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The operator sZ, in I3(S"~") has the eigenfunctions

()“I?Ahlpk,a(e)) 1
-Pk,a(o) 7’

which correspond to the eigenvalues

= Hp+2—n) £ [(n+p+2)2+ 40k +n—2)—

o< a(k) = (2k+n—2)(n—Ek+3)! [(n—2)K!1T71,

420+ p+ )17},
keZ,
Py .(0) denoting the spherical harmonies.
The algebraic multiplicities of A# are equal to a(k), if AF % A7. For
X% =, the algebraic multiplicity of 4, is 2a(k).
Now one can derive most of the results of [5]for arbitrary s >
Theorems 2.1, 3.1 and 4.1.
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The following theorem is a standard tool for existence proofs in the theory
of non-linear elliptic boundary value problems, cf. [2], [13]:

THEOREM 0. Let B a reflevive Banach space with dual B* and let
T: B -» B* be a continuous mapping which satisfies the monotonicity condition

(1) (Tu—Tv,u—v)>0, wu,veB
and the coerciveness condition
(2) (Tu, u)/jul]| -~ o as Jull— oo.

Then T is surjective.

Many generalizations of this theorem have been given, cf. [1], [2],
[11], [14]. In applications to elliptic equations, the space B is a closed
subspace of the usual Sobolev-space H>P(£) over a domain £ of R",
containing the space OP(2) of testfunctions. The mapping T: B —B*
then is defined by

Zwau,

a 0

(3) (Tu, ) . PPu)0%dr  (la|<<m), wveB.

The notation uses multi-indices a = (ay, ..., a,) and the abbreviation
& = [[(8]0m)" (i = 1, ..., n). If one agsumes only an ellipticity condition

for the principal part of the operator Y (—1)#°4,, and corresponding

growth conditions for the A4, (|a| Qm) one cannot derive the “full”
coerciveness of T as required in Theorem 0. With appropriate growth a?ld
ellipticity conditions it is possible to derive only a “Garding-type in-
equality ”

(4) (T2, %) =

oltully,  — Ellelly —

[79]
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with positive constants ¢ and K. Here

el = ([ 102da)™,  Wolln, = 3 170l (G =1, ..., m).

If T comes from a linear operator, inequality (4) is the key for proving
Fredholm alternative theorems for T, i.e. the range R(T) of T has a finite
co-dimension and the equation T'v = f iz solvable if and only if

FLR(T)*:.

It is a surprising fact that the Fredholm alternative theorem holds for
monotone (or asymptotic monotone) operators which are of polynomial
type (cf. condition (7)) and satisfy (4) or some abstract analogue of semi-
-coerciveness. This was first disecovered by the author in 1977, cf. [4], [6],
and also [9]. The Fredholm property is equivalent to the linearity of R(T).

The purpose of this paper is to present the precise statement and
proof of our alternative theorem from [6], however, under slightly different
— more elegant — conditions.

We shall assume the following properties of 7'

{B)  Normalization: T(0) = 0.

(6) Asymptotic monotonicity. For every fixed veB
Lminf u|=*(Tu—Tv, u—0) 20  (jull = o).

(7)  Polynomial type condition. I for some pair v, w ¢ B

limsup|(T(w+1t), )| < oo (t = oo)
then (T'(w--tv), v) is constant in ¢ ¢ R.
{8)  Weak differentiability at 0. The function v defined by

p(t) = (T'(tw), )

icm

is differentiable at ¢ = 0 for all v € B, w e D, where D, is a dense subset .

in B.
(9) Regularity. For every bounded closed convex set K < B and every
f € B* the variational inequality

ueK: (Tu—f,u—v)<0 forallvek
has a solution.

{(10)  Semi-coerciveness. There is a continuous linear projection @: B — B
such that dim@B < oo and for all K > K,

sup {{lull/([Quil+1)! (Tu, w)/lull < E, % e B} < oo.
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Remark. If T is pseudo-monotone in the sense of [1], then (9) is
satistied.

With these assumptions we have the following

THEOREM 1. Let T: B — B be a continuous mapping from a reflewive
Banach space B into its dual which satisfies (5)~(10). Then the range R(T)
s a closed linear subspace of B* with finite co-dimension.

Remarks. (i) If B = R", the condition (10) of semi-coerciveness
follows from (8) and (6). Henee, if dimB = co, the range of the zpproxi-
mate mapping P*TP is a lineax subspace of B* for every finite-dimensional
projection P and dual P*. The question arises whether our condition (10)
of semi-coerciveness of I can Dbe relaxed. F. E. Browder [3] generalized
the above theorem and obtained without assuming (10) that the closure
of R(T) is a linear subspace of B*. Under the additional assumption that
E(T) has an interior point in R(T) with respect to the weak topology,
he obtained that R (T) itself is linear. For applications to partial differential
equation, condition (10) seems to have a wider applicability. The results
of [3] use stronger “polynomial”-type conditions than here or [6]; our
key lemma was not published yet.

(ii) A variational analogue of Theorem 1 together with a variational
type of proof was presented in [5]. The theorem asserts that the mapping
F;: B> R defined by

Fy(u) = F(u)—(f, )
has a minimum on B if and only if
f1D = {veB| F(w+1tv) is constant in ¢ for all » € B}.

Here F: B — R is a lower semi-continuous mapping satisfying a certain
“polynomial”-type condition.

(iii) The results of Theorem 1 and (ii) give rise to Landesman—Lazer-
alternative theorems, cf. [10], [12], for elliptic equations with non-linear
principal part. This was done originally in [4], [7], [8].

For the proof of Theorem 1 we need the following key lemma.

Leymma 1. Let veB and K e R be such that

(1) (Tw,») <K, weB,

and assume that T: B — B* is continuous and satisfies (5)—(8). Then
v | R(T).

Remark. The idea behind Lemma 1 is that (7'(fw), v) behaves like
a monotone polynomial in ¢. If a monotone polynomial is bounded from
above, it is constant, and hence zero if it vanishes at zero.

6 — Banach Center t. X



GUEST


82 J. FREHSE

Proof. By (11) *
g(t):= (T(w+w),7) < K, teR,w eB,

and by (6)

liminf¢=2 (T (w+t0) — Tw, ) 2 0 (£ > ).

Thus —0 (w) < (T (w+1tv), 1;) < K,t>t,, and we may apply (7) to obtain

(12) g(1) = const = (Tw,v), teR,weB.
By (6)

lim inf [¢|~* (T (w +to) — T{aw), (1—a)w 1) 20 (¢~ z=o00).
Hence

limint [(1 — a)[t| (T (0 +tv), w -+10) + alt] (T (w + i), i) —
— [t {T(ow), )] 2 0 (¢ - Loo).
Using (12); we obtain from the last inequality
ao(Tw, v) —o(T'(aw), v) > (a—1)limint [[f|* (T{w +1v), w +1o)]
) (t = 4 o0)

where 0 =1 if § - o0 and ¢ = —1 if 1 - —co.
For 3> 1 the right-hand side of the last inequality is nonnegative
on account of (6). This yields

ao(Tw, v)—o(T(aw), v} >0, o=x1,a>1,
and
(13) a(Tw,v) = (T(aw),v), a>1.
TUsing hypothesis (11) again, we obtain
a(Tw, )< K, azl,
and thus by passing to the limit « — co
(14)
Setting f = 1/a, # = (1/a)w, a>1, we obtain from (13) that

ﬂ(TZ,W)-——-( (ﬁz>77’)7 0< <.

(Tw,v) <0, webB.

Hence

(15) limﬂ—l(T(ﬁz), ’U) = (Tz,v) (- +0).

On the other hand, the function ¢ defined for g e R by
v(B) = (T(pz), )

is differentiable at f == 0 if 2z € D,; cf. hypothesis (8).

icm
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Since p(0) = 0, on account of (5) we conclude from (14) that ¢ has
a maximum at f = 0. Hence the derivative »'(0) vanishes at 0 and we
obtain

limB=4(T(fe), v} =0 (B —0).
From (15) we then conclude that
(Tz,v) =0, zeD,y,

and since D is dense in B and T is continuous, we obtain v R(T). m
LeMMA 2. Let T: B — B* be semi-coercive in the sense of (10). Then

dimRB(T)+ < dim@QB.

Proof. Let n = dim@B and 2, eR(T):,4=1,...,n+1. We shall
prove that the 2; are linearly dependent. Since dim@B = n, there exist
numbers 4; such that

7+l ntl
D a0z =0, iy =o.
i=1 i=1

n+1

Set 2 = ) Az Since 21 R(T), we have

=1

(T(t2),12) =0, teR

and by semi-coerciveness

sup{litell/ (L+1Q(@))| ¢ € R} < oo.
Since
n+1

Qte) =1 ) 4@z =0,

we conclude that z = 0. Hence there cannot exist more than n linearly
independent elements in R(T):. The lemma follows.

Proof of Theorem 1 (from [6]). The finiteness of dimR(T)* follows
from Lemma 2. (In fact, we have dimR(T)* < dimQB < oo.) Linearity
and closedness of R(T) are proved in the following formulation:

The equation Tu = f is solvable if and only if f1 R(T)*.

The “only if” part of the above statement is trivial. For the “if” part,
weassumethatf | R (7)* and assume that the equation Tw = f were not solv-
able. By induction we then shall construct linearly independent elements
%1 R(T),i=1,2,...,m,m =1+dim@B, which will contradict Lemma 2.

Let 4e{l,2,...} and if ¢>2, assume that linearly independent
elements z | R(T),j =1,2,...,4—1, have been constructed.

Set ¥; = 0 and V,; =linear hull {ey, ..., %} if i>2.
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Tet W be a closed linear complement to the space V;. By (9), for

all r >0, there exists an u, e B.OW gsuch that
(16) (Tw,—f, u,—2) <0, @eB.NW

where B, = {# eB] {»|l <7}

If [u,]| < r for some r > 0, then Tu, —fLW; hence Tu,—fLW-+7V,;
since R(T)—fL1V;, by induction hypothesis and f1I ¥V, by hypothesis.
Thus Tu,—fL B or Tu, =f which contradicts our assumption that
the equation Tu = f is not solvable, Therefore we need to consider only
the case || = 7,7 — oo.

Since B is reflexive, there is an clement z € B such that |jw,.||"", > 2
weakly for a subsequence (r — o). Setting # = 0 in (16), we obtain

lim supliu, ||~ Tw,, 4,) < oo (r — o0)

and, from the condition of semi-coerciveness (10),
|l < CliQull+ €
with some constant C. Hence
01—l 1 < s =21l = (@ s )|
and by passing to the limit r - co we have

o< gzl

(1 = o0)

sinee @ is completely continuous. Thus 2 # 0.
From the agymptotic monotonicity condition we conclude that

lim influ, |-t (Tu, — Trw, w, —w) =0 (7 — o0).

From the variational inequality (16) and the orthogonality V,; L E (1), VvV, L7,
we conclude for w = w,+w, e B, w; e WNB,, w, eV, that
(17) (Te—f, w4, —w) < 0.
From (17) we obtain
liminf {ju, |- (f — Tw, 4, —w) 20 (v - o)
and thus .
(f—Tw,2) >0, webB.

Hence from Lemma 1 we conclude that z| R(T) and, by hypothesis, fle.
Since z € W, # # 0, we have z ¢ V,, i.e. # does not depend linearly on 2y, ...
..y %;_,. Setting #; = 2 completes the construction of the #; and we obtain
the contradiction. The theorem is proved. :
ExAmpLES. The hypotheses of Theorem 1 are satisfied in each of
the following examples:

(1) <Tu, vy := (|VuP2Vu, Vo), w,v e H"?(Q), p > 2;

e ©
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(i) (Tw, vy 1= ((2+cosu)| FulP*Vu, Vo), u, v e H-?(2), p>2;
(i) <{Tu, IU>V = (|Pu, [P Py, Vog) 4 (1|0, 01) +{(sine Voo, Vo, +
A V0) A (| V[P Vg, P3), = (4, %), © = (91, v5) € HYP(Q) x H*(9),
?>2;

(iv) (Tu,v):=(du—dulP~?(du— ), du—1v), u,0eHy?(Q)x
% H>P(£), where p >1 and 1 may be an eigenvalue of 4;

8§ .
(v) {Tu, vy := 3 (P;(Lyu, w, v e HyP nH>?(Q),
j=1

where P;: R° —~R,j =1,...,s, are polynomials such that

IP; (&)l < E+EEPY,
PRAGHE=TEES &

eeey Law), I;o),

P,0) =0, j=1,...5,

with eonstants K, ¢ >0, p > 1. The operators L; ave second order uni-
formly elliptic operators defined by

n
Ly = 2 a)o,0.u
1k=0
(8, = identity).
Tn all the examples, Hy?, HY?, H>? denote the usual Sobolev spaces
of a bounded domain Q of R™
We have used the notation (w, 2) = f wedw for functions w, 2: 2 -~ R
or R™. 2
The condition of semi-coerciveness (10) follows from Rellich’s lemma
in L7, i.e. the inequality

leell, << elleslly,p + EolQuell,

with a finite dimensional projection @ = @(e): H'? — H"?.

Appendix

The following conjecture is of interest in algebraic geometry:
Let T: R™ — R"™ be a mapping whose eomponents are polynomials
in n variables. Assume for the Jacobian VI that

(18) det (T (@) 50 for all ze R".
Does it follow that T is a homeomorphism of R" onto Rt
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We are interested in the question whether T is a mapping onfo R™
if (18) holds.
A simple consequence of our theorem is

THEOREM A. Let T: R™ — R™ be a polynomial mapping such that for
all @, VT (x) is positively definite. Then T' is o mapping onto R™.

Proof. By Theorem 1 the range of 7' is linear and hence closed. By (18),
it is open and, therefore, all R™
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0. Introduction

The first three sections of this contribution are devoted to the question
of the regularity of solutions of scalar variational inequalities with obstacles,
that is, to problems of the type:

(01) FindueK={peHy(2)] v=v in Q} such that

n

2 (@ (, w, V), Bu—8,0) <O

i=0

for all ve K.

Here £ is a bounded open subset of R", H;(Q) the usual Sobolev
space of functions % which have a generalized gradient in L2(£2) and vanish
on 90 in the generalized sense. The sealar product in L*(Q) is denoted
by (+, *), ie. (w,#) = [wzds; &, denotes the identity map. The inequality
sign v > ¢ in the definition of K is to be understood in the sense of HY,
of. [25] or [37], or in the sense “almost everywhere” (which may be quite
different).

We shall assnme natural growth and ellipticity conditions for the
functions a;, cf. §1 and §2. For a sufficiently smooth obstacle y, say,
for p e H**(Q) (ie. v having bounded second derivatives), the question
of the regularity of solutions of (0.1) has been essentially solved. From the
general regularity theory due to Brézis-Stampacchia [8] one obtains that
w e H*(Q) for all p < oo, and the final step yielding u e H**(Q) was
performed in [15], [16], [21], [9]. It is well known that the further regularity
condition u € 02(Q) is false, in general. Cf. also [2], [24], [26], [27], [37]
for many other results on regularity and historical remarks.
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