficiently small domains Ω .

Proof. It is sufficient to prove the theorem for small balls Ω_r . The map Ψ_n : $u(x) \to u(x/n)$ is an isomorphism of $\mathring{H}_s(\Omega_{1/n})$ onto $\mathring{H}_s(\Omega_1)$ and of $\mathring{H}_{s,m}(\Omega_{1/n})$ onto $\mathring{H}_{s,m}(\Omega_1)$. Furthermore, the relations

$$P_0 = \Psi_n^{-1} P_0 \Psi_n$$
 and $P_x = P_0 + T = \Psi_n^{-1} (P_0 + T_n') \Psi_n$

hold, where

$$T = \sum_{|a|=|\beta|\leqslant m} \left[c_{a\beta}(x) - c_{a\beta}(0)\right] x^{\theta} D^{a}, \quad T_n' = \sum_{|a|=|\beta|\leqslant m} \left[c_{a\beta}(x/n) - c_{a\beta}(0)\right] x^{\theta} D^{a}.$$

Using the norm (1.1) we get $\|T_n'\|_{\mathscr{L}(H_{\delta,m}(\Omega_1),H_{\delta}(\Omega_1))} \to 0$, $n \to \infty$. Therefore $P_0 + T_n' \in \mathscr{L}(\mathring{H}_{\delta,m}(\Omega_1),\mathring{H}_{\delta}(\Omega_1))$, $\forall n \geqslant n_0$, is right invertible. Hence, $P_x \in \mathscr{L}(\mathring{H}_{\delta,m}(\Omega_{1/n}),\mathring{H}_{\delta}(\Omega_{1/n}))$ is right invertible for $n \geqslant n_0$.

5. An example

We consider the operator (0.3) $P_0 = L_0 = \Delta r^2 + \mu \partial / \partial r \cdot r + \lambda = (r\partial / \partial r)^2 + \mu_1 r \partial / \partial r + \lambda_1 - \delta$, where $\mu_1 = \mu + n + 2$, $\lambda_1 = \lambda + \mu + 2n$. Then we have $\hat{P}_0 = (r\partial / \partial r)^2 + \mu_2 r \partial / \partial r + \lambda_2 - \delta$, $\mu_2 = 2n - \mu_1$, $\lambda_2 = \lambda_1 + n^2 - n\mu_1$, and

$$\mathscr{A}_{\theta} = \begin{pmatrix} 0 & \Lambda \\ (\delta - \lambda_2) \Lambda^{-1} & -\mu_2 \end{pmatrix}$$
 (cf. 1.1, 1.2).

All to

The operator \mathscr{A}_{θ} in $L_2^2(S^{n-1})$ has the eigenfunctions

$$\begin{pmatrix} \lambda_k^{\pm} A^{-1} P_{k,a}(\theta) \\ P_{k,a}(\theta) \end{pmatrix}, \qquad 1 \leqslant a \leqslant a(k) = (2k+n-2)(n-k+3)! \ [(n-2)!k! \]^{-1},$$

which correspond to the eigenvalues

$$\begin{array}{c} \lambda_k^{\pm} \, = \, \frac{1}{2} \{ (\mu + 2 - n) \, \pm \, [(n + \mu + 2)^2 + 4k(k + n - 2) - 4(2n + \mu + \lambda)]^{1/2} \}, \\ k \in \mathbf{Z}, \end{array}$$

 $P_{k,a}(\theta)$ denoting the spherical harmonics.

The algebraic multiplicities of λ_k^{\pm} are equal to a(k), if $\lambda_k^{+} \neq \lambda_k^{-}$. For $\lambda_k^{\pm} = \lambda_k$ the algebraic multiplicity of λ_k is 2a(k).

Now one can derive most of the results of [5] for arbitrary $s \ge 0$ from Theorems 2.1, 3.1 and 4.1.

References

- [1] L. A. Bagirov and V. A. Kondratiev, On elliptic equations in Rⁿ (Russian), Differenc. Urawn. 11 (1975), 948-504.
- [2] M. S. Baouendi, C. Goulaouic and J. Lipkin, On the operator $\Delta r^2 + \mu \partial/\partial r \cdot r + \lambda$, J. Differential Equations 15 (1974), 499-509.
- [3] M. S. Baouendi and J. Sjöstrand, Régularité analytique pour des opérateurs elliptiques singuliers en une point, Arkiv för Mat. 14 (1976), 9-33.
- [4] -, -, Non hypoellipticité d'opérateurs elliptiques singuliers, Séminaire Goulaouic-Schwartz 1975-76, Exposé XXIV.
- [5] J. Elsehner and M. Lorenz, On the normal solvability of the operator $\Delta r^2 + \mu \partial / \partial r \cdot r + \lambda$, J. Differential Equations 36 (1980), 408-424.
- [6] L. V. Kantorovich and G. P. Akilov, Functional analysis (Russian), Moscow
- [7] V. A. Kondratiev, Boundary value problems for elliptic equations in domains with conical or angular points (Russian), Trudy Moskov. Mat. Obšč. 16 (1967), 209-292.
- [8] J. L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications I, Berlin, Heidelberg, New York 1972.
- [9] S. Prößdorf, Einige Klassen singulärer Gleichungen, Berlin 1974.
- [10] E. V. Radkevich, A theorem on a removable singularity for solutions of a class of linear partial differential equations (Russian), Uspchi Mat. Nauk 32 (1977), 265-266.
- [11] R. T. Seeley, Complex powers of an elliptic operator, Proc. Symp. Pure Math. A.M.S. 10 (1967), 288-307.
- [12] D. V. Widder, The Laplace transform, Princeton 1946.

Presented to the Semester Partial Differential Equations September 11-December 16, 1978

MONOTONE OPERATORS WITH LINEAR RANGE

JENS FREHSE

Institut für Angewandte Mathematik und Informatik der Universität Bonn, Bonn, F.R.G.

The following theorem is a standard tool for existence proofs in the theory of non-linear elliptic boundary value problems, cf. [2], [13]:

THEOREM 0. Let B a reflexive Banach space with dual B^* and let $T \colon B \to B^*$ be a continuous mapping which satisfies the monotonicity condition

$$(Tu - Tv, u - v) \geqslant 0, \quad u, v \in B$$

and the coerciveness condition

(2)
$$(Tu, u)/||u|| \to \infty$$
 as $||u|| \to \infty$.

Then T is surjective.

Many generalizations of this theorem have been given, cf. [1], [2], [11], [14]. In applications to elliptic equations, the space B is a closed subspace of the usual Sobolev-space $H^{1,p}(\Omega)$ over a domain Ω of \mathbb{R}^n , containing the space $C_0^{\infty}(\Omega)$ of testfunctions. The mapping $T \colon B \to B^*$ then is defined by

$$(3) \qquad (Tu,v) = \sum_{a} \int\limits_{\Omega} A_{a}(x,u,\ldots, \, \nabla^{m}u) \, \partial^{a}v \, dx \quad (|a| \leqslant m), \quad v \in B.$$

The notation uses multi-indices $\alpha=(\alpha_1,\ldots,\alpha_n)$ and the abbreviation $\partial^a=\prod_i(\partial/\partial x_i)^{a_i}$ $(i=1,\ldots,n)$. If one assumes only an ellipticity condition for the principal part of the operator $\sum\limits_a (-1)^{|a|}\partial^a A_a$, and corresponding growth conditions for the A_a ($|a|\leqslant m$), one cannot derive the "full" coerciveness of T as required in Theorem 0. With appropriate growth and ellipticity conditions it is possible to derive only a "Gårding-type inequality"

(4)
$$(Tu, u) \geqslant c ||u||_{m,p}^p - K ||u||_p^p - K$$