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0. Introduction

There is a vast literature on applications of double layer potentials to the
Dirichlet problem for the Laplacian (cf. [5], [8]). G. Lauricella defined
multiple layer potentials to solve the Dirichlet problem for the biharmonic
equation. K. Schroder [17] has given a rigorous proof to Lauricella’s
ideas. 8. Agmon [1] has defined multiple layer potentials for arbitrary
homogeneous elliptic operators L with real constant coefficients in the
plane. Both authors have dealt only with domains which have a suffi-
ciently smooth boundary. . )

In this paper we modify Agmon’s definition of multiple layer poten-
tials in such a way that it gives Lauricella’s potential in the special case
of I = A% If Q< R is a simply connected domain with a. piecewise
smooth boundary, then the multiple layer potentials with respect to an
operator I of order 2m define solutions

w e ™1 2)NC*™(Q)

of the equation Lu = 0 in Q. In the case of higher order operators the
multiple layer potentials are much more difficult to be handled than the
double layer potentials for second order equations. For the operator 4°
and for some fourth order operators which do not differ from A* too
much the Dirichlet problem for the guadrant can be solved by means
of multiple layer potentials, i.e. the Poisson formulas can be given. It seems
that for domains with a piecewise smooth boundary theve is mot yeb
a satisfying theory of the Dirichlet problem. It seems to be still an open
question, whether the Dirichlet problem even for the biharmonie operator
A* in a rectangle is solvable for each function F e (*(E®) and whether

[7
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the following a priori estimate

(0.1) llloyz) < const I]n]ax 1D°Fllgaa) =: const [Fl, o
al<1

does hold. Of course, there are existence theorems for boundary values
which have additional properties (¢f. [11], [12], [18]). Therefore an a priori
estimate (0.1) would imply the existence of a solution for Dirichlet data
induced by an arbitrary F e (*(R?). Using the Poisson formula for A?
in the quadrant, we have tried to apply to biharmonic functions in a ree-
tangle a method developed by C. Miranda, S. Agmon and others for
domains with smooth boundaries (cf. [16]). This method led us to the
problem, whether there are constants C, (p >2) such that for any

%e ﬁ”(!)) (closure of CP(£) in the Sobolev space W;(R2))

Wl gy < 00D (s 40): 0 € G () wnd ol < 13,

where 1/p+1/p” = 1. From such an inequality the estimate (0.1) would
follow. Such a Gérding inequality has been proved by C. Simader [19]
under some smoothness assumptions on 4.

One can say that multiple layer potentials are promising tools to
treat the Dirichlet problem for higher order elliptic operators in domains
with corners and edges and that it is a promising task to attack the prob-
lems which arise and which are sketched briefly in this article.

1. Multiple layer potentials

Let D, and D, denote the differentiation along the z- or y-axis, respect-
ively, of the real plane R®. We consider a homogeneous linear elliptic
operator

2m
e k 2m—k
L= Z a‘zm—sz'Dv

Te=0
of order 2m in the plane with real constant coefficients. For definiteness
agsume a, = 1.

Let @+ be the open first quadrant in' R? and let @~ = RZ\Q’r be the
exterior of the closure of @+ A function % e ¢™*(Q+ or Q y is defined
by the m-tuple

U
Uy

U1
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of its (m—1)st-order derivatives

Uy = D’:z:z*l‘k'D:;il’!
uniquely up to a polynomial of degree < m. Therefore, by a multiple
layer potential (abbreviated: MLP) for L in @+U@—- we do not mean a
particular solution of L# = 0, but the vector u of the (m—1)st-order
derivatives of u. In the same way, the Dirichlet problem and, correspond-
ingly, the Poisson formula for @+ or - are modified.

Densities of @ MLP or boundary data for the Dirichlet problem for I
in @+ or -~ are defined as a 2m-tuple

Fols, 0) £o(0;8)

= (f(’ 0), £(0, )) cCB(E,)*™

Fna(s, 0 4, Lfnss(0,9)

of bounded continuous real-valued functions on the closed positive coordi-
nate half-axes satisfying, furthermore,

785 Ols—o = F(0, Dimo -

We denote by B™ the Banach space of all such 2m—imples equipped '
with the norm

”f”:———oi}l?m{lﬁ(s’())]’ If:'y(ois)l} . -

0<<s

The Dim‘ch_let problem for I in @ = @+ or @~ consists in finding an
m-tuple 4 e C(@)™ of (m —1)st-order derivatives of a solution 4% of Lii= 0
in @ such that

w(®, 0) =f(=, 0) w(0,9) =F(0,9) (#,9eBs).

We shall work out a special solution % == Pf for the biharmonic operator
A*in @+, and we shall call w = Pf the Poisson formula for 4% in Q+. Ingtead
of OB(R.)* and C(@Q)™ other function spaces can be taken as a basis
of consideration.

and

The polynomial 2 L(z,1)

2 g1 2"

%1y -1y &, in the open lower complex half plane. Following [1] we denote

has exactly m roots

M (@, y) = (@ —2.9) (@—257) ... (8 —2nY) = me_kw"y"“",

m
)= 25 -Ic‘/l’kym‘k!

k=0
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where b, is the complex conjugate of by,

)
= Mo dyt p<i<m)
k=0
and
i .
D)= Db d Iyt (0<j<m).
k=0

Furthermore, we shall use the polynomials

N(z,1):=

2 Cprs®

k=0

(g—2rY) ... (2—27")
and

(o<j<m.

i
= Z 612"
k=0
These polynomials arve interrelated in the following way:
M(z,1) =2"b,N(1jz,1) and Pye,1) = b, N;(1/z,1).
We denote by M, P and N the m x m matrices
M(e) = (M (a))) : = ("7 Mle, 1)),
P = ((Pa(e) = (" Prui(e 1)
and
N(@) = (M) : = (" Vsl 1)))-
We shall apply the formula

M(z) _
ZRJS M1

where y is any anti-clockwise oriented rectifiable Jordan contour in the
lower complex half-plane enclosing all the zs in its interior and where I
denotes the unit matrix (cf. [1], (2.10)). This formula also holds if M, M
" and # are replaced by M, M and % and if y denotes a contour in the
upper half-plane enclosing the 2;’s. Substituting z = 1/ we obtain

1 rde P 1 N©O
z_mTyf'z_ M(z,1) ”_2m'0fdc N(Z,1) L

where C is the image of the oriented contour y under the transformation
2L,

(1.1) dz =1,

omi yf M(z, 1)

(1.2)

icm
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LevwmA 1.1. The formula

0 1 —t tym-t
f _ M) 00 1 (=™
am J Mz z—l—t) M(—t,1) |, ...
0 0 0 0
_._ii)m_-l_l_l_o(m—z) ab 1t =
M(—i, 1) =
holds for teR.
Proof. For positive integers j we have
= (— t)7+(~t = (241) 2( B - (=1
Applying (1.1) we get
1 M(z) M(—1) dz
= de =
2myf et (s, 1) © T 2mi yf(z+t)M(z,1)+
0 1 —t (—tym2
__pym—3
o .
0 0 0 0

If all the zj’s differ from each other, we have

m

dz 1
omi f (2+8)M(2,1) ;; (#+1) ]—] (z—2,)

J

=1 k#j
Now,
m—1
[ @+ = 3 2y
k#) I=1 <o <Ty
kreat
and
) Y ey Y aem,
1<Snes T3<enn<t, <<y
Siir 1 1 el
-1
— 4 i
= Z (—=;) 2 L zi:—g+( —#)
=0 1 <enn<ij—g

1
= (=1 D' b_y# = (=1} My (%, 1),

gm0
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50 that
m~1
[Tt = 3 27 (1) My, 1).
271 =0
Since
m
J=1 gy (Zj—zk) ™ 7 (1)
we obtain
—_:_I._ f dz _ ( —-1)"7' tm—l—(m"n( _1)m—-l 21 o= __:L .
2mi J (a+)M(s,1)  M(—t,1) =)

14

This identity also holds, if some ;s coincide.

The first assertion of the lemma is thus proved.
For & < j+1 we have

k
My (—t) = (—tym=1d Z by_y(—1) = (—t)"1I+% L lower powers of —¢.
=0

For k> j+1 we have

& k
My (—1) = (=" Dby (—t)! = (—)f~i=2 3 py(—ty™
i=0

=0

8

= (=t TM (1, 1) — ()

ie.
My (1)

[ A S Y =2 a
gy = (U0 at

[t] = co.

The lemma is fully proved.

CoroLLARY. Considering (1.2) one can prove that

1 P()
—2;1:'7;{ M, Dt @

0 0 0 0
1 0 0 0 m—1
N(—1) - _ (= =
I PR I w3 O
(=42 (s 0
at [t] = oo,

icm
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Drriximion. For (2, y) e @+UQ- and any feE™ the m-tuple

11 P(2)dzf(s, 0)
Uf (%, ) : = 7TofIm 2“’07]?@;1—)[(;@ ds-++

1751
+—fIm—,f——-————Mmdcﬂo’t) dt
™ 27rz~y ML, 1) (@l +y—1)
of functions (Tf), is called the multiple layer potential with respect to L.
By direct computations it follows that the (Uf); are the (m —1)st-order
derivatives of a solution u of Lu = 0 in QruQ-.
ProPoSITION 1.1. For feB™ the restrictions UfIQ* and Uf|IQ- of

a MLP Uf can be continuously ewtended onto the closures @+ and 6:, re-
spectively. The boundary values are given by

. 17 N
(3 lim Ufa,g) = = f In— - floy, 0d5 £7(0,9) (>0
and
. _ 17 M)
(L4 lim Uflo,y) = £f(s, 0)~— f I 35 10, @)@t (5> 0).

Proof. At first we prove (1.3 +)- From Lemma 1.1 and its corollary
it follows that

M(—1)
M(—t,1)’°

N(_t) — -2
Im o =0(t® at

Therefore the limits can be taken under the integral sign, i.e. we get

[t] = oo.

. 1 F N((s—a)/y) ds
T T

M((t—y)/a) @
M((t—y)|e, 1) 710,17) @

1 F_ N o L M—y)e) (0,8 @t
__;.Df Im—v»—N(s,l) f<(sy,0)ds:.Fz]£iao;of Im—————-M((t—y)/w, 1) 1w

—{—l Hm —Im

ki
0 §

M(+1)£(0, yttz)
M (£t,1)

a|r

oo N oo
fIm__(‘S'_sz('gy’O)dg:F]jmi J'Im dat
§ N(S,l) D->0 TC:FU/Z'/

M(+1)

(Lt 1) af(0,y).

_1r7 N(s) 1T
—n‘flmmf(sy,o)dﬂ:—;—£ Im
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The proof of (1.3,) is completed by the observation

3 M@ 1 M@ Y =M M (¢, 1) i
fIm W, T J e G, ) (i, 1)

= ZRes C,l) =

(ef. (L1)). The identities (1.4.) are proved in the same way.

Now we investigate the restriction Uf|Q+ near the origin. For », y > ¢
we have

r N
(15)  Ufa,9) =— flm%f(mﬂy,oms_
—axfy ’

fI

[flz+sy,

f(0 ta 1) di

f Im —-———-N(S)
~aly s, 1)

+= [m [—§(0, to+9)+7(0, 0)1dt+
™
—yle

[fxm T fI

The first and the second summand on the right-hand side tend to 0 if
@,y ~ +0. We will show that

fI

does not depend on ¥, 0 <

0)—1(0, 0)1ds +

1
™

M)
M, 1)

- ai] 70,00

(1.6) s — f Imﬂ ds

M(s, 1)

t< oo (with f°°= j?and f

=ifo__ —e ~1foa -
it is obvious that the extended MLP . Uf|@+\{(0, 0)} can be continu-
ously extended to the origin by C(t)f(0, 0)/x.

‘We have
—co -1
N@1jr) —dr , P(ry dar
= el ol = | Im—— =
_[ a1 i e,

c_ N(s)
f o N(s,1) é
~1ft

f ). Then:

icm
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and
-1
P(s) M(s) F N(s)
C(t) = Im _
0= [ |G M(s,l)]d”oflm 7,0 ”
;o M(s)
- ™
Since

8Py (8) + My (s)
=" ¢ P, (s, 1)+ My (s, 1)]

m—l—ik

i ~1—
et (3
=0

we have

I
$mE L 3 ) = 871 M (s, 1),
=0

f I8 f Im—-ot
independently of ¢ e [0, +oc].

The continuity of Uf|@-\{(0, 0)} at the origin is proved in a similar
way, but one has to consider Uf on each single open quadrant and on all
coordinate half-axes separately.

The proposition is thus proved.

In view of this proposition it seems reasonable to apply the elassical
method of potentials to solve the Dirichlet problem. For given boundary
values f e ™ we seek solutions Ugy in @+ and —Ug--in @~ with densi-
ties.g, € B™. For each sign + or — the relations (1.3) and (1.4) result
in a system of 2m integral equations

70, 9) = 9.(0, 9) £ Ng.. (-, 0)] (¥),
(1.7)
fl@, 0) = g, (, 0) Mgy (0, -)] (@)
Applying the operator It to the first equation of (1.7) and combining the

result with the second equation, one gees that (1.7) is solvable if and
only if the system

(1.8) [=g+MNg

of m integral equations is solvable. Furthermore, (1.7) has a unique solution
if and only if (1.8) has a unique solution.
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The concept of a MLP may be defined with densities in other function
spaces and also the systems (1.7) or (1.8) of integral equations may be
considered in various function spaces. A measurable function K on R *®
is called a Hardy kernel for some LP(R.)if K is homogeneous of degree
—1 and if

I := [ (1, 9)] y™dy < oo.

0

If K is a Hardy kernel for some L?(R,), then the integral operator

(1.9) Kf(z):= [ K(=,9)f(y)dy = [ K(1,9)f(ay)dy
0 0

is a continuous linear map in L?(R;) with the norm |K]|. The product
of two integral operators with Hardy kernels in the same I?(R,) is again
an integral operator with a Hardy kernel in L?(R,). Integral operators
with Hardy kernels in a common IL?(R;) commute with each other. Thig
follows from (1.9) and from the Fubini theorem. The spectrum of an integral
operator with a Hardy kernel K can be described by the Mellin transform

K(e) = f ¥ (1, 1) dw
[

of K(-,1) (cf. [6]).

The kernels of the integral operators in (1.7) and in (1.8) are Hardy
kernels for I?(R,), 1 < p < oo. Since the integral operators in the matyix
MN in (1.8) ecommute mutually, one can define

det (I+MRN) =: I +2,

where I on the left denotes the identity in L?(R,)™, whereas I on the
right denotes the identity in L*(R;). The operator ¥ in L”(R.) has a
Hardy kernel, just as well. Properties of the operators I--Mf or MN
can be characterized by properties of I-+.% or 2, e.g. I+MN is in-
vertible if and only if I4- % is invertible.
Although the operators
I M
A= [ £N 1]

in B™ or I”(R.)™ have several nice properties, we have not been able
to decide whether %~ does exist in general.

2. Poisson formula in @+

If Uf denotes the double layer potential for the Laplacian 4 in @+u@-
with a density f e B® =: B, then it is well known that

Pf(z,y) := Uf(2,y) )+ Uf(—w, —y)

icm®
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is @& Poisson formula for 4 in Q+. For 4° however, the function
2.1)  Vf(@,9):= Uf(z,9)+ Uf(—o, —y)

2 [ 0, y+1) 2 -2 f]f0, —y+iz)
) f[ ] L+2) d”?f[ ¢ —1] Ay OF

-yl viz

2 ([1s] fl@tsy,0) 2 fT-1 s7flsy—a,0)
2 Jatsy,0) o0 2 N B At
T _EL [s sz] (14+s2)° ds w z/[ [ s —8‘] (s2-+1) ?

on @+ hag the boundary values

7010
90,0 = f [} oazey @i

and

900, 9) =FO 9+ f[ ]s:?—j}-’l))ds

i.e. g =:f-+ Bf. The operator B maps B’ continuously into itself and its
norm is

47t 2
— | g dt=—<1.
||Bn<ﬂof T

Therefore we get the Poisson formula for 4 in @+ as an infinite series,

. namely \

22) Pf=V{I+By'f =V Y (—Byf = V(I-B) ) BIf.

j=0 =0

This formula can be handled quite well, since the operator B? has the
simple form

. 16 1dt
i) = [ [ 10 13 (1+s“)‘ ey

(]

and the norm of B? satisfies
1B = 4/m2 < 1/2.

Tor further purposes we need some weak regularity properties of
the Poisson formula Pf. Therefore we introduce the function spaces

Pui= OBG(TB:)PEL{(R,») (0<e<l)

2 —-Bénach Center t. X
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of bounded Holder continuous real-valued functions ¢ on R, which are
continuously differentiable in B, and whose derivatives ¢’ satisfy the
condition

[Pl o = SUPB°J* ()] < o0.
x>0
Lenua 2.1. For ae 10, 1[ the linear space F, , with the norm

lp(%) — @ (9)]
¢lly,q 2 = sup lp (@)} + sup i MR
20 z,9=0 {o—y|
z#FY

+[(p|1,—-—a = |if}”|]o +Hct (‘P) 'l' I‘P}I,-—a

is @ Banach space.

Proof. Let (@) be a Cauchy sequence in F,,. Then (p;) converges
to ¢ in CB (76:) Since (@) is a Cauchy sequence also with respect to H,,
@ belongs to CB, (R+) and (g;) converges to ¢ with respect to H,. Since
(g;) is also a Cauchy sequence with respeet |}, _,, the derivatives @; of
convelgo uniformly on each compact subset of Ry, ie. ¢ € O"(By) and
@; —¢' locally uniformly and lp;—g¢l;,—. converges to 0. Thus ¢ eF ,
and g~ pl,. > 0. '

LemaA 2.2. The operator B defined by

*l[hu

fw (@>=0)

maps I, , continuously into itself and its norm satisfies
1B, < 1.

Proof. Let |Bll, IBlg, and |Bl;,_, denote the operator norms of B
with respect to the seminorms ||-|l,, H, and ||, _,, respectively. Then

1Blle < max{|Bl, |Bllz,, 1Bll,-o}-

Now, firstly, we have |B| < 2/n. Furthermore, the estimate

= H, (¢)lot —yt)°

4
IBp(o)~Bply) < — [ T

4 P
=—H —y* | = dt
— H,(¢)lo y!of(th)z

holds, i.e.

4 F e 4
gy L — = — .
1Blle, < - f = dt - I(a)

¢

4
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From the mean value theorem and the Lebesgue theorem on dominated
convergence we see that By e CY(R;) for all e F,, and

(Bo)@) == [ L2100 4,

1

% J @+E)

<]

4]
Consequently

N o ol Lo P ™
[(Be) (m)l<ﬁ0f TEWEE h<— la;l" I(1—aq).

We have thus obtained

1B, < 1mx{I(O ), I(1—a)}.
Since I(0) =1/2, I(1) = =/4, and
°°t1+°1nt #+Ing fgtme '
3 f o 0 ft i
J (1412 (L+2%)? (B +1)° i

= fl M oo
(1”“;)2( Vdt > 0<a<1),
the function I increases monotonously on [0, 1], and so

4: . .
1Bl < — I(max{a,l—a}) < ——I(l) =1 (0<a<1).
Now we introduce the Banach space
7
v e _F(550)
. El,u'_ {f —[f(O,, )]E @ fw} 0”:»._0 _f 7y }

la

normed by
Ity == m&X{llfk Olls,ar (05 ),

PropostrioN 2.1. Let p > 1 and a €10, 1/p[ be given. Then for each
feB, the function Pf satisfies

Pf € (@4 N W} 100 (@ 0 O%5%(Q 7).

Proof. It is obvious that Pf e 0°(Q+). We apply a Privalov type
theorem in order to show that

Bf e O%%(Q+)".
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Obviously, for constant f we have
=(I-B) ) BIf =
j=0

and Pf = Vg = const (ef. the proof of Proposition 1.1). Therefore we
may assume f(0, 0) = 0. This implies ¢(0,0) = 0. To get Holder conti-
mnity of Pf, we extend g by 0 to the negative coordinate half-axes. Then
the integration in the formula for Vg may be cxtended to the whole coordi-
nate axes. The kernels o* *y*(s*+y )'2 or sy (@ +yN 2 (B =0,1,2)
fulfil the conditions ([2], (3.2) with a’ =1 and (3.3)) with respect to the
balf-plane % > 0 or y > 0, respectively. We write g as a sum g = §--h,
where § vanishes in a sufficiently large open bounded neighbourhood &
of the origin and % vanishes outside a sufficiently large compact set. The
Privalov type theorem ([1], Th. 3.1) is then applied to ¥k and the function
V§ is C* on each compact set K' = GNQ+.

From f(0,0) =0 and f'(0,s), f(s,0) =0(s") at s =0 and at
s = oo it follows that ¢(0, 0) = 0 and ¢'(0,s), 9'(s,0) =0(s™*) at s =0
and at 8 = oo. If we differentiate the integrals in (2.1) with respect to the
parameter x, the lower limits of the integrals yield no term to the de-
rivative D,Vg, since g(0,0) = 0. From

19°(0, )|, lg’(s, 0)| < Os~

(I-B) 2 BYf = const
J=0

it follows that

F e #] 90, e +y)
- = 2ot
(2.3) D.Vio,0) = /f P s
2 —# ] 0, m—y) 2 °°[1 t] g (w+1y,0)
2 g0, WY n = IET D
= f[ ——t] 147y @t f el @y *
iz -~y
2 T 1-1]gty—2,0)
+':x£ [—t tz] T

and D,Vg(x,y) is written analogously. This is checked in the same way
a8 we now show the absolute econvergence of the integrals in (2.3).
The integrals in (2.3) are dominated by the quantities

(=2

const- g™ -
(1+#)

at (A= +ylzeR\{0}, k=0,1,2,3)
and by analogous expressions with z, 4 interchanged. For A > 0 we have

f“’ P (t— )" ok gk
; (1+t2)2 == (1_*_12)2

oo

ll—a th_
2% | = dt
1=a " Mf (L)

Le< oo,

iom
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for —1<< A< 0 we have

P OlEE—2)

2—-4 )
TaLEE <2k6f Tedt -+ f @i < o < oo,

but for 1< —1 we get

1A h=o =g
f 1+t2)2 < f (112 Of 1+ dit+
ey e 1Al —a
t*(|A] —1) (1A —=1)
Y g B Bt A
+ 17! (1+t2)2 + ]):{‘2 (1+t2)2

12 o 1
<e+2e f i @i+ ( ) f =4 @ 4 |AE-3—e ft""” Lty @< o< oo.
1/2 1/2
In all the three cases the constants ¢ on the right-hand sides can be chosen
independently of 2. We have
1D (Vg)s(@, 9)1, 1Dy(Ve)(m, 9 <

Then we get for v:= (Vg); and p>1

f f | DI dndy ,

o2 +yi<a?
Z,U>0

c(x™*+y™%).

if & <1fp. The same estimate holds also for D,». Thus the proposition is
proved.

3. A priori estimates for solutions of the Dirichlet problem
for 4* in a rectangle

Let Q be a rectangle and let p > 2. Let W;(Q) denote the Sobolev space
of those distributions « on 2 whose derivatives Dy of order |8 < 2 belong
to IP(R). According to the Sobolev imbedding theorem, thiz space is
continuously imbedded im (). For any given biharmonic funetion
u & (*(@) with Dirichlet data (D u]@.('.’)h,I<1 we construct a function
@ e W;(82) with the Dirichlet data of % and such that

(3.1) 6l l,00 )

where ¢, does not depend on u. For all we 0{,’“(9) the identiby

liés lorm <

(0 —1%, M) 5 = ff (w—) APwdody = (4%, Aw)
, 2 .
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holds, and its right-hand side can be estimated by

(3.2) (4, dw)| < esllull,polleol]

W)
where ¢, depends neither on % nor on w and here p’ € 1, 2[ is defined by
1p+1jp’ = 1.

Since the Dirichlet data of w—i e W,(2) vanish, this function
belongs to the closure 1%';(!2) of C5*(R) in W, () (cf. [20], p. 59; the proof
given there can be adapted). For bounded domains & with C*-boundary
C. Simader [19] has proved the existence of a constant ¢(p) such that the
estimate

B8) Wiy < olp)sup{(4F, 40): g 2 CP(E) and Jgl,s , <T)

holds for all fe V%;(G). If the estimate (3.3) holds for ¢ = @, then there
will be a constant ¢, such that for biharmonic functions w e ¢*(2) the
estimate

(3.4) lllermy < eallwel oe

is valid. From this estimate of Agmon-Miranda type it would follow by
an approximation argument that for any F e C*(R*®) there is a biharmonic
funetion % e C*(2) with the same Dirichlet data

Dy =D'F on 2Q (If)1<1).

Ii for any two positive numbers a,, b, there are neighbourhoods U, ¥V < R,
of @, and b, respectively, such that for all 2 = 10, a[ %10, ,aecT
and b e V, the estimate (3.4) Holds with the same constant ¢y, then 4 = 0
will be the only biharmonie function in (*(2) which satisfies the homo-
geneous Dirichlet conditions.

Lemva 3.1, Let ag, by > 0 and p > 2 be arbitrary and let Q = 10, af x
%10, b, where @, b > 0. There are neighbourhoods U < Ry of agand V < R,
of by and a constant ¢, such that for any ac U, beV and any function
F e C*(R?) there is a function v e W2(£2) < C*(3) which satisfies the Dirichlet
conditions

Dy = D'F

and which satisfies the estimate

(3.)

on 22 (<)

llowz < 04l Fil,eq-

Proof. The vertices of Q are A = (0,0), B ={(a,0), C = (a,b),
and D = (0, b). We denote by Qx, X e {4,..., D}, the open quadrant
which has its vertex in X and which contains 2. We denote by Py the
Poisson formula for 4° in @y which was derived in the preceding section
for X =4, 9, =Q+.
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Let us denote £Q° =10, a[ %10, bs[ and let (yg)y be a modified
smooth partition of unity for a neighbourhood of 209, i.c. a family of
functions yx e O (R?) with x>0, =1 in a neighbourhood of X, and
such that 3} 4% = 1 in a neighbourhood of #0°, Furthermore, we assume

=

that suppyy intersects 802° only in the two sides of £° adjacent to X
and that yy is constant in the normal direction near the boundary 9Q°.
The neighbourhoods U and V are chosen in such a way that the partition
of unity retains all of its properties when considered with respect to 0.

Let now F e (*(R?) be given and let us denote D, F' = f, and D,F =f,.
We apply P4 to the boundary values

2a(®5 0)fo(®, 0)+ D4 (2, 0) [ fols, om]

6
%4(®; 0)fy (@, 0)

and analogously to f, (0, y). The result P,f, is a pair of derivatives of
a bibarmonic function u 4 in @ , which is uniquely determined by u, (4) = 0.
In the same way we define functions uy for the remaining vertices X.
The function

Tul@, 0) = [

vi= 3l pxug| 2+ Y F(X) k|0
X pd
fulfils all the assertions of the lemma. We have

lolora < os [ ) IPxfelllom + 3 IF(D)],
X,j P :

where the constant ¢; depends on the partition of unity (yx). On account
of (2.2), Lemma 2.2 and (2.1), the summands on the right-hand side can
be estimated so as to obtain (3.5).

LevuA 3.2. Let u € G*(Q) be a bikarmonic function and let % denote
the function which was constructed in the preceding lemma for F = w. Then
(8.2) holds.

Proof. Since
A = 3 gxdug+2 ) VugVis+ X uxdyx+ Y u(X) Ark,
X X X X

there is a constant ¢, which depends on the yx’s, such that

(4, dw)| < ; (At 410) el o0l iyt

-

for all w e € (). For w e CP(2) we have
(xxdux, dw) = (A(XXAUX)y ‘W)-
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Since A*ux = 0, there are derivatives D?uy up to order 3 only in 4 (yxAty).
We proceed by integrating twice by parts to get an integrand which
contains derivatives of ug up to. order 1, of w up to order 2 and of yy.
Then.

oz dux, dw)| < 07||“x||cl(.r)‘)”wllezf(m

is evident. As in the proof of the preceding lemma, one can estimate

luxllonm < sl o0,

and this proves the lemma.

4. Remarks

For the construction of the Poisson formula P = Py for 4% in @+, it was
only convenient but net essential to use Vf instead of the MLP Uf. The
MLP Uf|Q+ has boundary values k = :f—A.f. The operator 4, maps
B’ into itself and has a norm |44+ < 1/2+1/= < 1. Therefore, the series

(41) Pof = U DI AJf

converges. The use of the MLP instead of the modified MLP Vf has the
advantage that one can construct the Poisson formula P- for 4* quite
analogously in the exterior @~ of the first quadrant.

Unfortunately, the formula (4.1) cannot be applied in the same way
as formula (2.2) because there are terms like I(2—a) (¢f. the proof of
Lemma 2.2) occurring in the estimate of [[A+], so that the Neumann
series ) A’f seems to diverge in B,’,. One might propose a function space
F, . 5:=CB,(RT)NC 4(R;:) instead of F,,. If one chooses § mnear 1,
the Neumann series will converge in the corresponding space K, ,.
For f near 1, however, we have Pf e W, ,,.(@7) only for p mnear 1, i.c.
we cannot conclude Pf e C*(Q7)* by Sobolev’s imbedding theorem.

The operator 4° is characterized by 2, = 2, = —¢ (ef, Section 1).
It is to be expected that there is a neighbourhood D = (* of (—i, —i)
such that the Dirichlet problem can be treated for operators I, L(z, 1)
= (2—2)(2—2)(2— %) (¢ — %) and (2,2,) €D, in @+ in the same way
as for 4°. We have not checked this conjecture yet. At any rate, the details
will be a little bit more complicated.

The construction of Poisson formulas by modified MLP’s and by
Neumann series in B™ is not a general method. It does not work, for
instance, either for any foutrth order operator I, nor does it for 43 in @+
Therefore it remains an open and interesting question whether the oper-
ators % in E®™ which were discussed in Section 1 have an inverse.

icm®
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It is clear that the results of the third section are also valid for some
glightly more general domains and operators. As long as we do not have

‘the Poisson formula for any operator I in a quadrant, however, the whole
approach is limited to rather special cases of domains with piecewise

smooth boundaries. By the way, the use of MLP is not limited to the
dimension # = 2, but in higher dimensions the analogue of the operator
seems to be essentially more complicated.

Finally, we want to point out that the question whether (3.3) does
hold for domains with piecewise smooth boundary may be posed in the
same generality as it was answered by C. Simader [19] for domains with
sufficiently smooth boundary.
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The notion of complete integrability for nonlinear Hamiltonian systems
is Lased. on a theorem of Liouville. This result states that if a Hamiltonian
system defined on R*V has N independent first integrals in involution,
then the system is completely integrable (i.e. can be integrated by quadra-
ture). This notion has been extended to infinite dimensional Hamiltonian
systems recently be Faddeev, Gardenar, Lax, Novikov (and others)
who have shown that certain partial differential equations are integrable
in this sense provided one lets N — co. In particular, these authors study
the Korteweg—de Vries equation

1) Uy = Uy — U+

However, this notion of complete integrability seems limited to two-
dimensional partial differential equations. Moreover, the methods de-
veloped in those studies, mentioned above, totally break down when a
system “nearby” a given integrable system is examined. Finally, these
methods do not seem to apply to nonlinear elliptic boundary value prob-
lems.

In this article we define a new type of complete integrability for
nonlinear elliptic boundary value problem (in fact, for nonlinear con-
tinnous mappings between Banach spaces), and we show that this new
notion does not suffer from the defects described above.

1. The nonlinear boundary value problem

For explicitness we ghall study the following nomnlinear elliptic Dirichlet
problem:

- {Au +f(w) =g,

Ulge = 0.
Here Q is a bounded domain in RY with boundary 82 and f(u) is a C¥

[27]
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